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Abstract

I Recent trends indicate that vehicle miles traveled for large trucks is increasing at
la higher rate than for -other vehicles. The resulting competition between large trucks and
other vehicles for highway space can be expected to result in more multivehicle collisions
involving large trucks. The likelihood of these collisions causing severe injuries to
vehicle occupants will also increase with the trend towards the use of smaller automobiles
and heavier and larger trucks. In order to develop countermeasures that will alleviate
this problem, it is first necessary to identify the characteristics of large-truck
accidents and the role of traffic and geometric variables in such accidents. This study
investigated the major factors associated with large truck accidents including the effect
of highway facility type and highway geometry, and the development of mathematical models
relating the factors with accident rates and probability of occurrence.

This second volume gives a detailed description of the development of the regression
and logistic models.
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ABSTRACT

Vehicle miles traveled for large trucks, which are defined here as trucks having
six or more wheels in contact with the road and having a gross weight greater thall
10,000 Ib, have been steadily increasing during the past few years. On some sections
of Virginia interstate routes, for example, the proportion of large trucks is as high as
50 percent. The resulting competition between large trucks and other vehicles for
highway space can be expected to result in more collisions involving large trucks. An
analysis of large-truck accidents in Virginia also indicated that driver-related factors are
the primary associated factors for truck crashes. For example, driver error is asso­
ciated with over 50 percent of fatal accidents involving large trucks, and fatal crashes
for which driver error is listed as the primary factor occur predominantly on stretches
of high\vays with vertical or horizontal curves and/or grades. In order to develop
countermeasures that will alleviate this problem, it is necessary to identify the specific
traffic and highway geometric characteristics that significantly affect the occurrence of
large-truck crashes.

This study was therefore conducted by the Virginia Transportation Research
Council with the objective of identifying appropriate countermeasures for highway geo­
metries to reduce large-truck crashes. The major factors associated with large-truck
accidents, including the effect of highway facility type ana highway geometry, were in­
vestigated. This study is reported in two volumes.

This volume presents mathematical relationships obtained through linear, Pois­
son, and multiple logistic regression analyses relating the probability of a large truck
being involved in an accident with a set of associated traffic and highway geometric
variables. These models indicate that lane width, shoulder width, percentage of trucks
in the traffic stream, and changes in the vertical and horizontal alignments have some
influence on the probability of a truck being involved in an accident on a given stretch
of highway.

ix





1709

FINAL REPORT

TRAFFIC AND GEOlVIETRIC CHARACTERISTICS AFFECTING
THE IN'lOL,TEMENT OF LARGE TRUCKS IN ACCIDENTS

VOLUME II

LINEAR, POISSON, AND LOGISTIC REGRESSION MODELS

. Nicholas J. Garber

and

Sarath C. Joshua

INTRODUCTION

The incidence of large-truck accidents in general has been observed to be less
than for passenger cars, light trucks, and vans, but the relative proportion af fatal acci­
dents has been observed to be much higher for large t~ucks. In Virginia, for example,
although the total number of fatal accidents for all vehicles has been increasing, the
fatal accident rate based on accidents per million vehicle miles of travel (VMT) has
been decreasing in recent years. However, large trucks have been experiencing almost
t\vice the fatal accident rate per miles traveled than passenger cars. 1 Accident experi­
ence of large trucks in the future will be influenced by the amount of truck VMT and
the changing vehicle mix. If VMT for large trucks in the next decade continues to in­
crease at the present rate and the rate of fatal large-truck accidents based on VMT re­
mains constant, then the number of fatal accidents that involve large trucks can be ex­
pected to rise significantly.

Recent trends indicate that VMT for large trucks is increasing at a higher rate
than for other vehicles. The resulting" competition for highway space by more vehicles
can be expected to result in more frequent collisions. The likelihood of these colli­
sions causing severe injuries to vehicle occupants has increased with the trend toward
the use of smaller and more fuel economical vehicles on the highways. This problem
is made worse by the fact that average truck sizes and \veights are also increasing.
The passage of the Surface Transportation Assistance Act of 1982, for example, per­
mitted wider and larger trucks on the interstate and designated primary highways
across the country. Clearly, as the truck sizes increase and the roadway environment
remains relatively the same, the likelihood of incompatibilities between the two will in­
crease, and this will result in higher accident rates for trucks. Therefore, in order to
ensure the desired safety levels on the highways, it is essential that the incompatibili­
ties between large trucks and highway and traffic characteristics that lead to hazardous
situations be clearly understood. Unfortunately, only limited information is available



on the quantitative relationship between the risk of occurrence of a large-trllck accident
and the associated traffic and geometric characteristics. This study was therefore con­
ducted to identify the traffic and geometric variables that significantly affect the in­
volvement of large trucks in accidents. As part of this study, linear, poisson, and mul­
tiple logistic regression models were developed relating the probability of a large truck
being invofved in an accident with a set of associated traffic and geometric variables.
These models are presented here.

l\tIETHODOLOGY

Establishment of the Accident Data Base

Accident data files compiled by the Virginia Department of Transportation
(VDOT) for all of Virginia highways for 1984 through 1986 were obtained, and sub­
files were created from them for use on the CDC computer. From among the data
available in the main file, the following data fields were extracted and included in the
subfiles for this part of the study:

• county/city

• route number

• section number

• sequence number

• type of collision

• traffic control

• alignment

• severity

• major factor

• begin terminal

• end terminal

• average daily traffic (ADT)

• highway type.

The county/city, route number, section number, and the sequence number identi­
fy a specific roadway segment between the begin and end terminals.
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Identification of Sites for Data Collection

Two sources were used to identify suitable test sites for data collection. The
first source was the subfiles created from the VDOT files, and the second was the De­
partment of State Police. The subfiles created were sorted by the first four fields that
define the sites. Once this sorting was accomplished, all the accident records occur­
ring on the same roadway segment appeared adjacent to each other. This highlighted
segments with a large number of accidents. These files were one of the sources used
for identifying sites with high accident rates from which test sites were selected. The
Department of State Police was also asked to provide a list of sites with frequent large­
truck accidents. This list was also used to select additional test sites. The selection- of
sites with high truck accident rates as the test sites for the study was based on the
premise that these sites will have traffic and geometric characteristics that are asso­
ciated with truck accidents. Control sites with similar highway configurations \",ere
also identified adjacent to test segmentS, either upstream or downstream from the loca­
tions with high accident rates. In selecting the test sites from the accident files, the
following criteria were used:

• The length of the highway segment must be 2 miles or less.

• Most of the accidents occurring on the highway segment must be of the mobility
type.

• There must be a consistent pattern of accident occurrence on the segment of
highway.

Accident sites from four different highway categories were selected. These
were: (1) interstate routes, (2) primary routes (divided with four or more lanes), (3)
primary routes (undivided with four or more lanes), and (4) primary routes (undivided
with two lanes). Once the sites were selected, it was necessary to determine \vhether it
would be feasible to collect data at the site. The reason for this is that sometimes as
a result of temporary highway construction or maintenance activities in the vicinity of a
site, data collected on traffic variables, such as speed, may not. represent the true con­
ditions. A list of the study sites is shown in Appendix I.

Data Collection

This task consisted of two subtasks, namely, compilation of historical data rele­
vant to each site and collection of on-site traffic and geometric data.

Historical Accident Data

The historical accident data were obtained from the main VDOT accident files
using a computer program. The relevant data on all accidents occurring at each site
selected for the study were extracted and stored in the subfiles created.

3



Traffic and Geometric Data

All the sites selected for the study \vere visited, and the follo\ving kinds of data
were collected:

• highway type, number of lanes, lane width, and shoulder width

• 24-hour count of vehicle volume

• 24-hour count of vehicle classification

• 24-hour count of speed classification

• 24-hour spot speed samples of trucks and nontrucks

• measurements of the horizontal and vertical alignment using an automated high-
way geometry data collection technique

• sight distance

• speed limit or advisory speed limit.

Traffic data, such as vehicle and speed classifications, were obtained using
Streeter Arnet traffic counters. On highways with ADT less than about 15,000, pneu­
matic tubes were used for vehicle detection. On highways carrying higher volumes of
traffic, it was not possible to use tubes because of the likelihood of tube damage. On
these routes, the data collection was performed utilizing the nearest permanent induc­
tion loops that the VDOT uses for the traffic count program.

Spot speeds of trucks and nontrucks were observed using radar speed detectors
of the type used by the state police officers. This type of speed detector sends out the
radar signal as a pulse instead of a continuous signal, thereby redllcing the chances of
being detected by radar detectors frequently used by truck drivers and many other mo­
torists. These radar units enabled the discreet collection of speed samples at each site.
These traffic data were collected on weekdays, except Mondays and Fridays, so that
the influence of weekend traffic could be eliminated.

Geometric data such as number of lanes and Jane and shoulder widths were ob­
tained by direct measurements at each site.

The alignment data, however, required horizontal and vertical roadway profiles
of segments of roadways, each between 1 and 2 miles in length. One possible way of
obtaining these data was by consulting the as-built plan sheets available from VDOT;
however, that would have required the identification of the location of accident sites
sufficiently accurately to identify all the relevant plan sheets and, if these were up to
date, the obtainment of alignment data from these sheets. Data for sites that could
not be located or for which up-to-date plans were not available would have to be ob­
tained by field measurements. An automated highway geometry data collection tech­
nique, which avoids such problems by providing a consistent method for obtaining
alignment data, was therefore developed for this study. The technique uses the Siope­
master electronic ball bank indicator, which consists of two main components: (1) a
ball bank indicator with a digital display of the angle of displacement and (2) a data
acquisition unit (DAU) , which collects and later prints out data on ball bank indicator
readings.

4



(1)

The electronic ball bank indicator provides two modes of measurements: degrees
and percentage of grade. When the vehicle is heing driven on a road\\'ay \vith the in­
dicator test switch turned on, all the readings of the indicator are stored in the DAU
memory together with the distance fronl the starting point (in miles to two decimals
places) and the speed of the vehicle (to the nearest mph). Once the test run is com­
plete, the DAU prints out all of the readings pertaining to that particular test. The
vertical alignment of any segment of highway in terms of percent grades and length of
grades can be obtained directly from the output. Actual degrees or radii of horizontal
curves cannot, however, be obtained directly because of the effect of the vehicle body
roll and the rate of superelevation of the horizontal curve. A special procedure using
the DAU was therefore developed for this study. It used two sets of data collected on
angular readings of the ball bank indicator on each segment of highway with the ve­
hicle being driven at two different speeds. The radius of each horizontal curve could
then' be computed using a model developed for the technique and the two sets of data.
A detailed description of the technique and the models used to determine the radius at
each horizontal curve is given jn reference 2. The lengths of horizontal and spiral
curves at each test segment were also obtained. A sample of traffic and geometric
data is given in Appendix II.

Surrogates of Roadway Alignment

Three surrogate measures of horizontal and vertical alignment were used in this
project: the curvature change rate (CCR) used widely in Germany to describe horizon­
tal alignment of a roadway3,4; the slope change rate (SCR), which is analogous to
CCR; and the absolute mean slope (AMS). CCR and AMS are directly proportional to
the degree of variation in horizontal and vertical alignments, respectively. CCR is de­
fined as the absolute sum of the angular changes in horizontal alignment divided by
the length of the highway segment, and it is given as

CCR = [± L; + ±~] (57.3)(5280) deg/mile
;=1 R; j=; 2R; L

where L; = length of circular curve i (ft) (see Figure 2)

Ls = length of transition curve s (ft) (see Figure 2)

R; = radius of circular curve i (ft) (see Figure 2)

L = total length of section (ft) (see Figure 2).

The absolute mean slope is the sum of the absolute grade changes in the vertical align­
ment divided by the length of the highway segments. It is given as .

~IG}+Gj+lll"L 2 'j,j+l +
AMS i=l=--------

L

5

percent
(2)
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= radius of horizontal curve i (see Figure 1)

= length of 110rizontal curve i (see Figure 1)

= deflection angle of horizontal 'curve i = 57.3 L/R (see Figure 1)

= length of spiral curve s (see Figure 1)

where R;

L;

Sci

Ls

8 s

Gj

Lj

L

= deflective angle of spiral curves = Ls (57.3) (see Figure 1)
2R;

= slope of jth grade percent (see Figure 1)

= length of jth slope (ft) (see Figure 1)

= length of entire segment (ft) (see Figure 1)

Ij . j + 1 = length of curve between jth and U+ l)th slopes (ft) (see
Figure 1).

The slope change rate is given as

r,k ] (5280)
SCR = L~ IGj =l - Gil -L- percent per mile (3)

where = slope of jth grade percent (see Figure 1)

= length of entire segment (ft) (see Figure 1).

DEVELOPMENT OF MODELS

The development of models entailed the development of mathematical relation­
ships between the probability of any given accident being one that involves a large
truck and a set of independent variables that are related to large-truck accidents.

The accident-related independent variables considered were:

• roadway geometry

number of lanes

lane width (LNWD)

shoulder width (SHLDWD)

curvature change ratio (CCR)

absolute mean slope (AMS)

slope change rate (SCR)

segment length (SEGLEN)

7
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• traffic variables

average annllal claily traffic (AADT)

mean speed (all vehicles) .

speed variance (all vehicles)

mean speed (trucks)

speed variance (trucks)

mean speed (nontrucks)

percentage large trucks (TPERCENT)

difference in mean speeds between truck and nontruck (SPDIF).

The accident-related dependent variables were

• TINVOL (number of large-truck accident involvements in 1 year)

• Pi (probability of a large-truck accident involvement).

A list of the locations of the sites used and sample data are shown in Appendix
I. Models were developed for three highway environments grouped by roadway config­
urations and traffic volumes:

• Environment I: primary highways (undivided 4-lane and 2-lane) -

• Environment II: primary highways (divided 4-lane) (AADT < 15,000)

• Environment ill: interstate/primary highways (divided 4-lane) (AADT> 15,000).

Model Selection Criteria

The selection' of the best model to fit the observed data is a problem that must
be contended with in any statistical modeling task. To assist in this endeavor, various
model selection criteria have been used in the past, such as adjusted multiple correla­
tion, Mallow's Cp , prediction sum of squares (PRESS), etc. Akaike's information crite­
rion (AlC) , which was used in this study, is a criterion that is increasingly becoming
popular for its versatility. The process of selecting the best model is usually a com­
plex task in the absence of suitable criteria for that purpose. Ale, however, fulfills
that role and has proven to be an effective criterion. 5

Components of Ale

An objective measure of the distance between the true model and the hypothe­
sized model is Boltzmann's generalized entropy, or the negentropy. This measure is
also known as the Kullback-Liebler information quantity.6 Model selection using AIC
is based on the concept of entropy maximization or, in other words, the minimization
of the negentropy. In Ale, the Kullback-Liebler information quantity is estimated by

8



the mean log likelihood for the model. A complete explanation of the derivation of
this criterion and its extensions is given hy Bozdogan. 7 For the purpose of this analy­
sis, the criterion is described in its final form.

Definition: If {Mk : k E K} is a set of competing models indexed by k = 1,
2, ... , K, then the criterion AIC is given by

where

Ale(k) = - 210g L(ek ) + 2k

log L(ek ) = loge[maximized likelihood]

k = number of free parameters in the model.

(4)

AIC is minimized to choose the model Mk over the set of competing models.

The first term in equation 4 is a meaSllre of the badness of fit, or bias, when
the maximum likelihood estimates of the parameters are used. The second term, 2k,
is a measure of the complexity of the model and compensates for the first term.

Using this criterion, the model yielding the minimum Ale was selected as the
best model. The resulting model is the one with the least complexity and highest level
of information.

Multiple Linear Regression Model

This is the simplest case of generalized linear models and can be expressed as

where

r =X~ + e

I is an N x 1 response vector

X. is an N x p matrix of explanatory variables

~ is a p x 1 vector of parameters, Le., an N x 1 random vector whose

elements are independent identically and normally distributed, Le.,

ei == N(O, cJ2) for i = 1, ... , N.

(5)

Ale Derivation for Multiple Regression Models

A least square estimation of parameters was carried out using procedures avail-
able in the statistical software package SASe The parameters, ~o, ~1' ••• , ~p were esti-
mated through the following minimization.

Minimize S(~o, ~1, • • ., ~p)

9
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11

= I {y; - {3o - {3tXil - .,. - {3pX;p} 2
·

i=l

In matrix form

S(If) = (I -Kf3)' (X - Kf3).

The vector of partial derivatives of S(~) with respect to ~ elements is

iJ:~ = _2X'X + 2X'X/3 = 0

\vhich gives

assuming that

2
Yi = N(Xi{3, a )

2
Ci == N(O,a)

for i = 1, ..., n.

The likelihood function of the dependent variable observation vector r is

2 2
L(j3, a) = F(Y, {3, a )

= [ 1 2 1!.] exp [(-~)(I-Kf3)'(X - Kf3)].
(2na)2 2a

The likelihood function is

2 2
L(j3, a) = log L(j3, a )

n n 2 1 ,
= --log(2n) - -log(a) - -(I - Kf3) (I - Kf3).

2 2 2a2

10

(6)

(7)

(8)

(9)

(10)

(11 )

(12)

(13)

(14)

(15)

(16)



The maximllm likelihood estimates /3 of {3 is obtained by the following partial
derivatives

d ( 2dfJ L fJ, a) = 0

resulting in

(17)

(18)

2 (X - Kf3)'(X - Kf3) ee' SSE
G= =----

n

Now the maximized log likelihood becomes

n n
(19)

2 n ( n SSE n
logL((Jk) = (P, a) = --zlog 2n) - -log- 2

2 n

but

AlC = - 2 log(8k ) + Zk

which gives

(20)

(Zl)

where

{
SSE}AlC = n log 2n + n log -n-

k = (p + 1) + I

p + 1 = number of f3 coefficients estimated

e = estimated parameters, 0 2 .

+ n + 2k
(22)

Identification of Best Multiple Linear Regression Models

Using AlC as the criterion for model selection, the best model was the model
yielding the minimum AlC value. A stepwise procedure was used in the selection of
the best models. The best subset of singleton variables was first determined by using
a backward elimination procedure. The model that included all variables and its Ale
was first determined. The best combination of variables to yield the minimum AIC at
the next lower level (i.e., with the number of variables reduced by one) was then de­
termined. At each level (Le., number of variables) of the variable selection process,
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all the terms of the expression for Ale remain the same except for SSE. Therefore,
the hest suhmodel would be the model vieldine the minimum SSE41 \vhich is also the
model with the maximum R2 at that lev~1. Using PROC RSQUARE of SAS, the best
subset of variables at each level was thus determined. The AlCs for all levels are then
compared with each other, and the model with the minimum AlC is then selected as
the best model. .

Poisson Regression Model

The occurrence of highway accidents can be described by the nonstationary
Poisson process. 6, 7 The basic assumption of Poisson processes is that the numbers of
accidents occurring within each observed time interval (1 year in our model) are inde­
pendent with the expectation defined as in the following equation

(23)

i = 1, ... , n

j = 1, ... ,mi

where Xi = Xi 1, Xi2, · • ., Xi,p - 1 is the ith set of values for the p - 1-
independent
variables

m; = number of replications of ith experimental condition

~ = (~o, ~1, ~2, ° • 0' ~p - 1) is a p-dimensional vector of parameters

Yij = a particular realization of the experiment.

It is assumed that a general form of the model exists, and f(xi, ~) is a differen­
tial function of~. The experiment yields n values of the independent variables, where
n is supposed to be sufficiently greater than p to ensure the estimability of the ~ pa­
rameters.

The probability of k accidents occurring during each interval (1 year) can be
represented as

(24)

In the estimation procedure, we will determine the parameter vector ~

where y = expected accident frequency per year

Xi = traffic and highway geometry variableso

12
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Three different methods can be used to estimate the parameters of the Poisson
regression model. These are the maximum likelihood rrincirle~ \veightecl least squares
analysis, and the minimum chi-square estimation. The weighted least squares nlethod
of parameter estimation was used in this analysis since it is more efficient in terms of
computing time.

Ale Derivation Poisson Regression lVlodel

The Ale derivation for least squares estimation of the parameters of this model
is basically the same as that for the linear model described earlier.

Identification of the Best Poisson Regression Model

The model investigated was the multiplicative model described by equation 25
for the expected accident involvement. The parameter estimation was carried out in
two steps. First, the model was linearized through a logaritllmic transformation and
parameters were estimated treating the transformed function' as a linear model. Using
the backward procedure described earlier, the best model at each level was then deter­
mined based on the AlC values. Then, starting out with these parameter estimates and
the corresponding models, a more precise estimation of the nonlinear model was car­
ried out using the PROC NLIN procedure in SASe This produced least squ_ares esti­
mates of the parameters obtained through the Marquardt iterative method, in which the
residuals are regressed on to the partial derivatives of the model with respect to the
parameters until the iteration converges.

lVlultiple Logistic Regression Model

This is a commonly used generalized linear model based on the binomial distri­
bution Yi == b(n, 1fi). It is obtained by taking the natural paramenter as the link
function

where

log Jr; = [Xd Tp

(1 - 1ri)

e(X;) Tp

1C; = ---~
1 + e(X/)Tp

(26)

(27)

(28)

For each site, the truck and nontruck accident involvements that have taken
place during each year of analysis were determined from accident history. Thus, the
probability of any given accident involvement being one that involved a truck was given
by

13



(29)

Total truck involvements
1(; =---------------

Total (truck + nontruck) involvements

The fundamental assumption in logistic regression analysis is that the logit or
the logarithm of the odds is linearly related to the independent variables. No assump­
tions are made regarding the distributions of the x variables. An advantage of this
model is that the explanatory or independent x variables may be discrete, continuous,
or categorical.

Ale Derivation for Logistic Regression Model

From the basic definition of the binomial model, where the probability of an
outcome (in this analysis a truck involvement) is (7T;) for such random variables
}?t, .. · Yn , their joint probability is

n [ n (n.) n ]n(nj)Yi l - nj) l-Yj = exp ~ Yj log (1 _1 n) + ~ log(l - n;) ·
J= 1 J= 1 . J J= 1

Taking into consideration the number of possible ways in which N such outcom­
es. can take place, the resulting 10& of the likelihood function is

l(nJ, ... ,nN; rJ, ... ,rN) =±[r;IOg n
j

) + n;log(l - n;) + IOg(;:)]. (30)
;=1 (1 - 1'l;

For the linear logit model this is equivalent to

. (31)

The maximum likelihood estimates of parameters f3 and of the probabilities 11;

are obtained by maximizing the above function.

For the definition previously given in equation 4

AlC(k) = - 2 log L(ek ) = 2k

the PROC CATMOD with NOGL and ML options available in SAS were used to deter­
mine maximum likelihood estimates of the parameters f3 and then the first term of tile
expression for Ale. The value of Ale for each model was then determined by adding
the value of the second term (2k).

A stepwise logistic regression procedure and Ale were then adopted for the se­
lection of the best subset of variables. The best subset of singleton variables was first
determined by using a backward elimination procedure. Starting out with a model that
includes all variables, the best combination of variables to yield the minimum Ale at
the next lower level (Le., with the number of variables reduced by one) was deter-
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mined. This procedure was continued llntil the model with one variable was reached.
The re~ulting list of models represents the he~t models \\'irh singleton variahles at each
level. Qnce the best subset of variables was determined, interaction terms were tllen
determined for each baseline model and added to improve on the AIC value.

RESULTS

Multiple Linear Regression Models

Linear regression models were developed for the annual truck accident involve­
ment rate (TRATE) (Le., accidents per 100 million truck VMT) as a linear function of
highway- and traffic-related variables. The results obtained are given for the three dif­
ferent environments described earlier.

Environment I (Primary Highways, Undivided 4-Lane and 2-Lane)

Table 1 gives the best model for TRATE at each level for this environment. It
can be seen that the model with eight variables has the minimum AlC --of 288.46 and is
therefore the best model. This model is given as

TRATE = 289.233 - 27.249(LNWD) + 6.6192(SHLDWD) - 26.413(AMS)

+ 1.9328(SCR) + 0.0269(CCR) + 0.00492(ADT) - 1.3822(TPERCENT)

+ 0.2362(SPDIFSQ) (32)

R2 = 0.6832

Table 1

LINEAR MODELS FOR TRATE - ENVIRONMENT I

Level SSE

1 5251.91
2 5079.73
3 4851.08
4 4475.27
5 3454.94
6 2532.25
7 2369.44
8 2228.90

·Best model.

Ale
307.89
308.59
308.79
307.65
299.56
289.44
288.85
288.46*

Variables

ADT
SCR,ADT
SCR,ADT, TPERCENT
AMS, SCR, ADT, SPDlFSQ
SHLDWD, SCR, ADT, TPERCENT, SPDIFSQ
LNWD, SHLDWD, AMS, SCR, ADT, SPDIFSQ
LNWD, SHLDWD, AMS, SCR, CCR, ADT, SPDIFSQ
LNWD, SHLDWD, AMS, SCR, CCR, ADT, SPDIFSQ,
TPERCENT
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Environment II (Primary Highways, Divided 4-Lane, AADT < 15,000)

The best model at each level is sho\vn in Table 2, which indicates that tile best
overall model is that consisting of three variables with an AlC of 245.21. It is given
as

TRATE = -12.196 + 0.0231(CCR) + Oo00077(ADT) + 0.6444(TPERCENT) (33)

R2 = 0.2187

Table 2

LlNEAR MODELS FOR TRATE - ENVIRONMENT II

Level SSE

1 295.01
2 274.10
3 246.38
4 243.30
5 241.22
6 239.75
7 239.15
8 239.0~

*Best model.

AlC

250.93
248.96
245.21*
-246.53
248.06
249.73
251.60
253.58

Variables

SCR
CCR, TPERCENT
CCR, ADT, TPERCENT
CCR, ADT, TPERCENT, SPDfFSQ
AMS, SCR, CCR, ADT, TPERCENT
AMS, SCR, CCR,ADT, TPERCENT, SPD~SQ
LNWD, AMS, SCR, CCR, ADT, TPERCENT, SPDIFSQ
LNWD, SHLDWD, AMS, SCR, CCR, ADT, TPERCENT,
SPDIFSQ

Environment III (Interstate and Primary Divided Highways, AADT > 15,000)

Table 3 shows that the best model for this- environment is that consisting of only
two variables and is given as

TRATE = 5.416 + 0.1119(CCR) - O.1580(TPERCENT)

R2 = 0.2317

(34)

Using R2 as a simple measure to compare how well each model represented the
variation in data, only the model for Environment I, with an R2 value of 0.68, demands
any consideration. This model implies that an increase in SCR, CCR, ADT,
SHLDWD, or SPDIFSQ increases the TRATE, whereas an increase in LNWD, AMS, or
TPERCENT decreases the TRATE. An increase in the variable SHLDWD resulting in
an increase in TRATE is contrary to expectations. However, this may be the result of
observed correlation between ADT and SHLDWD. Also there is no logical explanation
for an increase in either AMS or TPERCENT resulting in a decrease in TRATE. Be­
cause of this and the low R2 values obtained, it can be concluded that linear models
do not adequately describe the relationship between TRATE and traffic and geometric
variables.
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Table 3

LINEAR MODELS FOR TRATE - ENVIRONMENT III

Level SSE AlC Variables

1 1470.14 871.12 TPERCENT
2 1414.37 866.39* CCR, TPERCENT
3 1408.07 867.61 CCR, ADT, TPERCENT
4 1402.29 868.89 CCR, ADT, TPERCENT, SPDIFSQ
5 1398.58 870.43 AMS, SCR, CCR, TPERCENT, SPDWSQ
6 1396.51 872.18 AMS, SCR, CCR,ADT,TPERCENT, SPDWSQ

*Best model.

Poisson Regression lVlodels

Environment I (Primary Highways, Undivided 4-Lane and 2-Lane)

The best nonlinear model at each level is shown in Table 4. The best overall
model for this environment is the model at the third level with variables SCR, ADT,
and TPERCENT. The parameters for these variables were then lIsed as the starting
values for the iterative least squares estimation. The resulting model is

TINVOL = .015237(SCR)o.oS77(ADT)o.S024(TPERCENT)o.S731

AlC = 62.06

(35)

This model indicates that ADT, SCR, .and TPERCENT are variables that are sig­
nificant in predicting the expected number of truck accident involvements. The low

Table 4

POISSON REGRESSION MODEL - ENVIRONMENT I

Level SSE

1 10.29
2 9.14
3 8.67
4 8.36
5 7.88
6 7.80
7 7.77
8 7:70

9 7.67

*Best model.

AlC Log Variables

64.71 LNWD
62.09 LNWD, AMS
62.06* SCR, ADT, TPERCENT
62.60 LNWD, SHLDWD, AMS, SEGLEN
62.32 LNWD, SHLDWD, SEGLEN, TPERCENT, SPDIFSQ
63.94 LNWD, SHLDWD, CCR, SEGLEN, TPERCENT, SPDlFSQ
65.76 AMS, SCR, CCR, SEGLEN, ADT, TPERCENT, SPDIFSQ
67.41 LNWD, SHLDWD, AMS, CCR, SEGLEN, ADT, TPERCENT,

SPDIFSQ
69.28 LNWD, SHLDWD, AMS, SCR, CCR, SEGLEN, ADT, TPERCENT
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Figure 3. Effect of SCR and TPERCENT on TINVOL - Environment I (segment
length equals 2 miles)Q

20

AADT =10,000

• •• • TPERCENT =35
15 ~

• • •.. • TPERCENT =25as •CD
>
........
-I 10 • • •0 • • TPERCENT =15>
Z
i=

• • • •5
TPERCENT= 5

250200150100500 ......-----~-----~-------1-------l1ooo..--------1a

seR

Figure 4. Effect of SCR and TPERCENT on TINVOL - Environment I (segment
length equals 2 miles).
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Ale value obtained for this model indicates that it is a good predictor for the number
of trllck involvements. Intuitively .. one \vould expect to see the variables SE<JL"EN ancl
LNWD included in the final model. SEGLEN was, ho\vever, not included in this mod­
el since all of the sites in this environment were about 2 miles in length. The lane
width (LNWD) is also not included since the analysis showed some correlation between
ADT and LNWD. .

Figures 3 and 4 show how the number of truck involvements vary \\rith the
large-truck percentage (TPERCENT) and SCR for this model. The number of involve­
ments shown is the expected total for 1 year. These figures indicate that, according to
this model, the number of truck involvements is almost doubled as the percentage of
trucks increases from 5 to 15 percent.

Environment II (Primary Highways, Divided 4·Lane, AADT < 15,000)

The best nonlinear models for this environment at different levels are shown in
Table 5. From these models, the best overall model is the model at the fourth level,
with variables SCR, ADT, TPERCENT, and SEGLEN. The parameters for these vari­
ables were used as the starting values for the iterative least squares estimation. The
resulting model is

TINVOL = 9 x 10-8(SCR)o.0471(ADT)1.4358(TPERCENT)1.S232(SEGLEN)O.3826
(36)

Ale = 83.56

This model indicates that SCR, ADT, TPERCENT, and SEGLEN are the best
descriptors of the TINVOL for a particular segment of highway.

, .

Table 5

POISSON REGRESSION MODEL - ENVIRONMENT II

Level SSE

1 15.57
2 13.09
3 12.58
4 11 .. 90
5 11.88
6 11.82
7 11.79
8 11.72

9 11 .. 64

·Best model.

AlC

92.10
84.71
84.59
83.56·
85.48
87.21
89.09
90 .. 77

92.40

Log Variables

ADT
ADT, TPERCENT
SCR, ADT, TPERCENT
SCR, SEGLEN, ADT, TPERCENT
SCR, CCR, SEGLEN,ADT, TPERCENT
AMS, SCR, CCR, SEGLEN, ADT,TPERCENT
SHLDVfD, AMS, SCR, CCR, SEGLEN, ADT, TPERCENT
LNWD, SHLDWD, AMS, SCR, CCR, SEGLEN, ADT,
TPERCENT
LNWD, SHLDVfD, AMS, SCR, CCR, SEGLEN, ADT,
TPERCENT
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Figures 5 ancl 6 sho",' ho\v the number of truck involvements vary \vith
TPERCENT and SCR using this model and a segment length of 2 miles. This model
indicates a relationship between truck percentages, truck involvement, and SCR similar
to that for Environment I.

Environment III (Interstate and Primary Divided Highways, AADT > 15,000)

The best nonlinear models for this environment at each level are shown in Table
6. It can be. seen that the AIC values for the models at the fourth and fifth levels are
almost identical. However, the model at the fifth level was selected since it included
TPERCENT, which has been shown to have some effect on TINVOL. The other vari­
ables are CCR, ADT, SEGLEN, and SPDIFSQ. The parameters for these variables
were then used as the starting values for the iterative least squares estimation. The
resulting model is

TlNVOL = .001465(CCR)0.0336(SEGLEN)0.3318(ADT)0. 7086 (TPERCENT)0. 2064
(SPDIFSQ)0.0475 (37)

AlC = 407.48

Table 6

POISSON REGRESSION MODEL - ENVIRONMENT 01

Level SSE Ale Log Variables

1 107.23 415.55 ADT
2 101.59 408.15 SEGLEN, ADT
3 100.07 407.54 CCR, SEGLEN, ADT
4 98.89 407.47* CCR, SEGLEN, ADT, SPDIFSQ
5 97.76 407.48 CCR, SEGLEN, ADT, TPERCENT,' SPDIFSQ
6 97.56 409.13 SCR, CCR, SEGLEN, ADT, TPERCENT, SPDIFSQ
7 97.27 410.59 AMS, SCR, CCR, SEGLEN, ADT, TPERCENT, SPDfFSQ

*Best model.

The model indicates that the difference between the average speeds of trucks
and nontrucks has some effect on large-truck involvement in accidents on highways
within this environment. Figures 7 and 8 show how the number of truck involvements
vary with the CCR and speed difference. These figures indicate that both increasing
the speed difference and CCR tend to increase the number of truck accidents.
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1731

Logistic Regression l\fodeI for Environment I
(Primary· High,,'sys, Uncli,·iclec) 4-Lane and 2-Lane)

Table 7 shows a partial list of the best set of singleton variables at each level
with the corresponding AlC valu~s for each model.

Based on these AIC values, the model with seven variables is the best model
with singleton variables for Environment I. This model has an Ale value of 801.808.
The following interaction terms were identified as the best possible interaction terms
for the saturated model constructed with the seven variables determined earlier:

1. (SHLDWD) (AMS)

2. (SHLDWD) (SCR)

3. (LNWD) (AMS)

4. (AMS) (SCR)

5. (LNWD)SCR)

6. (SPDIFSQ) (CCR).

Table 7

LOGISTIC REGRESSION MODEL - ENVIRONMENT I

Lvi L(QK)

1 822.298
2 812.435
3 811.101
4 800.648
5 797.176
6 791.030
7 785.80S
8 785.749

9 785.741

*Best model.

AlC

826.298
818.435
819.101
810.648
809.176

805.030
801.80S*
803.749

805.741

Variables

LNWD
LNWD,CCR
LNWD, CCR, SPDIFSQ
LNWD,CCR,SPD~SQ,AMS

LNWD, CCR, SPDIFSQ, AMS, SCR

LNWD, CCR, SPDIFSQ, AMS, SCR, SHLDWD
LNWD, CCR, SPDIFSQ, AMS, SCR, SHLDWD, ADT
LNWD, CCR, SPDIFSQ, AMS, SCR, SHLDWD, ADT,

TPERCENT
LNWD, CCR, SPD~SQ, AMS, SCR, SHLDWD, ADT,
TPERCENT, SEGLEN

These variables were then entered into the base model in a stepwise manner,
and the resulting best interaction terms were determined as the ones that yielded the
minimum AlC value. In this particular case, there was only one such term (SHLDWD
x SCR) resulting in a final AlC of 797.47. Further attempts to refine this model by
reducing the number of singleton variables resulted in the following model

1
Pi =--~

1 + e-fJx
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where Pi = probability of a large-truck accident involvement

~x = 13.648 - 1.164(LNWD) - 0.9095(SHLDWD) - 0.1969(SCR)

+ 0.0501(SHLDWD)(SCR) (39)

Ale = 794.759.

Although the variables AMS and SPDIFSQ were initially selected as significant
for this model, inclusion of the interaction terms have eliminated them from the best
model describing the observed data. The effect of the variables on the probability of a
truck involvement was investigated through this model. Figure 9 shows that lane width
has a significant effect on the occurrenCe of truck accidents. For instance, the in­
crease of lane width from 9.5 feet to 10.5 feet on a segment of roadway about 2 miles
in length with a shoulder width of 4.0 feet and an' SCR of 20 degrees per mile will re­
duce the likelihood of a truck involvement from 0.39 to 0.17, a reduction .of about 56
percent. It can also be shown that on a segment of road with twice the above SCR
value, this reduction will amount to about 50 percent. Figure 10 indicates that increas­
ing the slope change rate of a roadway tends to increase the probability of truck in­
volvements.
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Figure 9. Effect of lane and shoulder widths - Environment I (SEGLEN = 2 miles,
SCR = 20 deg/mile).
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Logistic Regression lVlodel for Environment II
(Primary Highways, Divided 4-Lane AADT < 15,000)

The best logistic models with singleton variables for this environment are shown
in Table 8. The best model from among these is the model with TPERCENT as a
single variable. However, the AlC values for 1st through 5th order models are sepa­
rated only by small differences, indicating proximity of these models to each other.
Therefore, in searching for the best model with interaction terms, the first five models
were considered. The resulting best model has an AlC value of 500.83, which is an
improvement on the AlC value of 507.403 for the best model with singleton variables.
The best model for this environment is given as

1
Pi =--~

1 + e-Px (40)

where f3x = -10.956 + O.999(TPERCENT) + O.1356(SHLDWD) + 1.2143(SEGLEN)

- O.0611(TPERCENT)(SHLDWD) - O.2503(TPERCENT)(SEGLEN)

+ O.3684(SHLDWD)(SEGLEN).
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Table 8

LOGISTIC REGRESSION MODEL - ENVIRONMENT II

Lvi L(QK)

1 503.403
2 502.800
3 500c318
4 498.500
5 496.886
6 495.462
7 495.330
8 495.285

9 495.284

*Best model.

AlC Variables

507.403* TPERCENT
508.800 TPERCENT, LNWD
508c318 TPERCENT, LNWD, SHLDWD
508.500 TPERCENT, LNWD, SHLDWD, SEGLEN
508.886 TPERCENT, LNWD, SHLDWD, SEGLEN, CCR
509.462 TPERCENT, LNWD, SHLDWD, SEGLEN, CCR, SPDlFSQ
511.330 TPERCENT, LNWD, SHLDWD, SEGLEN, CCR, SPDIFSQ, ADT
513.285 TPERCENT, LNWD, SHLDWD, SEGLEN, CCR, SPDLFSQ, ADT,

AMS
515.284 TPERCENT, LNWD, SHLDWD, SEGLEN, CCR, SPDIFSQ, ADT,

AMS, SRC

This model indicates that the most significant variables are the percentage of
trucks, shoulder width, and the length of the roadway segment considered, with interac­
tions among all three variables. An investigation of the model suggesfs that although
increasing truck percentages increases the likelihood of truck accidents as predicted by
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Figure 11. Effect of TPERCENT - Environment II.
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this model, this increase is not very high. For instance, on a 2-mile highway segment
\vith a ~holiider \vidth of 8 feet. an increase of TPERCENT from 1(1 to 50 increased
the probability of a truck accident from .20 to .27. The indication that an increase in
SHLDWD could increase truck involvements does not have any physical interpretations.
However, an explanation for this ir~egularity in the model may be the result of an ob­
served correlation of 0.50 between SHLDWD and ADT. None of the geometric vari­
ables appears in the final model, thereby indicating the overriding influence of vari­
ables such as TPERCENT, S~DWD, and SEGLEN in the best model for this
environment. Figure 11 shows the influence of TPERCENT on the probability of a
truck accident.

Logistic Regression Model for Enyironment III
(Interstate and Primary Highways, Divided 4·Lane, AADT > 15,000)

The best set of models with singleton variables for this highway environlnent is
shown in Table 9. Among these, the model with the minimum AIC value of 3836.76
is the model with the following four singleton variables: TPERCENT, SEGLEN, CCR,
and SeRe

Table 9

LOGISTIC REGRESSION MODEL - ENVIRON1v1ENT ill

Level L(OK)

1 3842.15
2 3839.28
3 3830.17
4 3826.76
5 3826.10
6 3826.06
7 3826.06

AlC Variables

3846.15 TPERCENT
3841.28 TPERCENT, SEGLEN
3841.28 TPERCENT, SEGLEN, CCR
3836.76* TPERCENT, SEGLEN, CCR, SCR
3838.10 TPERCENT, SEGLEN, CCR, SCR, ADT
3840.06 TPERCENT, SEGLEN, CCR, SCR, ADT, AMS
3842.06 TPERCENT, SEGLEN, CCR, SCR, ADT, AMS, SPDIFSQ

Further improvements to this model were sought through the identification of
significant interaction terms of the saturated model. This resulted in an improvement
of the AIC value to 3827.17, with the following logistic model

where

p. I_
I - 1 + e-fJxi

~x = -2.7736 + .014(CCR) + .201(SEGLEN) + .041(TPERCENT)

- .009(CCR)(SEGLEN) + .00022(CCR)(SEGLEN)(TPERCENT)

AIC = 3827.1 7.

27

(41)



1736
This model indicates that increasing CCR, TPERCENT, or SEGLEN could lead

to an increase in the likelihood of truck involvements. It is evident that CCR ancl
TPERCENT have a significant effect on the involvement of trucks in accidents. Figure
12 shows the effect of both CCR and TPERCENT on Pi. This figure clearly indicates
that for this environment the likelihood of a truck being involved in an accident steadi­
ly increases with CCR. It is also evident that increasing truck percentages lead to
higher values of Pi. The effect of CCR at low al1d high TPERCENT values are shown
in Figure 13.

1.0

lO.8
I

.---..
ii:
...........

>- 0.6
:!::-:a
ca.c

0.40
~

D.

0.2

0.0 .......---I----.......---+---......----to---4

o 10 20 30 40 50 60

TPERCENT

Figure 12. Effect of CCR - Environment ill.
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Figure 13. Effect of TPERCENT - Environment ill.

GUIDELINES FOR SELECTING TRUCK ROUTES

It was originally intended to develop guidelines for selecting routes for large­
truck traffic using the models developed. The models obtained, however, indicate that

several traffic and geometric factors affect large-truck accident rates and the probabili­
ty of an accident involving a large truck occurring. It is therefore extremely difficult
to give guidelines because of the interaction of these different factors.

The authors are therefore developing an interactive, user-friendly computer pro­
gram based on the models developed, which can be used to determine the accident
rate or the probability of a truck accident occurring for different traffic and geometric
conditions. The user of the program will then be free to determine an acceptable acci­
dent rate or probability level for his or her specific area.

The program will then be used to determine the accident rate or probability of a
truck accident for the specific traffic and geometric conditions being considered. If the

29



accident rate and/or probability is less than the acceptable value, then that section of
road is sllitahle for large-truck operation: and if higher~ it is not suitable. The user
will also be able to use the program to determine the effect of traffic and geometric
changes on the large-truck accident rate on a given stretch of road. This program is
now being developed as a part of ongoing work on large-truck safety.

CONCLUSIONS

Multiple Linear Regression lVlodels

Multiple linear regression models do not seem to describe adequately the rela­
tionship between large-truck involvement in accidents and ~ssociated traffic and geo­
metric variables.

Poisson Regression Models

The Poisson models developed seem to describe adequately the -relatIonship be­
tween large-truck involvement in accidents and associated traffic and geometric vari­
ables.

Environment I

• The most significant traffic variables contributing to large-truck involvement in
accidents on highways within this environment are the ADT on the highway seg­
ment and the percentage of trucks.

• The most significant geometric variable is the SeRe Increasing SCR on a highway
segment tends to increase the truck involvements, indicating that the vertical
alignment is more critical for trucks in this environment.

Environment II

• The most significant traffic variables contributing to large-truck accidents are
the ADT and the percentage of trucks on the highway segment.

• The most significant geometric variable is the SeRe Increasing SCR also in­
creases the involvement of large trucks in accidents.

Environment III

• The most significant traffic variables contributing to large-truck involvement in
accidents are the ADT and the speed difference between trucks and nontrucks.
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• The most significant geometric variable is the CCR. Highway segments \vith

high CCR tend to experience increased large-truck involvements.

Logistic Regression lVlodels

Three logistic regression models were developed to describe the observed proba­
bilities of truck involvements as a linear logistic function of traffic and highway vari­
ables. An analysis made using these models led to the following conclusions:

Environment I

• Lane width seems to have the greatest effect on the probability of a truck acci­
dents. A decrease in lane width results in increased probability of truck accident.
Shoulder widths also show a similar effect, but it is less pronounced.

• Increasing SCR tends to increase the incidence of truck accidents.

• It seems that shoulder width by itself does not have a significant effect on truck
accidents. However, on segments with a high SCR value, an increase in shoulder
width can create a reduction in the probability of a truck accident.

Environment II

• The most significant variable contributing to the probability of a truck accident
for highways within this environment is the percentage of trucks on the highway
segment.

• A secondary effect of ADT on truck accidents was also observed.

Environment III

• The probability of a truck accident increases steadily with the percentage of
trucks using the facility.

• The probability of a truck accident increases with an increase of complexity in
the horizontal alignment as measured by CCR.

lVIeasures for Complexity of Highway Alignment

The measures of the complexity of highway alignment (such as CCR, SCR, and
AMS) introduced in this study have made a significant contribution to the quantifica­
tion of geometric complexity. Without such measures, any work on the impact of
highway geometry on safety or even operations can be carried out only for geometrical­
ly homogeneous highway segments. The role of these variables in the models devel­
oped further verifies the relevance of such an approach.
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LIST OF STUDY SITES

Site Number Route Number From 1b

1 64-1 E.E. C& OOP Rte60
2 64-1 Rte60 .39 ME Rte60
3 64-1 .51 ME Rte 60 Mallory St.
4 64-1 115MWECLHP ECLHampton
5 81-1 Rte679 UP Rte659 UP
6 58-P 12 MWWB3370P EE ElizTunn
7 64-1 Rte 564NB 22MENB564
8 264-1 EERte4600P EENWRROP
9 95-1 Rte-85 NB OP 19MNRte85
10 58-P ECLPorts .15 MW WE Tunn
11 220-P .09 MNNE 419 OP BE Rte419 OP
12 581-1 EB Rte460 OP .40 MS Rte 460 OP
13 81-1 SCLSalem SE Rte 112
14 64-1 Ind RI Rd 49 ME Ind RI Rd
15 81-1 Rte 77 MP 1570 80MNRte77
16 81-1 33MS Rte220 Rte220
17 220-P 16 MN Rte 81 UP Rte 31 SB UP
18 29-P Rte683 .26 MN Rte 683
19 29-P .20 MN Rte 683 .70 MN Rte 683
20 1-P Rte 1500P Rte 1479
21 360-P .08 ME Rte 733 .48 MW Rte 733
22 360-P Rte652 .14 ME Rte 702
23 360-P .03 MEE Rte 603 .45 NW W Rte 603
24 29-P 41 ME Rte 66 UP Rte28
25 66-1 ECL Vienna 10 ME Rte 650 UP
26 95-1 .22 MN Rte 644 16MSRte495
27 95-1 .16 MN Rte 646 Rte30
28 301-P Rte3 .24 MN Rapp RB
29 85-1 -.31 MN Rte 630 .28 MS Rte 642
30 81-1 11 MNRte232 .64 MN Rte 665
31 13-P SETRBRSecB NETRBRSECA
32 29-P 51MNFangCL Rte 15
33 95-P SEGov. RdOP 09 MS Rte 619 OP
34 81-1 17 MNNE 100 OP 40 MN Rte 600 UP
35 81-1 Montgomey CL Rte 647
36 81-1 NERte 11 OP 79 MS Rte 710
37 81-1 EB Rte64 SB Rte 11
38 23-P Rte 58 & 421 Rte T-1112
39 81-1 1.31MNRt 11 .24 MS Rte 681
40 95-1 .08 M Rte 17 BP .46MNRte 1WB
41 95-1 .24 MNNE 630 OP Rte 610
42 81-1 .09 MN Rte 91 OP Rte 11 & 751
43 77-1 NERte6200P .60 MN Rte 608

37

17 I r~. ~.
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Date

site

: . g:-. 17.-. .Cl. 7...
. 90j--3# .•...•....••..

DATA SHEET - TRUCK STUDY 174~-1

T ' 3/30 /~1me: am ~

Direction of Travel : N S @ W , ,bound; Number of Lanes : 1 ® 3

Location: Route #.~~q.-.:3: From: -"O.7/?lA {L!!f::.49r. .to: .,.9.~(l}Lf.!.ff4>r4......
Posted Speed Limit :.~~ MPH

Recommended Speed at Curves (if posted) : MPH

HIGHWAY TYPE

2 - lane 3 -lane 4 -lane
Undivided C Divided

~ian - Barri;D9''':I1$.
Median - Traversible

For 2 lane highways: Passing Z~~e ••...••.. No Passing Zone .

Lane Width : /1 ft;
Shoulders : Width .••.•~V/.ft; Depressed: yes , No ....
Sight Dist : Adequate ; Inadequate ;

GEO~lETRICS

straight Level

Curve Level

Up / Down Grade Straight

Up / Down Grade Curve

Hillcrest Straight

Hillcrest Curve

(DiP stra~

Dip Curve

SLOPEMETER READINGS:

Test /I IS: •••••••• ; •••••••••• ; ••••••••• ; .•••••••• ; ••••••••• ;

REMARKS: ....••.•.•••.........•....•.•.. · •. · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· .
· .
· .
· .
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ROUTE NUMBER = 460, Dir. of Travel

Posted Speed Limit = 55

Begin Terminal =.07ME W RT 608,

Truck Speeds

EASTBOUND, Site Number =905-3

End Terminal =.92 MW RT695

Speed MPH

62
61
60
59
58
57
56
54
53
52
51
48
47

Mean = 55.27 MPH

# of Observations

2
1
3
2
1
3
3
2
1
2
2
2
2

Var =

Number of Obs. = 26

21 .80
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Page 2
C/6S-· 3

Non-Truck Speeds

Speed MPH

68
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
44
43
42
41

Mean = 56.39 MPH

# of Observations

2
2
5
3
5
3
7

1 0
13
12
14
14

4
3
5
1
1
1
2
5
1
1
2
1

Var = 26.98

Number of Obs.= 117
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'- SLOPE METER READINGS

"_ .. ': .. -

L 4. 00 [:'EG~:EES

~1€1. 13 t'1ILES
46 t1PH

L 2. 00 r;'EGREES
€10.10 f1ILES
46 ~1F'H

[:'EI3REES
t'1ILES

t'1PH

[:'EG~:EES

r'lILES
t~PH

L 2.50
00. 3~1
£:'7.J._'

L 2.50 (:'E(J~:EES

00.36 t'lILES
C'C' t'1PH••1•.)

L 1.00 (:'EI3~:EE5
~3~3. E,l t'lILES
coco t'1F'H...I ...J

L 2. (1(1 [:'EG~~EES

(n3. Ea2 t'lILES
C'C' t'1PH••1....

L 2.50 [)Ef3~:EE5

0~3. '36 r'lILES
51 f'lF'H

L 3.00
00.33
55

:+:TEST E:EGIt·~S*

'tICHT IOH CG
=~~:~~±;J
TEST # __l_~1/Jl'~

DRTE: t1::~/ 17.····:::7
STHRT TI t'1E
14· C;':'. ~16

L i:00- C'EGREES
0~3. i33 t'l ILES
55 r'1PH

: L 2. ~j0 [:'EI3~~EE5

00. ~35 f'lILES
co.,. r'lPH._1 •.)

L 2.50 [:'E~3~:EES

(10. 0E~ t'1ILES
C'~ r'1F'H.J.':"

L 1. 0~3 [:'EfJF~EES

(1(1. 13 t'1ILES
C"-,. r'lPH._1 ...\

L 2. £10 [:'EI3~:EES_

(n).14 r'1ILES
C'..,. t'1F'H._1.':',

L 2.5(1 [:'E!3~:EES

0(1. IE- t-1ILES
co"":" t'1PH..;..;.,

L 3.0(1 C'EI3REES
~30. 17 t'lILES
C'.,. t'1PH...·oJ

44

C'EGREES
r~ILE5

t~PH

L 2.50
~10. 12
46

L 2. 50 [)EGf;.:EES
00. 14 t'lILES
46 t1PH

L 1. ~30 CtEGREES
00. 17 r'lILES
46 r'lPH

L 2. 00 C'EGREES
00.20 r'lILES
46 ralPH

:+:TEST BEGIt·~S:~

LOC~Tlot~",= E6

~=!~~~===
TEST # :Lif.~IIit-
DRTE: 08./1 7/°87
ST~RT TIt~E

15: 01
;': 04

L 2.00 C'EGREES
0~~1. 02 t'l ILES
46 f'1PH

L 1. 00 C'EGREES
00.04 t'1ILES
46 r'lPH

L 3.00 DEGREES
00.21 r'lILES
46 r1PH

L 2.50 [:'EGREES
00.26 r'lILES
44 r'lPH

L 1.00 [:'EfJREES
00.27 t'lILES
44 r'lPH

L 2.00 C'EGREES
00.3(1 t1ILES



READING

*TEST c~EGit-~s:+c

LOC:~T I Clt·~ ~k~ 9tJ5-)
\ <-.-~ D~ tJL' J--

---..-+t~-+---p..l_.J. L_:..
-_Sl~~~~~~~ _
TEST # ~j.!t.2tif tt­
DRTE: 08./15./87
STRRT TIt'1E
15: 213: 41
L 2. €uj
00.03
46

~~ 2.00
0(1. 14
44

L ~3. 00
I ('0. 21

46

R 2.00
0~1. 22
46

~: 3.0€1
~10. 71
46

L 2.00
t10. E:(1
44

L 3.00
lie. 81
44

~: 3. (1(1

01.06
46

}~ GRRDE
t'1ILES

ralPH

}~ GR~[)E

tI1I~ES

r'lPH

~.~ GR~DE

t'1ILES
r'1PH

~.~ GRH[:IE
t'1ILES

ts1PH

~~ 13RAC1E
t'1ILES

r'1F'H

~~ GRACIE
t'1ILES

r'lPH

~.~ GRADE
r'1ILES

ralPH

~~ 13RR[)E
tl1ILES

ralPH

Eti[') TItalE
15=31=33

REf=I[:"-/

45



T · · /~; S 0 / L::J1me am ~

DATA SHEET - TRUCK STUDY175~

Date: ./.C! .-.~.7.-. &'.1..
site #: .. (~.-.~ .

Direction of Travel : N S @ W " bound; Number of Lanes : @ 2 3

Location : Route #. p{~1. . . . . .. From: ?~~~•• ~~,,~.~~••• to: ,(/.. 1~~ .
Post~d Speed Limi t : :ff: MPH

Recommended Speed at Curves (if posted) : MPH

HIGHWAY TYPE

No Passing Zone .

4 -lane
Divided

Passin'~

2 - lane 3 -lane
Undivided-

Median - Barrier
Median - Traversible

Ze -d? •~ • • : •For 2 lane highways :

Lane width : •..•~~ •••..••.. ft; ~
Shoulders width •..•~.~.ft; Depressed: Yes.~., No •...
Sight Dist Adequate ; Inadequate ;

GEOMETRIes

straight Level

Curve Level

Up / Down

@/ Down

Grade

Grade

Hillcrest

straight

Curve

straight

Hillcrest Curve

straight

Dip Curve

SLOPEMETER READINGS:

Test H's · · · · · ·......... / , , , ,

REMARKS: • • • • • • • • . • . • • • • • • • . • . • • . • . . . . . . . • . . . . 0 •••• • • • • • • • • • • • • • • • • • • ••

••••••••••••••••••••••••••• 9 •••••••••••••••••••• 0 ••• 00 •••••••••••••••••••••••••

• • • • • • • • • • • • • • • • • • • • • • • • 0 ••••••••••••••••••••••••••••••••••••••••••••••••••••••
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SLOPE METER READINGS

17 r: I'
_ ,).1

~~

J oJ...-- ~"7-e~
:f:TEST 8EGIt~S*

LOCATION j-5' /J1f,[
~---~77------------1~_c~~ -1fJS _
TEST # _0....__

DRTE : 10./0:::-~-87

STR~:T TI r1E
STRRT TI talE
11:41;':44

L 2. 5(1 [:tEG~:EE5

(10.21 t'1ILES
56 t'1PH

L 2. ~~1~1 [)E(J~:EES

(10. 21;& t'1 I LE5
55 1'1PH

L 1. 00 DEG~~EES

(1(1. 26 t'1 I LE5
5EI t:1PH

L 3. ~::u3 [:'E'3F~EES
(10.04 t~ILE5

51 t'1FIH

R 2. (1(1 [)Ef3F:EE5
l1€1.07 t'lILES
C'-,. t'1PH'-"')

L 0. (1(1 [:tEI3F:EE5
0t1. tiE: t'1ILES
r:~ ralPH._,.';'1

L 2.0(1 [)E(J~:EE5

~3(1. 1~3 t'1ILES
C'"':! f'1PH0_10_'

L 2.5'.:1 [:aEI3F:EES
0'.:1. 13 t'lILES
rC" t'1PH0_,._1

[:tEI3~:EES

t'lILES
r'1PH

[)EJ3~:EE5

t'lILES
t'1PH

F:: 2.5'.:1
00.1:3
r·-._It-

L 3. (1(1

€10.14
C'C"._,._,

t· '

I
I

I.

t

~.49

L 2.00 [:'Ef3~:EE5
00.02 t1ILES
44 ralPH

~: 2.50 C'EG~:EES
00. ~J6 t'lILES
4° ralPH'-'

~: 1.00 [:'EfJ~:EES
00. (1:3 r'lILES
49 r'lPH

I 1. (1(1 [)EGREES...
00.0'3 t1ILES
49 r'lPH

L 2.5€1 DEG~:EE5
00.11 r1ILES
51 ralPH

L 3.0E1 t'EGREES
00.12 t'lILES
c-~ t1PH...Iv

L 2.50 C·EGREES
00.14 FalILES
r-,.

t1PH__I...i

R 1.0'.:1 [:IEG~:EES
~30.15 t'l!LES
c--:r ta1PH...r__,

~: 2.00 DEGREES
00.17 r'lILES
51 ralPH

L 0. t1€1 LiE6~:EES
00.1::: t1ILES
49 ralPH



SLOPE METER READINGS

!-vC C J~~
uTEt-T BtE -. I te!'- 7() i:~ :;a • I.] .... ::..:+:

[:tATE: 10"""~3:3 .."':37
ST~RT TI tilE

L 2. 0~3

t10. t12
46

L 3. (1(1
00. tiE.
46

R 2. (1(1

00.24
4':'.."

~~; G~:HDE

t1ILES
rllPH

~~ t:J~:H[)E

t'lILES
rllPH

~~ 13~:R[)E

t'l!LES
t'1PH

R 3. 00 ~"~ 13RR[JE
00.26 t'lILES
4'3 r'lPH

R 4. 00 ~~ GRRCtE
00.28 tllILES
4::: rllPH

~: 3.00
00.33
42

~~ 13~:~CtE

t1ILES
r'lPH

L 2. (10 ~~ '3~:t=![:tE

00.35 t'lILES
42 r'lPH

L 3.00
00.37
42

~~ 13~:R[)E

t'1ILES
f1PH

L 4. 00 /; G~:Rr'E

00.69 r'1ILES
4E. t'1PH

l 3.0(1
00.70
4E.

~~ G~:R[:tE

t'1ILES
rllPH

L 4. 00 ~~ 13RRDE
00. 73 t'lILES
46 t'lPH

L 3.00 % GRRDE 50


