Reducing Cracks in Concrete Bridge Decks Using Shrinkage Reducing Admixture

Report No: 16-R13

Published in 2016

About the report:

Restrained shrinkage cracking of concrete bridge decks creates a significant durability problem. Major admixture suppliers in the United States have introduced a new category of chemical admixtures called shrinkage reducing admixtures (SRAs). SRAs work by reducing the surface tension of pore water and thereby decreasing the capillary stress and shrinkage induced by drying. Several studies have reported that using SRAs in concrete mixtures is one of the most effective ways of reducing shrinkage cracking.

The purpose of this study was to investigate the effectiveness of SRAs in reducing drying shrinkage in Virginia Department of Transportation (VDOT) concrete mixtures and thus reducing cracks in bridge decks. Nine bridges located in VDOT’s Northern Virginia, Staunton, and Fredericksburg districts were selected for study. Three different SRA products were used. With the exception of one mixture, the maximum cementitious content was limited to 600 lb/yd3. Fresh and hardened concrete properties were determined for each mixture, and field placement details were documented.

The results showed that low cementitious concrete with SRA was effective in minimizing bridge deck cracking. The study showed that bridges with fewer and narrower cracks or no cracks can be constructed and that proper construction practices are needed to reduce bridge deck cracking.

The study recommends the use of SRA with a lower cementitious content in VDOT bridge deck concrete mixtures. A VDOT special provision was developed for the future use of SRA in concrete mixtures.

Disclaimer Statement:The contents of this report reflect the views of the author(s), who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Virginia Department of Transportation, the Commonwealth Transportation Board, or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation. Any inclusion of manufacturer names, trade names, or trademarks is for identification purposes only and is not to be considered an endorsement.

Authors

Other Authors

Michael M. Sprinkel, P.E.

Last updated: November 12, 2023

Alert Icon

Please note that this file is not ADA compliant. Choose one of below options: