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ABSTRACT

Performance prediction models are a key component of any well-designed pavement
management system. This study used data compiled from the condition surveys conducted
annually on Virginia's pavement network to develop prediction models for the interstate
system. The study is being reported in two volumes, of which this is the second.

The second volume describes the development and evaluation of the performance
prediction models. An exploratory data analysis was first conducted to examine the data
distribution, and to reveal the underlying relationships among the variables. "Robust"
regression techniques were used to identify outlying observations that could adversely affect
the regression analysis results. Stepwise regression was then used to select the significant
predictors of deterioration.

Different model forms were examined to identify the most suitable for fitting the data. The
models were evaluated by checking their goodness-of-fit statistics and conducting a series of
sensitivity analyses. To further assess the models' accuracy, their predictions were compared
against field-observed values. An analysis-of-variance (ANOVA) test was also conducted to
compare between the accuracy of two model forms and two model adjustment procedures. In
general, the developed models provided an adequate fit and generated predictions that conformed
with accepted engineering judgement. Comparisons with field observations showed their
accuracy to be quite reasonable even for long-range predictions. Finally, the ANOVA results
indicated that no significant differences existed between the two model forms tested or between
the two adjustment procedures.
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The Development of Performance Prediction Models for Virginia's
Interstate Highway System - Volume II : Model Development

Adel W. Sadek, Graduate Research Assistant
Thomas E. Freeman, P.E., Senior Research Scientist

Michael J. Demetsky, Ph.D., P.E., Faculty Research Scientist &
Professor of Civil Engineering

INTRODUCTION

Performance prediction models greatly enhance the capabilities of a pavement management
system, allowing an agency to predict the timing for maintenance or rehabilitation activities
and estimate the long-range funding requirements for preserving the pavement system. These
functions are crucial to the success of any pavement management process.

In Virginia, a pavement performance model was developed by McGhee in 1984 from data
collected on Interstate 81.! It related the pavement distress maintenance rating (DMR), a
composite index of distress damage, to cumulative equivalent single axle loads (ESALs). The
model is not currently used because the ESAL data it was based on are not now accessible
from within the Pavement Management System (PMS). Also, when this model was developed
the Virginia Department of Transportation's (VDOT) PMS was still evolving, and condition
data were limited. The annual condition surveys conducted since the model was originally
developed have compiled substantial condition data, making more refined models possible.

PURPOSE AND SCOPE

An earlier phase of this study used condition data to construct a screened data base to
support the modeling effort.” In this phase, the data base was used to develop prediction
models for Virginia's interstate system. Specifically, this study had the following objectives:

1. To identify the major factors affecting the condition of Virginia's pavements.

2. To experiment with various model types, forms, and modeling approaches, and identify
the most appropriate for Virginia's data.

3. To compare the precision of the developed models and assess the accuracy of the overall
prediction process.



METHODOLOGY

The research consisted of the following five major stages:

Literature review.

Preliminary data analysis and outlier detection.
Significant predictors identification.

Model development and evaluation.

Model verification and accuracy assessment.

et ol s

The following sections describe each of these stages.

Stage 1 - Literature Review

Significant variables affecting pavement deterioration that were identified by earlier
studies, different modeling approaches that have been used, and the mathematical form of
previous prediction models were reviewed.

Significant Variables Affecting Pavement Deterioration

Factors affecting pavement condition can be divided into the following categories: traffic
loading, environment, pavement structural capacity, soil type, drainage condition, type of
pavement, and maintenance activities. Within each category, a number of variables
characterize the factor under consideration. Traffic loading is typically characterized by the
cumulative number of 18-kips single axle loads (ESALs). Variables used to characterize the
pavement structural capacity will depend upon the type of the pavement; for flexible
pavements, for example, the structural number developed in relation to the AASHO design
equations is usually employed. Indices such as the Thornthwaite index or the freezing index
can characterize environmental factors.?

Often, however, not all of these variables are available. Moreover, some variables may
sometimes be statistically insignificant in predicting pavement condition. This happens when
the variable does not show significant variation over the study area. For example,
environmental conditions may virtually be uniform over one state, and would not need to be
included in the models. Any modeling effort should start by establishing the available
variables that significantly affect pavement deterioration in the area under consideration.
Results may differ from case to case.

Iowa DOT’s study of pavement performance models for composite and rigid pavements,*
for example, showed that the major factors affecting pavement condition on interstates were



pavement loadings, base material type, and aggregate durability. For primary roads, the
significant variables were pavement age, pavement thickness, soil subgrade, and reinforcement

types.

Gibby and Kitamura’ identified factors affecting the condition of pavements owned by local
governments:

. Previous pavement condition,

. Pavement age since last major rehabilitation or reconstruction work,
. Soil classification,

. Classification of roadway drainage,

. Surface thickness,

. Functional classification,

. Presence or absence of bus service, and

. Individual jurisdiction.

0NN A WN -

An accurate assessment of the effect of traffic was not possible, since the data files used for
that study did not contain ESAL information.

As pointed out by Gibby,’ because of the relationship between variables, some variables
may be used as surrogates for others. For example, the road functional classification can be a
surrogate variable for traffic levels, since the higher the classification of a road, the heavier
the traffic. Another issue that needs special attention while selecting variables for model
development is the problem of multicollinearity between variables.® Multicollinearity arises
when independent variables that are highly correlated are included in the model. A common
example is the high correlation between the age variable and the cumulative ESALs. To
overcome this problem, their ratio (ESALSs per year) may be used.

Modeling Approaches

The literature review showed that, with respect to deterministic models, there have been
three basic approaches for modeling the deterioration of a particular network: a pavement
“family” approach, a multivariate model approach, and a project-specific approach. A brief
description of each of these approaches is given below.

Pavement “Family” Approach.

In this approach,’ pavements with similar characteristics are grouped together to form
“families” or categories. Several combinations of factors can be used to define these
“families.” For example, the PAVER PMS, developed by the U.S. Army Corps of Engineers
Research Laboratories, defines a pavement family as a group of sections having the same type,
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pavement use and pavement rank.’ A recent study of Minnesota DOT prediction models
adopted finer groups based on pavement type, functional class, district, thickness, subgrade
soil strength and traffic levels.’

Once the families are defined, two-variable models relating the pavement condition
measure to age are developed. Grouping is assumed to account for the effect of the other
variables, such as traffic or structural strength. The developed model will represent the mean
behavior of all sections in a particular family. When the family model is used to predict the
condition of a particular section, it is adjusted if the observed current condition is different
from that predicted by the model. This is usually done by drawing a curve through the
observed pavement condition-age point parallel to the family curve. The adjusted model can
then be used to predict the section condition for future years.

Multivariate Model Approach

In the second approach,'*!* pavement sections are broadly classified by factors like
functional class, type or region. For each classification, models are developed relating the
pavement condition to a number of variables such as pavement age, ESALSs and structural
capacity, not just to age as in the previous approach. Each pavement section within a
classification will thus have its own performance pattern. Adjustments can still be made if the
observed condition is different from the model prediction. This takes several additional
factors into consideration, such as the inherent variations in materials quality and construction
procedures, which the model did not consider. It also incorporates data feedback into the
prediction process, since prediction is based on the most recent observation.

This approach is used by the performance prediction models of the Illinois Pavement
Feedback System (IPFS)," where the interstate system is divided into five broad groups
according to pavement type. Performance prediction models are developed for each pavement
type relating the pavement condition to the age of the pavement, its structural capacity and the
cumulative ESALSs to which it has been subjected.

Project-Specific Approach

The third approach, used by the Washington State PMS,'* develops project-specific
prediction models, where a separate model relating the pavement condition to age is fitted for
each project or analysis unit within the state system. The problem with this approach is that in
some cases, such as a relatively new project, the number of points available for model fitting
can be very small. For new projects, or when the project-specific curve provides unreasonable
predictions, the approach is usually supplemented by standard or “family” curves.



Regression Techniques

In all of the above approaches, regression analysis is the basic tool for model development.
The techniques used include simple linear, multiple linear, stepwise, and nonlinear regression.
In addition, some modern regression techniques for outlier detection and optimal variable
transformations were recently investigated by Lee and Darter.?

Prediction Model Form

The prediction model form should satisfy applicable engineering boundary conditions,
which should be established before the statistical data analysis. Lytton® identified six
boundary conditions for damage prediction models expressing pavement damage on a scale of
0-1: a) the initial value at time 0; b) the initial slope; c) the overall deterioration trend; d) the
variation in slope along the service life of the section; e) the final slope; and f) the terminal
value. A literature review revealed that not all of these conditions were actually satisfied in
practice. Basically, previous prediction models assumed one of the following forms:

Linear Model

The linear model has the following general form:

Y =a, +ax +ax, +..+ ax, (1)
where,
Y = pavement condition measure to be predicted;
Xp... X, = independent variables such as pavement age, traffic and structural capacity;

a,...a, = regression coefficients.

This model form failed to satisfy most boundary conditions, and therefore was generally
used as an interim until more data became available.'S Owing to its simplicity, it was also
used to identify the significant variables affecting the pavement condition in the study area,’
and to point out major problems and unreasonable trends in the available data.!!

Power Curve

The form of a power curve is given as:

Y =a,x; X, v x, (2)

where all terms are as previously defined.



This model form was frequently used in previous studies,>'>!7 and a number of states,
including Washington and Illinois, adopted it in developing prediction models for their
pavement management systems.!*!* Unlike the linear form, the power curve can satisfy the
initial boundary condition of zero distress at the beginning of the pavement service life.

Sigmoidal Curve

A sigmoidal (S-shaped) model is a curve with an inflection point and upper and lower
asymptotes. This could be appropriate for predicting pavement condition indices, since such
indices are typically bounded by an upper and lower value. By having an inflection point, the
model can reflect the fact that the pavement rate of deterioration may differ throughout its
service life. A simple sigmoidal model for prediction models can be expressed as :

-4
Y=¢T 3)
where,
Y = pavement condition measure to be predicted,
A = parameter representing pavement characteristics, and
T = pavement age, or cumulative ESALSs or a function of age and ESALs.

Systems that use the sigmoidal form include Minnesota,'s Ohio,!! and the Metropolitan
Transportation Commission (MTC) of the San Francisco Bay Area.?

Polynomial Equation
Polynomial prediction models have the following general form :

Y=a, +a x +a, x>+ a x" (4)
n

where,
Y = the pavement condition measure,
X = the pavement age,
a,...a, = regression coefficients, and
n refers to the degree of the equation.

Polynomial models were used in previous studies to develop 2-variables models relating
condition to pavement age.* ° However, because of data scatter, the polynomial curve would
sometimes show an upward shift, suggesting that the pavement condition improved with time.
To overcome this problem, the regression parameters were estimated using mathematical
programming techniques, which allowed for imposing constraints on the slope of the curve.®



Since polynomial models are purely empirical, they are usually not recommended for
extrapolation beyond the data range.

Stage 2 - Preliminary Data Analysis and Outlier Detection

After the data base construction stage,” the research effort proceeded to preliminary data
analysis and outlier detection. This stage consisted of three main tasks. The first task was to
formulate an appropriate modeling approach. This involved deciding upon an appropriate
classification scheme, identifying the potential explanatory variables, and selecting the
statistical packages to use in the analysis. The second task was a series of exploratory data
analysis procedures. Finally, the third task addressed the critical issue of detecting outlying
observations using robust regression techniques. These tasks are described below.

Task 1 - Formulating an Appropriate Modeling Approach

As previously discussed, the literature review revealed three basic approaches for
prediction modeling: a “family” approach, a multivariate model approach, and a project-
specific approach. The nature of the data suggested the multivariate model approach for this
study. This approach permitted investigation of the effect of the different variables on
pavement condition. It could be transformed into “family” modeling simply by using the
pavement age as the single predictor, and adopting finer pavement groups or categories.

The project-specific approach, on the other hand, was ruled out because the surveyed
sections changed every year, which limited the available number of points for distinct sections.
The very nature of the DMR score as a subjective measure suggests that basing a model on a
small number of points is quite dangerous, since any error in one point will appreciably affect
the precision of the model.

The Categorization Scheme

The distribution of the available data was examined to identify a suitable classification
scheme that would yield categories of pavement sections with an adequate number of data
points per group for model development. Figure 1 shows the number of points available for
modeling by district and pavement type. The exact figures are in Table 1. The overlaid
flexible pavements category had the largest number of available points for all districts, except
for Fredricksburg.

Based on the distribution of the available data points, the following sectioning scheme was
adopted. Sections were first classified according to their pavement type into: a) overlaid
flexible pavements, b) flexible pavements with no overlay, c) composite pavements with one
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overlay, and d) composite pavements with more than one overlay (the number of points
available for the individual surface types within the "OTHER" category was inadequate for
developing reliable models). Overlaid flexible pavement sections were then subdivided by
district to give a separate model for each district; this controlled the variability

arising from the fact that each district had its own rating team.

Figure 1 Number of Observation Points by District & Pavement Type

Code:
0: flexibe w/ no overlay

1: flexible w/ overlay

3: composite w/ 1 everlay
4: composite w/ > 1 overlay
S: Other

6: Not Included

o > Fredricksburg
Culpeper

1
3 4755 staunton
Code

Table 1. Number of Observation Points by District and Pavement Type
(after saving the 5 % sample)

District Number of Points Available for Analysis
flexible w | flexible w / composite composite w/ | OTHER Not
/ overlay w/ > 1 overlay included
no overlay 1 overlay
Bristol 45 452 0 0 20 123
Salem 54 623 0 0 6 111
Richmond 167 989 7 0 42 335
Suffolk 76 81 49 6 18 53
Fredricksburg 13 11 45 85 10 108
Culpeper 19 77 6 0 2 46
Staunton 30 748 0 0 150 288




The other three pavement type categories had too few points to develop district-specific
models, so sections were classified by geographic regions combining a number of contiguous
districts. Virginia’s three basic geographic regions are:

1. Valley and Ridge Western Mountains, containing Bristol, Salem and Staunton districts
(denoted as Region 1).

2. Piedmont, encompassing Lynchburg, Culpeper and Northern Virginia.

3. Coastal Plain, containing Richmond, Suffolk and Fredricksburg districts (denoted as
Region 2).

Although the maximum number of classes defined under this classification scheme was 18
(9 for overlaid flexible pavements and 3 each for flexible with no overlay, composite with one
overlay and composite with more than one overlay), the scheme resulted in only 10 groups in
our case (Figure 2). This is because data were not available for Lynchburg and Northern
Virginia,> only some districts had composite pavement sections, and some groups contained
very few observation points (less than 20). Adopting this classification scheme allowed the
modeling process to capture differences in the deterioration trend of the various pavement
types, as well as variations in the environmental conditions and paving materials.

Figure 2 The Classification Scheme

’ The Interstate System I
I ]

overlaid flexible w/ no 9. composite 10. composite
flexible overlay w/ 1 overlay w/ > 1 overlay

I, Bristol district 7.Westem Mountains
(Region 1)

8. Eastern Coastal
(Region 2)

2. Salem district

3. Richmond district

I

4. Suffolk district

5. Culpeper district

6.8 on district




Potential Explanatory Variables

With the DMR representing the response variable for the models, the next step was to
identify the potential explanatory variables that were expected to have an effect on the DMR. In
general, explanatory or predictor variables may either be continuous or discrete (categorical)
variables. The following paragraphs discuss the potential predictors identified for this study.

Continuous Explanatory Variables. The variables depended upon the pavement
category. For overlaid flexible pavements, the following four variables were identified:

AGE: the age of the pavement in years since last overlay;

DEPTH: the thickness of the last overlay in inches;

STRNO: the structural number of the underlying pavement structure; and
YESAL: the average yearly equivalent single axle loads in million ESALs.

The YESALSs were computed by dividing the cumulative ESALSs to which a section had been
subjected from the time of its construction to its rating date, by the section AGE. YESALSs
were used instead of the cumulative ESALs to avoid multicollinearity problems arising from
the very high correlation between the cumulative ESALSs and the section AGE.

For flexible pavements with no overlay, these variables were reduced to AGE, STRN O, and
YESAL. For composite pavements with either one or more overlays, the predictors were
AGE, DEPTH (which in this case equaled the total thickness of the last asphaltic concrete
overlay), and YESAL.

Because of missing layer data, the DEPTH and STRNO variables were not available for all
the records. This problem was especially evident for the structural number (STRNO)
variable for overlaid flexible pavements in the Bristol, Richmond, Culpeper and Staunton
districts, where records with a value for this variable were a very small fraction of the total
number of points available. To avoid a drastic reduction in the number of points available
for modeling, the STRNO variable was not used for these four groups. The unavailability of
such an important variable inhibits the development of theoretically-based models.

Categorical Explanatory Variables. In addition to continuous variables, the effect of other
categorical variables on the DMR score had to be considered. Capturing the effect of these
categorical variables required the use of dummy variables, which are variables that assume
only 2 values, usually a 1 and a 0 for linear models or 2.7183 and 1 for nonlinear models.
The number of dummy variables needed to represent a certain categorical variable is equal to
one less than the number of levels that the categorical variable assumes. The following four
groups of dummy variables were needed.
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1. Dummy variables to identify the lane being rated.

According to VDOT's rating practice, the lanes of the roadway section in a particular
direction were rated as a one unit unless their construction histories were significantly
different. Where individual lanes are rated separately, however, the deterioration
trend of the traffic lane should be different from the inner lanes, which are subjected
to lower truck traffic. To capture this effect, sections were divided into 2 groups, and
a dummy variable, LANNO, was encoded as follows :

LANNO = 0 if rating was performed on the whole section or on lane 1 (traffic lane)
=1 if any other lane (i.e. lane 2, 3 or 4) was rated.

The decision to adopt the two groups described above was made after discussions
with the pavement coordinators from the different districts. The two cases of rating
the section as a whole and rating the traffic lane were grouped together, since even
when the whole section is rated, the rater is still required to emphasize distresses
observed in the traffic lane.

2. Dummy variables for the number of lanes available per direction.

To include this effect in the models, sections were divided into three groups: sections
with 1 lane per direction, sections with 2 lanes per direction, and sections with 3 or
more lanes per direction. Two dummy variables, RDTYP1 and RDTYP2, were
encoded to account for these levels.

3. Dummy variables to distinguish among the individual routes within a group.

To capture some characteristics that are specific to a particular route, dummy
variables, ROUTID, were used to identify points belonging to the different routes
within a district. The number of dummy variables equaled the number of different
routes within a group minus one.

4. Dummy variables to identify individual districts within a geographic region.

Finally, for the cases where classification was based on geographic region rather than
individual districts, dummy variables, DISTR, were used to identify points belonging
to the individual districts within the region.

There were two main reasons for using dummy variables like the LANNO and RDTYP
variables, to account for factors that might have been captured using traffic lane distribution
factors. First, dummy variables will capture the above effects even if ESAL data is missing,
which it often is. Second, the lane distribution factors are not precisely known, and the use of
default values may obscure or distort the ESAL’s role in prediction.
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Statistical Software Packages Used in the Analysis

Three statistical packages were used for statistical analysis and modeling: S-PLUS
software, Statistical Package for the Social Sciences (SPSS), and Number Cruncher Statistical
System (NCSS). The combination of these three packages provided a powerful modeling tool,
since each was employed where it offered certain advantages. For example, S-PLUS has very
strong graphical capabilities, and was heavily used during the exploratory data analysis stage.
It also contains modern regression techniques that enhanced the modeling effort. SPSS is very
efficient in performing traditional linear and nonlinear regression procedures. NCSS is very
well suited for quick preliminary experimentation with different model forms.

Task 2 - Exploratory Data Analysis
Exploratory data analysis was used to:

- study the extent, range and distribution of the data,

- identify possible coding errors,

- check conformity with the basic assumptions of regression analysis, and
- understand the general relationships between the variables. !

The exploratory data analysis procedures used in this study are described below.
Response Variable Distribution

Regression requires that the residuals from the fitted model be independent and normally
distributed.'® For this to be fulfilled, however, the response variable distribution should also be
approximately normal. Therefore, the close-to-normal distribution for the DMR had to be
verified for each of the 10 groups or data sets used. This was done by four exploratory analysis

techniques available from the S-PLUS package,'* '* explained later in this report.

Explanatory Variables Range

As opposed to the response variable, explanatory variables are not required to satisfy any
special conditions with respect to their distribution. It was only necessary to check the data
range and potential errors by plotting the frequency histograms.
Relationships Among Variables

For a basic understanding of the interrelations among the variables, a scatter plot matrix

was generated for each of the 10 basic groups. This matrix displayed the pairwise scatter plots
for the different variables used in the analysis.
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Task 3 - Outlier Detection Using Robust Regression Techniques

The screening of the data base during the data base construction stage was mainly to
minimize the adverse effects of some obvious errors in the data base. However, other sources
of error had not yet been considered, and possible outliers still needed to be detected and
removed. Outlier detection was necessary because ordinary least square regression is highly
sensitive to outliers; a single outlying observation can have a dramatic effect on the analysis
results.

The last decade has seen a number of "robust" regression techniques which attempt to fit
the bulk of the data first and then search for outliers. The Least Median Squared Regression
(LMS) devised by Rousseeuw in 19842! was recently investigated for use with pavement
data by Lee and Darter,'> and was adopted by this study for outlier detection and removal.
Robust regression was employed to detect outliers as follows:

1. Robust regression was first run, and the standardized residuals from the LMS regression
were determined.

2. Data points with a value for the standardized residuals greater than 2.5 were identified as
potential outliers.

3. The detected points were closely investigated to determine those points with justifiable
reasons warranting their exclusion.

4. Traditional regression techniques were then performed after excluding detected outliers.

One problem with the LMS method, however, is that the identified outliers are influenced
by the assumed model form." An inappropriate model will result in a number of points being
flagged as outliers, even though the problem is the inability of the assumed model to fit the
data, and not the alleged outliers. To minimize this problem, LMS regression was performed
using two different model forms, and the potential outliers detected in each case were
compared. Using different forms with different characteristics helped distinguish between
“genuine” and “false” outliers. The two models used were:

1. A linear model having the general form

Y=a,+a,x, + ax, +a;x; +a,x,+........... a,.x, 5)
where,
Y = response or dependent variable
X;.... X, = explanatory or independent variables
a,....a, = regression coefficients.
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2. A nonlinear power model, with the general form :

a az as a‘ a

Y=a0.x11.x2.x3.x4 ........ x, (6)

For LMS to be performed, however, this nonlinear model needed to be transformed into a
linear form. This was done by taking the natural logarithm of both sides of the equation to
yield:

In (DMR,,, - DMR) = In (a,) + a,.In(AGE) + a,.In(DEPTH) + a;.In(STRNO) + a,.In(YESAL)
+a5.In(LANNO) +a,.In(RDTYP) +a,.In(ROUTID) + a;. In (DISTR) + In(error) @)

In the previous equation, DMR,; is equal to 100 since this is the rating before any distress
develops. However, in order to avoid the numerical problems that arise when the DMR score
is equal to 100 (in such case the left-hand side will be equal to In (100-100) = In(0) which is
undefined), a constant value of 1 was added to give:

In (101 - DMR) = In (a;) + a,.In(AGE) + a,.In(DEPTH) + a,.In(STRNO) + a,.In (YESAL)
+25.In(LANNO) +a,.In(RDTYP) + a,.In(ROUTID) + a,. In (DISTR) +In(error) 8)

To avoid multicollinearity problems which could adversely affect the results of the LMS
regression, ordinary stepwise least squared regression was carried out first, and then LMS
regression was run using only those variables that were included in the stepwise regression.
The analysis resulted in two lists of potential outliers, one for each model form assumed. The
two lists were compared and a second round of manual screening was performed. Extreme
care was taken to delete points only when there were strong reasons supporting their
exclusion. Essentially, points were removed if the section exhibited unexplainable fluctuations
in its condition, or if the DMR value was beyond the range that should be expected for the
corresponding age (for example, a section with a DMR value equal to 100 at an age of 8
years). Table 2 gives the number of points deleted as a result of this second iteration of data
cleansing.

Stage 3 - Significant Predictors Identification
In this stage, the purpose was to select, from the available explanatory variables, a subset

of good predictors to be included in the models. To this end, stepwise regression was
performed on each of the 10 categories or groups assuming a linear model of the form:
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DMR = a, + a,.(AGE)+ a,.(DEPTH) + a,.(STRNO) + a,.(YESAL)
+ a,.(LANNO) + a..(RDTYP) + a,.(ROUTID) + ag.(DISTR) + error  (9)

The Statistical Package for the Social Sciences (SPSS) was used to perform the stepwise
regression analysis . The procedure uses a combination of forward selection and backward
elimination for variable selection. For forward selection, a variable enters the model if the
probability associated with the F-test for the hypothesis that its coefficient is 0 is less than or
equal to 0.05. In backward elimination, the variable remains in the equation as long as the
probability associated with an F-to-remove test does not exceed 0.10.2

Stepwise regression helped identify the least number of explanatory variables needed for
reliable prediction, ensure that all variables included were statistically significant, and minimize
multicollinearity problems in the developed models.

Table 2. Number of Outliers Deleted for Each Group

Group Number of Number of
1. Overlaid flexible-Bristol 12 pts. 404 pts.
2. Overlaid flexible-Salem 29 pts. 534 pts.
3. Overlaid flexible-Richmond 28 pts. 861 pts.
4. Overlaid flexible-Suffolk 4 pts. 63 pts.
5. Overlaid flexible-Culpeper 5 pts. 69 pts.
6. Overlaid flexible-Staunton 44 pts. 41S pts.
7. Flexible / no overlay-Region 1 7 pts. 96 pts.
8. Flexible / no overlay-Region 2 13 pts. 153 pts.
9. Composite with 1 overlay 11 pts. 88 pts.
10. Composite with > 1 overlay 10 pts. 80 pts.

Stage 4 - Model Development and Evaluation

With the significant predictors identified, the study moved into the model development and
evaluation stage. This stage involved two major tasks. In the first task, a power model form
was used to develop the required prediction models. The goodness-of-fit of the developed
models was then evaluated and a sensitivity analysis conducted to assess the adequacy of their
predictions. In task two, a sigmoidal (S-shaped) model was developed and evaluated. The
performances of the power and sigmoidal models were then compared.
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Task 1 - The Development of a Power Prediction Model

The linear model form failed to meet most of the boundary conditions established for a
good performance prediction model. As just one example, the basic boundary condition for a
section to have a DMR of 100 (no distress) at AGE 0 (beginning of service life) was rarely
satisfied. There was a need to investigate more realistic model forms capable of satisfying
some of the important boundary conditions and more accurately representing the actual
deterioration trend. Compared with the simple linear model, the power curve was a more
realistic form. This model, generally expressed as

DMR = DMR,,, - a,. (AGE)* . (DEPTH)® . (STRNO)® . (YESAL)*.

(LANNO)*.(RDTYP)*. (ROUTID)¥. (DISTR)*® (10)

is capable of satisfying the initial boundary condition of no distress at age zero, regardless of
the values for the other variables.

Approaches for Fitting the Power Curve

There are two options for fitting the power curve to the observed data. The first option is to
transform the model into a linear form by taking the logarithm of both sides of the equation. The
second approach is to directly fit the model using nonlinear regression techniques. Each
approach has its own assumptions, advantages, and disadvantages.

The basic assumption of the first approach is that the error term is multiplicative, as shown
below.

DMR = DMR,,; - a,. (AGE)*' . (DEPTH)®? . (STRNO)® . (YESAL)*. (LANNO)*
.(RDTYP)*. (ROUTID)?. (DISTR)*. error (11)

This allows the logarithmic transformation to be performed by taking the natural logarithm of
both sides of the equation, as was done previously when using LMS regression for outlier
detection.

The problem, however, is that in our case interest was in the response variable in its
original metric (the DMR before transformation). Consequently, a reverse transformation
would have to be performed to convert the transformed predicted value back to its original
metric. Such a procedure, although a common practice, has two complications. First, the
parameter estimates after transformation are no longer the least square estimates of the true
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parameters.?>?* Secondly, the goodness-of-fit statistics reported in this case strictly apply to
the transformed model, and the detransformed regression equation will not usually have the
same level of accuracy reported for the transformed one."

In the second approach, the error term is assumed to be additive, and thus the model
cannot be transformed.

DMR = DMR,,, - a,. (AGE)* . (DEPTH)% . (STRNO)® . (YESAL)*. (LANNO)®
.RDTYP)*. (ROUTID)". (DISTRY® + error (12)

This approach avoids the problems associated with variable transformation. The disadvantage,
however, is mainly caused by the complex nature of nonlinear regression. For nonlinear
models, there are no explicit expressions for the estimators, and the procedure has to use an
iterative procedure which may fail to converge in some cases. Nonlinear regression also
requires the user to specify the model form, and to guess at the initial values for the
parameters to be used in the search procedure.®

In the current study, after examining the residuals resulting from the two approaches, the
assumption of an additive error term seemed more plausible. Consequently, only the results
from the nonlinear regression approach are reported.

The Use of Nonlinear Regression in Power Model Development

Equation (12) gives the general form for the power model. The predictor variables used
for each group or data set were those identified from the stepwise regression. However, since
the variables’ significance could slightly change with the model form assumed, care was taken
not to exclude any significant variable that would appreciably improve the fit in this case but
that was not included in the previous stepwise regression step (this was only the case with one
group in connection with the DEPTH variable).

To obtain the initial parameter estimates required by the nonlinear regression search
algorithm, the model was transformed into a linear form as previously described, and the
parameters were estimated using linear regression. These estimates were then used by the
iterative algorithm to find the estimates that would minimize the sum of the square of the
residuals. To ensure the development of reliable models, the asymptotic standard errors for
the parameters were consistently monitored to ensure that they were within reasonable limits.
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Evaluation of the Power Model

Plots were made of the predicted versus the actual DMR values for each category in order
to assess the goodness-of-fit of the developed models. A sensitivity analysis was then
conducted to ensure that the models’ predictions conform with the basic engineering
knowledge and to allow for an assessment of the relative importance of the different predictor
variables. This mainly involved the generation of 3-dimensional and 2-dimensional plots
showing the change in the DMR value with the variable/variables of interest.

Task 2 - The Development of a Sigmoidal Prediction Model
Since the characteristics of the sigmoidal (S-shaped) model suggested that it could be
appropriate for performance prediction modeling, this type of model was investigated for its
ability to fit Virginia's data. The performance of the developed sigmoidal models was then
compared to the simpler power models developed in the previous step, to assess whether the
sigmoidal model was likely to significantly enhance prediction accuracy.

Model Form and Initial Parameter Estimates

The assumed sigmoidal model had the following general form:

-a, . (DEPTH)". (STRNO)™. (LANNO)™. (RDTYP)"S. (ROUTID)"S. DISTR *

DMR =100 - a, . e (AGE)"®. (YESAL)™

(13)

The variables included for each category or data set were those identified from stepwise
regression.

To obtain initial estimates for the regression parameters, the model was rearranged and

transformed into a linear form by taking the logarithm of both sides of the equation twice to yield
the following form:

100 - DMR

a

In [- In ( )] = In.a, + a,. In(DEPTH) + a,In(STRNO) + a,In(LANNO)+ a,In(RDTYP)

o
+ agIn(ROUTID) + a,In(DISTR) - a,In(YESAL) - a,In(AGE) (14)

According to the above sigmoidal model specification, the parameter a, represents the
difference between the values of the upper and lower asymptotes of the curve (that is to say, a,
represents the difference between the upper and lower bounds of the DMR values as given by the
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model). Since the lower range for the available DMR data was generally around a DMR score of
70, the value for the parameter a, was initially assumed to be equal to 30. This allowed for
calculating the left-hand side of the above equation, and linear regression was then used to
estimate the remaining parameters. Since the sole purpose behind the above procedure was to
provide reasonable initial estimates for the regression parameters, the assumption of a value for
a, was not likely to appreciably affect the results of the subsequent analysis. Nonlinear
regression was then performed to develop the final models.

Evaluation of the Sigmoidal Model

As done for the power model, the goodness of fit for the sigmoidal models was evaluated
by plotting the predicted versus the actual DMR values. Sensitivity analyses were also
conducted to ensure that the models were providing rational predictions. Finally, the
deterioration trends predicted by the power and sigmoidal models, as well as the goodness-of-
fit statistics for the two model forms, were compared.

Stage S - Model Verification and Accuracy Assessment

The final stage of the study assessed the accuracy of the developed models. The stage
consisted of two major tasks. The first task used the previously saved 5% sample to assess the
accuracy of the developed models when used to predict for different numbers of years into the
future. In task two, the sample was employed to compare the predictive ability of the two
model forms developed in the previous stage, and evaluate the effectiveness of two approaches
for model adjustment that attempt to incorporate data feedback into the prediction process.

Assessing the Accuracy of the Prediction Process and Adjusting the Developed Models

Since the behavior of pavement structures is affected by many factors, the performance of
a specific section typically differs from the mean response given by a deterioration model. In
practice, therefore, when the observed condition of a section in a given year differs from that
predicted by the model, the model should be adjusted to pass through the observed point.
Predictions for future years are then made using this augmented curve.

The literature on prediction model development shows two basic approaches for model
adjustment. The first approach, exemplified by the PAVER system and the Illinois Pavement
Feedback System (IPFS), essentially draws a curve through the observed pavement condition-
age point parallel to the developed model (Figure 3).

19



Figure 3. The Horizontal-Shift Model Adjustment Approach
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Mathematically, this horizontal shift is performed by solving the model equation for the AGE
value that corresponds to the observed pavement condition, AGE'. Future predictions are then
made assuming that such calculated value, AGE' , is the current age for the section.

The second approach, adopted by Cook and Kazakov,? diverts the curve vertically instead
of horizontally, so that it passes through the observed point (Figure 4).

Figure 4. The Vertical-Shift Model Adjustment Approach
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This is done by using the actual drop in the pavement condition index from its initial value,
D,, versus the theoretical drop, D,, to compute an adjustment factor, F, defined as:

F = D,/ D,. Future predictions are made by multiplying the theoretical drop by F, which is
usually constrained to the interval of 0.75 to 1.25.

Both adjustment methods were examined in the current study to determine if either was
more appropriate than the other.
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Preparing the Sample Data Set for the Analysis

Owing to the predominance of the overlaid flexible pavement category, the 5% sample for

categories pertaining to the other pavement types resulted in very few data points for an
assessment of the models' accuracy. The same was also true with the Suffolk and Culpeper
overlaid pavement categories, where the number of points available for verification purposes
was quite small. As a result, assessment was constrained to the prediction accuracy of the
overlaid flexible pavement models in the Bristol, Salem, Richmond and Staunton districts.

Since the sample was randomly selected, its points belonged to different survey years and

to sections with different ages. Consequently, to assess the models' accuracy when used to
predict for different numbers of years into the future, the sample data set points were
categorized into four groups:

1.

Group A, used in the accuracy assessment of prediction for one year into the future, with
the following two sets of points:

Points corresponding to pavement sections which had a DMR value recorded for
the (t-1) survey year, where t refers to the survey year of a data point in the sample
set. This DMR value and its accompanying AGE value were used to adjust the
prediction model.

Points corresponding to sections that were less than one year old at the survey time.
No adjustment was made in such cases.

Group B, used in the accuracy assessment of 2 years’ prediction, containing:

Points belonging to sections with a DMR value recorded for the (t-2) survey year.
Prediction was adjusted based on this DMR-AGE point.

Points corresponding to sections which were between 1 and 2 years old at the time
of the survey. No adjustment was made, even if a DMR value for the preceding
year existed, in order to simulate prediction for two years into the future.

Group C contained points to be used in measuring the accuracy of prediction for 3 to 4

Predictions for 3 to 4 years were combined into one group in order to yield a
sufficient number of points that can allow a reasonable assessment.

. Group D contained points to be used in measuring the prediction accuracy for 5 or more
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Table 3 gives the number of points that were available within each group for the four districts.

Table 3. The number of points available for model verification

=
1. Overlaid flex in Bristol 13 12 15 9
2. Overlaid flex in Salem 17 19 14 16
3. Overlaid flex in 31 25 24 34
Richmond
4. Overlaid flex in Staunton 17 15 18 12

The models’ adjusted predictions were compared against the DMR observed values from
this sample data set. For a quantitative assessment of the models’ accuracy, the prediction
error, defined as the difference between the observed and the predicted values, was calculated
for each observation point. The mean of this prediction error, its standard deviation and 95 %
confidence intervals were then computed for each district and each prediction level (number of
prediction years into the future).

Comparing the Performance of the Two Model Forms and the Two Adjustment Procedures

To compare between the different models and adjustment procedures, the predicted DMR
values were computed according to the power and the sigmoidal models; each being adjusted
using the horizontal and vertical shift approaches (the linear model was not considered in this
comparison since it failed to meet the boundary conditions established for a deterioration
model). For each data point, 4 predicted values were estimated ( corresponding to the 2 model
forms x 2 adjustment procedures), except for Richmond district where the sigmoidal model did
not converge.

An analysis-of-variance (ANOVA) test procedure was then performed to assess the effect on
the response variable (the prediction error) of the following three factors:

1. The number of years into the future for which prediction is performed,
at levels : 1 (prediction for one year)

(prediction for two years)

(prediction for three or four years)

(prediction for five or more years).

W
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2. The model form used in prediction,

at levels : 1 (the power model)
2 (the sigmoidal model).

3. The adjustment method used,

at levels : 1 (the horizontal-shift adjustment procedure).
2 (the vertical-shift adjustment procedure).
RESULTS AND DISCUSSION

Exploratory Data Analysis
Response Variable Distribution

Four exploratory data analysis techniques were employed to check the distribution of the

response variable, the DMR. Figure 5 shows the results of applying such techniques to check
the DMR distribution for the Salem overlaid flexible pavement category data set. Results for
the other data sets were quite similar. The figure contains four plots.

¢

In the upper left corner is a histogram which gives a crude picture of the DMR
distribution. A histogram is also an effective tool for detecting possible coding errors,
since points lying outside the reasonable or feasible range for a particular variable are
readily apparent.

The lower left plot shows a continuous curve representing a non-parametric estimate of the
probability density function for the DMR. This curve provides a clear visualization of the
variable distribution.

A Box-and-Whisker plot is given in the upper right corner of the figure. In these plots, the
box encloses the interquantile range for the variable, with the lower side giving the 25th
percentile, the upper giving the 75th percentile, and the middle line showing the median.
The whiskers extend to the 5th and 95th percentiles. Box plots depict the data range,
skewness, and outliers.Z6

Finally, a normal probability plot, or g-q plot, is provided in the lower right corner. In
this plot, the quantiles or percentiles of the DMR distribution are plotted against the
quantiles of a normal curve. Under normality assumption, points on the scatter plot should
lie approximately on a straight line.2
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The figure shows a quite normal distribution of the DMR, although it is somewhat skewed to
the left because a high percentage of the sections were in the 98-100 DMR range, which
signifies an excellent pavement condition.

Figure S. DMR Distribution for Salem Overlaid Flexible Pavements Data Set
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Relationships Among Variables

Figure 6 shows the scatter plot matrix for the Salem overlaid flexible pavement category
data set. The scatter matrices for the other data sets are included in Appendix A, figures A-1

24



through A-9. In these figures, variable names in the empty rectangles to the left and bottom
of an individual scatter plot refer to variables plotted on the y- and x- axis respectively.

Figure 6. Scatter Plot Matrix for Salem Overlaid Flexible Pavements Data Set
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The following observations can be deduced from the plots:

¢+ Age, among all the other variables, seems to exhibit the strongest correlation with the
DMR value.

+ The relationship between the DMR and the AGE appears to be best represented by a
concave or S-shaped curve.

* No significant interrelations among the independent variables can be readily detected,
perhaps with the exception of the interrelationship between STRNO and YESAL in the
data sets where STRNO was available. This indicates that, apart from the association
between STRNO and YESAL, no major multicollinearity problems will be encountered.

Stepwise Regression
Stepwise Regression Models and Their Statistics

Table 4 gives the models resulting from the stepwise regression analysis along with their
associated statistics, all variable definitions and notations being as previously described.

Discussion of Stepwise Regression Results

Table 5 summarizes the predictor variables included in each of the above 10 models.
With reference to Table 5 and the developed models, the following observations are made:

AGE

This variable was included in all 10 models, and was consistently found to have the largest
correlation with the DMR and, by far, be its most significant predictor. Table 6 shows the
ratio of the R? value resulting from using AGE as the single independent variable to that
resulting from using all the variables included in the stepwise regression. The ratio ranged
from 75% to 100%. This finding accords with the findings of other researchers.°

DEPTH

DEPTH or the thickness of the overlay was included in 4 out of the 8 cases where it was
applicable. The exclusion of the variable in some of the other cases was attributed to the fact
that the available data set for the group had a distribution with a limited range for the values of
this variable. For example, in Suffolk district, the thickness of the overlay ranged only from
1.0 to 1.6 inches. Such a small variation had an insignificant impact on the DMR value.
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Table 4. Stepwise Models and Their Statistics

1 DMR = 95.87 - 2.34(AGE) + 0.65(DEPTH)
+ 0.49(YESAL) 0.69 3.77 292.51 { 0.0000 404
2 DMR = 88.21 - 1.41(AGE) + 1.35(DEPTH)
+ 1.26(STRNO) + 2.92(LANNO) 0.66 4.02 253.65 | 0.0000 534
3 DMR = 99.87 - 1.01(AGE) - 7.15(YESAL)
+ 3.25(LANNO) - 4.78(RDTYP2) 0.44 4.41 115.06 | 0.0000 861
+ 3.50(ROUT85) + 6.61(ROUT95)
4 DMR = 114.94 - 1.56(AGE) - 2.91(STRNO)
- 2.33(ROUT64) 0.72 3.13 55.09 | 0.0000 63
5 | DMR =100.99 - 1.76(AGE) 0.68 | 3.40 |142.38 |0.0000 69
6 DMR = 97.06 - 1.11(AGE) + 1.09(DEPTH) 0000
+ 5.03(LANNO) - 1.39(ROUTSI) 0.54 e 121.63 | 0. 415
7 DMR = 92.62 -1.11(AGE) + 2.32(LANNO) 0.50 473 48.94 | 0.0000 9%
8 DMR = 105.82 - 1.09(AGE) - 1.68(STRNO)
+ 2.21(ROUT464) 0.66 3.78 100.51 | 0.0000 153
9 DMR = 95.68 - 1.45(AGE) + 4.25(DISTRS) 0.76 2.38 138.88 | 0.0000 38
10 DMR = 97 - 1.90(AGE) +1.54(DEPTH)
+ 4.07(LANNO) 0.85 2.36 146.25 | 0.0000 80
Group 1: overlaid flexible pavements - Bristol district
Group 2: overlaid flexible pavements - Salem district
Group 3: overlaid flexible pavements - Richmond district
Group 4: overlaid flexible pavements - Suffolk district
Group 5: overlaid flexible pavements - Culpeper district
Group 6: overlaid flexible pavements - Staunton district
Group 7: flexible pavements with no overlay - Region 1
Group 8: flexible pavements with no overlay - Region 2
Group 9: composite pavements with one overlay
Group 10:  composite pavements with more than one overlay

27




Table 5. Predictor Variables Status

IF GrouporDataset fiii’f . T ace DEP ROUTID ,» =
1.overlaid flex- Bristol included included included * not includ. | not includ. not includ. ok
2.overlaid flex- Salem included included not includ. included included not includ. not includ. *k
3.overlaid flex-Richmond included not includ. included * included included included ok
4.overlaid flex- Suffolk included not includ. not includ. included *kx not includ. included *x
5.overlaid flex-Culpeper included not includ. not includ. * *okk *okk not includ. *x
6.overlaid flex- Staunton included included not includ. * included Fokok included *x
7.flex no overlay-regionl included *xk not includ. not includ. | included not includ. not includ. | not includ.
8.flex no overlay-region2 included *x not includ. included not includ. not includ. included not includ.
9.composite- 1 overlay included not includ. not includ. ok *okk not includ. not includ. | included
10.composite- > 1 overlay included included not includ. ** included Fokk hal *kk

*  Explanatory variable was not available.
** Explanatory variable is not applicable.
**+* All points belonged to the same level for the categorical variable, or only 6 points or less were available for the other level.

Group

O 0020 A WN -

Table 6. The Contribution of AGE to DMR Prediction

. Overlaid flexible-Bristol

. Overlaid flexible-Salem

. Overlaid flexible-Richmond

. Overlaid flexible-Suffolk

. Overlaid flexible-Culpeper

. Overlaid flexible-Staunton

. Flexible / no overlay-Region 1
. Flexible / no overlay-Region 2
. Composite with 1 overlay

10. Composite with > 1 overlay

AGE contri

97.1 %
92.4 %
74.9 %
90.5 %
100.0 %
872 %
96.0 %
96.1 %
78.2 %
94.9 %

tion (%
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YESAL

This variable, which represented the average annual ESALs, was included in only 2 cases,
despite its availability for all 10 data sets. This is quite encouraging, since it means that the
adopted classification scheme and the use of dummy variables helped keep the YESAL
virtually at a uniform level within each category. This reduced the significance of its role in
the overall prediction process, allowing reasonable predictions to be made even in the absence
of ESAL data.

With respect to the coefficient sign, the variable assumed the correct sign for group 3,
which signifies that an increase in the YESAL will inflict more damage, but not for group 1.
To resolve this problem, group 1 was broken down into 2 subgroups: group 1a for sections
belonging to I-77, and group 1b for those belonging to I-81 or I-381. This subdivision
resulted in more homogeneous characteristics within the two finer subgroups. Accordingly,
the significance of the role of either the STRNO or the YESAL variables was reduced, and the
YESAL disappeared from the equation. The two developed models are in Table 7.

Table 7. Refined Models for Group 1

Gowp ]  Medd | ® |suntara] F | No.of
o e ] e  points
la DMR = 97.49 - 2.45(AGE) 0.74 3.66 82
1b DMR = 96.59 - 2.32(AGE) +
0.65(DEPTH) 0.66 | 3.84 [306.69 | 0.0000 332

STRNO

The structural number of the pavement structure (STRNO) was only available and
applicable in 4 data sets. Out of these, STRNO entered the models in 2 cases. However,
STRNO did not always assume the correct sign. Normally, the model should indicate that the
stronger the pavement structure, the less the damage; this was not the case for group 4.
Consequently, in order to prevent incorrect conclusions and inferences from being drawn from
the model, the regression analysis was repeated with this variable excluded. The new model
for group 4 is shown below.

DMR=100.95 - 1.58(AGE) - 2.85(ROUT64)
R?* = 0.70 & SE = 3.25

LANNO

This dummy variable, which accounts for the lane rated, entered the model in 5 out of the
7 cases where it was available. In the absence of ESAL data, the use of this variable was
essential to account for the difference in the deterioration trends between the traffic and the
inner lanes.
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RDTYP

RDTYP, which accounts for the number of lanes per direction of the roadway section, was
included in one out of 9 cases. Since the YESAL played a minor role in the prediction
process, it should be expected that the number of lanes per direction, which influences the
share of each lane in the traffic load, would also have an insignificant effect.

ROUTID
This set of dummy variables, which differentiates between the different routes within a
certain group, was included in 4 out of 9 cases. The ROUTID helped account for some of the

characteristics particular to a certain route, and reduced the significance of the role played by
the YESAL and STRNO variables.

DISTR

DISTR, the set of dummy variables used to identify individual districts, was included in 1
out of 3 cases where classification was based upon geographic region. Statistical tests
checking whether the deterioration trends for the overlaid flexible pavements category differed
among the various districts indicated that DISTR was indeed a significant predictor. For
example, when stepwise regression analysis was performed on an experimental data set
pooling points from the three districts forming the Western Mountains region, the DISTR
dummy variables were included in the model. This further justifies the subdivision of this
category into groups of individual districts.

The Poor Fit for the Richmond Model

The fact that the majority of the categorical variables were included in the Richmond
model, coupled with the large number of data points available for this group, suggested that
the fit could be improved by breaking this category into finer subgroups. The subgroups
adopted were as follows:

- Group 3a, for I-64 pavement sections,

- Group 3b, for I-85 pavement sections,

- Group 3c, for sections of I-95 with 2 lanes per direction, and

- Group 3d, for sections of I-95 with 3 or more sections per direction.

This subdivision resulted in a considerable improvement in the fit for three of these subgroups
as is shown in Table 8.

The main purpose of linear stepwise regression analysis was to identify the significant
predictors. The results were quite encouraging. The models were highly significant, with
satisfactory coefficients of determination (R?) values coupled with reasonable standard error.
These were very satisfactory results for a preliminary model form. The simple linear model
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form was also useful, in that it led to the adoption of a refined classification scheme that
enhanced the modeling process. Figure 7 shows the refined classification scheme used for the
subsequent modeling stages.

Table 8. Refined Models for Group 3

3a DMR = 95.98 - 1.91(AGE) 0.68 3.61 161.10 | 0.0000 77

3b | DMR = 98.87 - 1.15(AGE) -
6.53(YESAL) 0.63 3.34 97.49 | 0.0000 116
3¢ | DMR = 107.12 - 1.57(AGE) - 071 300 ciss |o B

9.60(YESAL)

3d | DMR = 105.41 - 0.92(AGE) - .
6.85(YESAL) 0.37 4.66 117.76 | 0.0000 600
+ 2.94(LANNO)

Figure 7. The Modified Classification Scheme

The Interstate System
| 1 | |
overlaid flex. w/ no 9. posi 10. P
flexible overlay w/ 1 overlay w/>1 overlay
| 1
7. Western Mountains 8. Eastern Coastal
(Region 1) (Region 2)
l 1. Bristol l [ 2. Salem I l 3. Richmmﬂ l 4. Suffolk l l 5. Culpeper | L6‘ Staunton l

la. 1-77 3a. I-64
1b. I-81 & 1-381 3b.1-85

3c¢. 1-95 2 lanes

3d. 1-95 3+ lanes
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It is essential to raise a basic point about the nature of these models. All the models in the
current study are empirical, and should not be applied beyond the range of the data used in
their development. This is especially true here, since some important variables were missing,
and others were excluded because their limited range had an insignificant effect on DMR
prediction. Table 9 gives the range of the different variables for each group or data set.

Table 9. Variable Ranges for the Different Groups

la 02-12.8 1.1-27 a 2 77 1
1b 02-114 0.9-6.3 a 0.7-22 0,1,2,3 1,2,3 81, 381 1
2 00-14.8 0.6-4.6 38-69 0.7-22 0,1,2,3 23 77, 81, 581 2
3a 0.0-10.5 1.0-22 a 02-0.8 0,1 2 64 4
3b 04-15.6 0.5-15 a 05-15 0,1 2 85 4
3c 0.1-125 09-38 a 08-1.6 0 2 95 4
3d 0.1-16.9 09-44 a 1.6-2.8 0,1,2,3 34 95 4
4 04-13.0 1.0-1.6 40-54 05-15 0 23 64,95,264,464 5
5 03-97 1.3-3.0 a 02-0.8 0,1 2 64, 66 6
6 0.1-152 0.7-4.1 a 0.1-2.1 0,1,2 2 64, 66, 81 7
7 04-173 b 42-68 0.1-2.0 0,1,2,3 23 64,77, 81 1,2,8
8 08-175 b 40-59 04-24 0,1,2,3 23,4 64,95,264,464,664 4,5,6
9 0.2-14.0 1.9-79 b 06-25 0,1 23 64,95,264, 664 4,5,6
10 0.2-105 06-24 b 08-27 0,1,2 2 95 6

a  Variable was not available.
Variable is not applicable.

¢ Avalue of 0 for the rated lane means that rating was performed on the section as a whole; lane numbering starts
from the outer or traffic lane toward the median.
d 10 Bristol ; 2 © Salem ; 4 © Richmond; 5 & Suffolk; 6 © Fredricksburg; 7 © Culpeper; 8 © Staunton.

The Power Model

Table 10 shows the developed models along with their R? and standard error (SE) values.
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Table 10. Power Models and their Statistics

DMR = 100 - 5.17.(AGE)"#

1b | DMR = 100 - 4.43.(AGE)*”.(DEPTH)**

2 DMR= 100 - 15.63.(AGE)"*”.(DEPTH)*!" (STRNQ)*
.(LANNO)?-!

3a | DMR = 100 - 7.08.(AGE)*%2.(YESAL)"?

3b DMR = 100 - 7.07.(AGE)**.(YESAL)"*

3c | DMR = 100 - 5.06.(AGE)*“8.(YESAL)!*.(DEPTH) %%

3d DMR = 100 - 2.30.(AGE)**.(YESAL)'**.(LANNO)?16

DMR = 100 - 1.67.(AGE)**2.(ROUT64)*3!

DMR = 100 - 1.14.(AGE)"'#

4

5

6 | DMR =100 - 3.14.(AGE)*“2.(DEPTH) 'S (LANNO)** (ROUT81)% 3.69
7 | DMR = 100 - 6.03.(AGE)’*.(LANNO)® " 0.59 | 4.37
8 | DMR =100 - 1.82.(AGE)*™ (LANNO)??'.(ROUT95)°2! 0.68 | 3.74
9 | DMR = 100 - 3.45.(AGE)*" (DISTR5)*% 0.74 | 2.50
10 | DMR =100 - 3.43.(AGE)®"s (DEPTH)*%.(LANNOQ)?8 0.87 | 2.21

Power Model Evaluation Results

Model’s Goodness of Fit

Figure 8 shows plots of the predicted versus the actual DMR values for 4 models. Plots
for the remaining 10 models are included in Appendix B, figures B-1 and B-2. As these plots
show, no erratic pattern is apparent and the power model appears to adequately fit the data.
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Figure 8. Power Model Goodness-of-Fit
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*

Sensitivity Analysis

The results of a sensitivity analysis for the Salem overlaid flexible model appear in
Figures 9 through 11. Figure 9 shows the sensitivity of the DMR prediction with respect to
the pavement AGE and overlay thickness, DEPTH. Figure 10 depicts the sensitivity with
respect to AGE and the structural number of the underlying structure. Figure 11 compares the
deterioration trends of the different lanes. The performance of the model is quite reasonable

and in agreement with basic engineering knowledge. Results for the other models are included
in the Appendix B, figures B-3 through B-19.

Figure 9. 3-D Sensitivity Analysis for Salem Model, STRNO=6.0 & lane code 0 or 1

3-D Surface Plot, STRNO=6.0

R
85 D% 95 100

80

The lane code identifies the lane being rated with a "1" for the outer or traffic lane. In the usual case when
the roadway is rated as a whole, a "0" is used.
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Figure 10. 3-D Sensitivity Analysis for Salem Model, DEPTH=1.4 & lane code 0 or 1

3-D Surface Plot, DEPTH=1.4

DMR
75 8o 85 90 95 100

Figure 11. 2-D Sensitivity Analysis for Salem Model, STRNO=6.0 & DEPTH=1.4

DEPTH=1.4 in. & STRNO=6.0
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The developed models are shown in Table 11 along with their R* and SE values. As can

The Sigmoidal Model

be seen, a satisfactory model could be attained for only 8 groups; for the other 6 groups, the
values for the asymptotic errors were too high to be acceptable.

Table 11. Sigmoidal Models and Their Statistics

1 -2.49 \ 02
a ’ 3
DMR = 100 - 43.96 e ¥
1b -2.14 . (DEPTH)**!
DMR = 100 - 23.52 ¢  “GE)'* 3.44
-0.74 . (DEPTH)**. (STRNO)**. (LANNO)*3*
2 DMR = 100 - 28.68 e “4GEY ¢ 3.78
-6.05 . (LANNO)*
3d DMR = 100 30.88 e (YESAL)'*'. (AGE)**° 4.08
6 -1.88 . (DEPTH)"*. (LANNO)"**
DMR = 100 - 18.46 e 4GE™® 3.51
7 -6.50 . (LANNO)**’
DMR =100 - 2122 ¢ 4GB 3.77
-9.56 . (LANNO)*?*’
8 DMR = 100 - 25.67 e (ROUTS)'. (4GEY'™ 3.55
10 -2.48 . (DEPTH)*3%. (LANNO)*™®
DMR = 100 - 25.74 ¢ 4GEY ¥ 1.95

Figures C-1 and C-2 (Appendix C) show plots of the predicted versus the actual DMR values
for the sigmoidal models. The sensitivity analysis results are also in Appendix C, Figures C-3

through C-15. The evaluation results indicated that, on convergence, the sigmoidal model also

yielded an adequate fit, and gave logical predictions.
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The Sigmoidal Versus the Power Curve

Figure 12 contrasts the deterioration trends given by the power and sigmoidal models for the
eight categories where a satisfactory sigmoidal model could be developed. These plots are for
typical values for the section characteristics in each data set. The plots show that, unlike the
power curve, the sigmoidal model can model a low deterioration rate region at the beginning of
the section's life cycle. This explains to some extent the sigmoidal model nonconvergence for
some groups; in such cases, sections essentially exhibited the same deterioration rate throughout
their life.

The plots also indicate that the differences between the sigmoidal model low rate
deterioration region and the power curve are of appreciable significance only in the case of the
[lexible pavements with no overlay category. This is a rational conclusion, since distress
should be expected to develop in original flexible pavement designs at a slower rate than in
overlays or composite pavements.

The R? and the standard error (SE) values for the two model forms in Tables 10 and 11
support the above conclusion. The sigmoidal model provided an improved fit for the groups
where it converged, with the greatest improvement in fit obtained for the flexible pavements
with no overlay category in region one.

The following conclusions can be drawn from the available data :

*+ For all pavement types other than the flexible pavements with no overlay category the use
of the simpler power curve seems to be adequate from a practical standpoint, although the
sigmoidal model may provide for a slightly better fit. This conclusion is supported by the
fact that the sigmoidal model failed to converge for some groups belonging to other
pavement type categories.

¢+ For flexible pavements with no overlay, the sigmoidal curve may be preferred over the
power curve to reflect their initial slower deterioration rate compared to overlaid sections.
The significant improvement in the fit for group seven justifies this conclusion.

Moreover, the use of the power curve may be safer from an extrapolation point of view.
The lower asymptote of the sigmoidal model does not really represent the absolute minimum
value for the DMR. It represents an "artificial" minimum, heavily influenced by the
threshold DMR value currently adopted by VDOT, since the range of the available data will
be bounded by the threshold value. Consequently, the sigmoidal model cannot be used to
investigate the effect of adopting a new threshold value which falls below its lower asymptote.
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Figure 12. Comparing the Sigmoidal and Power Models
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Accuracy Assessment Results

Figures 13 through 16 show the models' adjusted predictions plotted against the observed
sample data set DMR values for the four levels of prediction accuracy and for the four districts.
In these figures, predictions were made using the non-linearly fit power model, and were
adjusted using the horizontal-shift adjustment approach. The models provided good and
reasonable predictions. Moreover, predictions for five or more years into the future were
comparable to the one year prediction.

The mean, standard deviation and 95% confidence intervals for the prediction error for each
district are provided in tables 12 through 15. These tables show a quite satisfactory prediction
accuracy. For the Bristol district, for example, the mean error for predicting for 5 or more years
into the future was -0.13. In addition, one can be 95 % confident that the average error in
predicting the DMR for this district will be within £2.0 DMR points.

ANOVA Test Results

The ANOVA results are provided in Appendix D, tables D-1 through D-4. In all four cases
the interaction between the factors was insignificant (the p-value is greater than the usual o of
0.05). The absence of interaction effects allows for studying the effect of the individual
factors, “the main effects,” since it indicates that factor effects are not “averaging out” one
another. Examining the p-values for the three factors for the four cases indicated that they
were all greater than the 0.05 value. This led to the following conclusions:

1. There are no true differences among the predictive accuracies of the two model types.
2. The accuracy of predictions for different numbers of years is comparable.
3. The performance of the two adjustment procedures is similar.

Conclusion 1 was expected, since, as the previous stage of the study demonstrated, the
performance of the three models was quite similar for overlaid pavements. Interestingly, the
results indicated that the predictive accuracy for different years into the future was
comparable. This conclusion, coupled with Conclusion 3 (the insignificant differences
between the adjustment procedures), suggested that no appreciable improvement in the
prediction process was obtained from using section-specific data to adjust the prediction
models. This finding supported the assertion that a project or section-specific modeling
approach for modeling the data currently available from VDOT was not quite appropriate.
For the rather high level of contamination that the data exhibited, an approach that grouped
similar pavements together seemed much safer. Such an approach was likely to minimize the
problems associated with data errors, and helped reveal the overall deterioration trend.
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Figure 13. Assessing the Prediction Accuracy for Salem District
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Figure 14. 'Assessing the Prediction Accuracy for Richmond District
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Figure 15. Assessing the Prediction Accuracy for Bristol District
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Figure 16. Assessing the Prediction Accuracy for Staunton District
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Tablel2. Prediction Error Statistics for Bristol District

Number of Years
of Prediction into

Prediction Error Statistics

the future Mean Standard Dev. 95 % Confid. Interval
1 Year -0.17 2.93 [-1.94;1.60]
2 Years -1.10 3.83 [-3.53;1.33]
3 or 4 Years -0.29 3.16 [-2.04;1.46]
5 + Years -0.13 2.64 [-2.16;1.90]

Tablel3. Prediction Error Statistics for Salem District

Number of Years
of Prediction into

Prediction Error Statistics

the future Mean Standard Dev. 95 % Confid. Interval
1 Year -0.38 3.37 [-2.11;1.35]
2 Years -0.97 3.23 [-2.52;0.60]
3 or 4 Years -1.76 3.54 [-3.80;0.28]
5 + Years - 0.80 4.53 [-3.20;1.60]
Table 14. Prediction Error Statistics for Richmond District

Number of Years
of Prediction into

Prediction Error Statistics

the future Mean Standard Dev. 95 % Confid. Interval
1 Year -0.744 3.47 [-2.02;0.53]
2 Years 0.13 3.84 [-1.45;1.71]
3 or 4 Years -0.97 3.84 [-2.59;0.65]
5 + Years - 0.09 4.54 [-1.67;1.49]
Table 15. Prediction Error Statistics for Staunton District

Number of Years
of Prediction into

Prediction Error Statistics

the future Mean Standard Dev. 95 % Confid. Interval
1 Year - 0.50 4.25 [-2.68;1.68]
2 Years -0.41 3.65 [-2.42;1.60]
3 or 4 Years -0.57 4.66 [-2.90;1.74]
5 + Years - 0.67 5.83 [-4.37;3.03]
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CONCLUSIONS

Preliminary Data Analysis and Outlier Detection

The basic conclusions derived from this stage of the study were:

. The majority of data points for the Interstate system belong to overlaid flexible pavements,

thus allowing the development of a separate prediction model for each district. For the other
categories, the number of data points available can only permit the classification scheme to
be based on geographic regions, which groups 3 districts together.

For overlaid flexible pavements, the number of sections with sufficient layer information to
compute the structural number is relatively small compared to the total number of available
points.

. The age of the section (AGE), among all other independent variables, exhibits the strongest

correlation with the DMR, with their relationship best expressed as a concave or an S-shaped
curve.

With the exception of the interrelationship between the structural number (STRNO) and the
yearly ESALs (YESAL), no other significant correlation among the independent variables
exists.

Significant Predictors Identification

Conclusions for the significant variables affecting the pavement condition on Virginia's

Interstate System are:

1.

AGE was by far the most significant predictor for the DMR score. Its contribution, measured
by the ratio of the R* value resulting from its use as the sole predictor to that resulting from
using all variables included in the stepwise regression, ranged between 75% and 100% for
the different groups.

The overlay thickness, DEPTH, was significant in predicting the DMR value, provided that it
varied significantly among the sections under consideration. The variable was excluded from
the model if the data base had a limited range for the values of this variable.

. No true assessment regarding the significance of the structural number, STRNO, in the

prediction process could be made, since the variable was only available in a few cases.
However, due to its high correlation with the yearly ESALSs together with the absence of other
variables, the variable could end up with the incorrect sign.
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Yearly ESALs (YESAL) play a minor role in the prediction process, because the adopted
classification scheme and the use of dummy variables helped preserve the variable virtually at
a uniform level within each group. Reasonable predictions can thus be made even in the
absence of this variable.

The deterioration trend of the outer or traffic lane is significantly different from the inner
lanes.

All other factors being the same, the number of lanes available per direction does not seem to
significantly affect the pavement condition.

The use of dummy variables to differentiate among the different routes within a group may
help capture some of the characteristics particular to a specific route.

Differences among the deterioration trends of pavements belonging to different districts are
detectable in some cases. This suggests that basing classification schemes on districts,
whenever possible, is beneficial.

Model Development and Evaluation

From this phase of the study, the following conclusions, pertinent to Virginia's Interstate data,

can be made:

The power model provides for a satisfactory fit with reasonably high R? values and low
standard errors. Moreover, its predictions conform with basic engineering knowledge.

The sigmoidal model is capable of modeling a low rate deterioration region at the beginning
of a section's service life.

Differences between the sigmoidal curve's low deterioration region and the power curve are
practically insignificant, except for the flexible pavement with no overlay category.

From an extrapolation standpoint, the power model may be safer than the sigmoidal curve,

because the sigmoidal curve's lower asymptote will typically reflect the lower limit of the
available data, which is influenced by the current threshold value for the condition measure.

Model Verification and Accuracy Assessment

Based on the results from this part of the study, the conclusions regarding deterioration
prediction for overlaid flexible pavements are:
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1. No detectable differences between the prediction accuracy of the power model and the
sigmoidal model exist.

2. The accuracy of predictions for different numbers of years into the future is comparable.

3. The performance of the two model adjustment procedures (the horizontal and the vertical
shift) is similar.

4. Conclusions 2 and 3 suggest that using section-specific data did not appreciably improve the
accuracy of the prediction process. This, in turn, implies that a project- or section-specific
modeling approach is not quite appropriate for the data currently available in the system.

RECOMMENDATIONS
The following recommendations are based on the results and conclusions of the study.

1. For all pavement types other than the flexible pavements with no overlay category, the power
curve is adequate for prediction, from a practical standpoint, even though the sigmoidal curve
may provide a slightly improved fit.

2. For non-overlaid flexible pavements, the sigmoidal curve is preferred, to reflect their initial
slower deterioration rate.

3. Given the quality of the data currently available, the development of section-specific
prediction models is not highly recommended.

Utility of the Developed Models
The deterioration prediction models developed under the current study could serve many
functions for VDOT.

1. By predicting when maintenance or rehabilitation will be needed, the models will enable the
Department to more accurately project the long-range funding needs for preserving Virginia's
interstate network.

2. The models can aid in performing remaining service life analyses for the different interstate

segments. An example appears in Figure 17, where the models are used to estimate the
remaining service life for a portion of I-77 within the Carrol jurisdiction in the Salem
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District. The remaining service life is based on the currently adopted DMR threshold value
for interstate routes of 83.

Figure 17. Remaining Service Life from February 1994 to a DMR of 83

Remaining Service Life
1-77 within Carol Jurisdiction, Salem
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Remaining Service Life (yrs.)
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0 2 4 6 8 10 12 14 16 18
Jurisdiction Mile Post

Through analyses like this one, decisions regarding rehabilitations can be based not only on
the current DMR value, but also on the number of years the section is expected to remain in
service. These analyses could also reveal sections with relatively uniform remaining
lifespans, which could then be managed as a single unit.'

3. The developed models can also be used to study the effect of adopting different threshold
values on the remaining service life of the network, and hence on funding requirements.
Figure 18 is an example of such an analysis, where the models were employed to determine
the gain in service life, represented by the shaded areas in the figure, resulting from lowering
the threshold DMR from 83 to 81. Essentially, the developed models are a first step toward
moving from the simplistic condition assessment analysis method currently used, to priority
assessment and optimization analysis techniques.

Suggestions for Future Research
Although the developed models appeared to provide for reasonable predictions, the models
were based on a database which suffered from a number of deficiencies and limitations.> In

addition, the current practice for pavement condition assessment relies solely on a subjective
windshield survey, which may fail to furnish a detailed and true picture of the section condition.
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Figure 18. Effect of changing the threshold value on the remaining service life (I-77, Carrol jurisdiction,
Salem District)
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VDOT is moving towards the use of automated equipment for distress data collection, in an
attempt to eliminate some of the problems associated with the manual survey method. The
Department is planning to perform annual network-wide roughness surveys in coming years.
Once enough data from these more reliable and less subjective sources have been compiled and
the deficiencies of the database addressed, there will be an opportunity to develop additional
performance models that can greatly enhance the prediction and analysis capabilities of the
system. Specifically, models for predicting the individual distresses as well as roughness
progression should be developed. Such models will allow more refined remaining service life
analyses.”

Future studies should also consider adopting other approaches for performance prediction
modeling. This could involve the development of probabilistic models, such as Markovian
models and survivor curves, as well as the use of some of the nontraditional prediction tools that
have recently received attention, including neural- and poly-networks.
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Figure A-1 Scatter Plot Matrix for Overlaid Flexible Pavements in Bristol Category
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Figure A-2 Scatter Plot Matrix for Overlaid Flexible Pavements in Richmond Category
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Figure A-3 Scatter Plot Matrix for Overlaid Flexible Pavements in Suffolk Category
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Figure A-4 Scatter Plot Matrix for Overlaid Flexible Pavements in Culpeper Category
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Figure A-5 Scatter Plot Matrix for Overlaid Flexible Pavements in Staunton Category
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Figure A-6 Scatter Plot Matrix for Non-overlaid Flexible Pavements in Region 1
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Figure A-7 Scatter Plot Matrix for Non-overlaid Flexible Pavements in Region 2
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Figure A-8 Scatter Plot Matrix for Composite Pavements with One Overlay
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Figure A-9 Scatter Plot Matrix for Composite Pavements with more than one Overlay
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Appendix B

Power Model Evaluation Results
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Figure B-1 Power Model Goodness-of-Fit

Richmond, 1-85, Overlaid Flexible Model

Bristol, I-77 Overlaid Flexible Model
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Figure B-2 Power Model Goodness-of-Fit

Staunton Overlaid Flexible Model

Culpeper Overlaid Flexible Model
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Figure B-3 3-D Sensitivity Analysis for Bristol I-81 & 1-381 Overlaid Flex. Model
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Figure B-5 3-D Sensitivity Analysis for Richmond I-85 Flex. Overlaid Model
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Figure B-6 3-D Sensitivity Analysis for Richmond I-95 (2 lanes) Flex. Overlaid Model
DEPTH = 1.4

3-D Surface Plot, DEPTH=1.4 in.
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Figure B-7 3-D Sensitivity Analysis for Richmond I-95 (2 lanes) flex. Overlaid Model
YESAL =1.2

3-D Surface Plot, YESAL=1.2
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Figure B-9 3-D Sensitivity Analysis for Staunton Flexible Overlaid Model
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Figure B-11 2-D Sensitivity Analysis for Richmond I-95 (3+ lanes) Flex. Overlaid Model
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Figure B-12 2-D Sensitivity Analysis for Suffolk Flexible Overlaid Model
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Figure B-13 2-D Sensitivity Analysis for Staunton Flexible Overlaid Model
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Figure B-14 2-D Sensitivity Analysis for Staunton Flexible Overlaid Model
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Figure B-15 2-D Sensitivity Analysis for Non-overlaid Pavements Model in Region 1
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Figure B-16 2-D Sensitivity Analysis for Non-overlaid Pavements Model, Region 2
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Figure B-17 2-D Sensitivity Analysis for Non-overlaid Pavements Model, Region 2
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Figure B-18 2-D Sensitivity Analysis for Composite Pavements with One Overlay Model
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Figure B-19 2-D Sensitivity Analysis for Composite Pavements with > 1 Overlay Model
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Appendix C

Sigmoidal Model Evaluation Results
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Figure C-1 Sigmoidal Model Goodness-of-Fit

Salem Overlaid Flexible Model
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Figure C-2 Sigmoidal Model Goodness-of-Fit

Bristol, 1-77, Overlaid

Richmond, [-95 s Ins. overlaid Flex. Model
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Figure C-3 3-D Sensitivity Analysis for Bristol I-81 Overlaid Flexible Model
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Figure C-4 3-D Sensitivity Analysis for Salem Model, STRNO=6.0 & lane code 0 or 1
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Figure C-5 3-D Sensitivity Analysis for Salem Model, DEPTH=1.4 & lane code O or 1

3-D Surface Plot, DEPTH=1.4

Figure C-6 3-D Sensitivity Analysis for Richmond I-95 (3+ lanes) Overlaid Flex. Model
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Figure C-7 3-D Sensitivity Analysis for Staunton Overlaid Flex. Model
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Figure C-9 2-D Sensitivity Analysis for Salem Model, STRNO=6.0 & DEPTH=1.4
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Figure C-10 2-D Sensitivity Analysis for Richmond I-95 (3+ Ins.) Overlaid Flex. Model
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Figure C-11 2-D Sensitivity Analysis for Staunton Overlaid Flex. Model
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Figure C-12 2-D Sensitivity Analysis for the Non-overlaid Flex. Model for Region 1
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Figure C-13 2-D Sensitivity Analysis for Non-overlaid Pavements Model, Region 2

Routes other than 1-95
o
9 4
—— Jane codes Q or 1
<. | -~- lane codes 2 or 3
[To N
[¢)]
e
=
[a)
o
()]
3 1
0 2 4 6 8 10 12
AGE in Years

Figure C-14 2-D Sensitivity Analysis for Non-overlaid Pavements Model, Region 2
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Figure C-15 2-D Sensitivity Analysis for the Composite with > 1 Overlay Model
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Appendix D

Analysis-of-Variance (ANOVA) Test Results
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Table D-1 ANOVA Test Results for Bristol District :

ANOVA Table for Response Variable: DIFF1

Source DF Sum-Squares Mean Square F-Ratio Prob>F
A (YEAR )y 3 19.18902 6.39634 0.62 0.6010
B (MODEL y 1 17.4265 17.4265 1.70 0.1943
AB 3 8.576534 2.858845 0.28 0.8409
C (ADJ ) 1 .3175798 .3175798 0.03 0.8606
AC 3 2.842005 .947335 0.09 0.9642
BC 1 2.939E-02 2.939E-02 0.00 0.9574
ABC 3 .2058712 6.862E-02 0.01 0.9992
ERROR 180 1847.888 10.26604

TOTAL (AdJ) 195 1900.417

Table D-2 ANOVA Test Results for Salem District :

ANOVA Table for Response Variable: DIFF1 .

Source DF- Sum-Squares Mean Square F-Ratio Prob>F
A (YEAR )y 3 60.02439 20.00813 1.42 0.2384
B (MODEL )y 1 2.562633 2.562633 0.18 0.6701
AB 3 3.787562 1.262521 0.09 0.9658
C (ADJ y 1 .9172266 .9172266 0.06 0.7988
AC 3 .8230723 .2743574 0.02 0.9963
BC 1 .3241027 .3241027 0.02 0.8796
ABC 3 .1426018 4.753E-02 0.00 0.9997
ERROR 248 3502.714 14.12385

TOTAL (Adj) 263 3571.659

Table D-3 ANOVA Test Results for Richmond District :

ANOVA Table for Response Variable: DIFF1l

Source DF Sum-Squares Mean Square F-Ratio Prob>F
A (YEAR ) 3 47.45429 15.8181 0.93 0.4291
B (ADJ ) 1 5.137249 5.137249 0.30 0.5834
AB 3 .8390875 .2796958 0.02 0.9971
ERROR 220 3758.526 17.08421

TOTAL (Adj) 227 3811.753

Table D-4 ANOVA Test Results for Staunton District :

ANOVA Table for Response Variable: DIFF1

Source DF Sum-Squares Mean Square F-Ratio Prob>F
A (YEAR ) 3 9.356613 3.118871 0.16 0.9243
B (MODEL ) 1 .4035484 .4035484 0.02 0.8862
AB 3 3.84625 1.282083 0.07 0.9783
C (ADJ y 1 .8532386 .8532386 0.04 0.8352
AC 3 .2719283 9.064E-02 0.00 0.9996
BC 1 1.291E-02 1.291E-02 0.00 0.9796
ABC 3 .8791642 .2930547 0.01 0.9975
ERROR 232 4573.435 19.71308

TOTAL (Adj) 247 4589.565
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