FINAL REPORT

SAMPLING PLAN FOR PAVEMENT CONDITION RATINGS OF SECONDARY ROADS

Ъy

R. R. Long, Jr. Research Assistant

(The opinions, findings, and conclusions expressed in this report are those of the author and not necessarily those of the sponsoring agencies.)

Virginia Highway and Transportation Research Council (A Cooperative Organization Sponsored Jointly by the Virginia Department of Highways & Transportation and the University of Virginia)

Charlottesville, Virginia

April 1984 VHTRC 84-R37

-1676

PAVEMENT MANAGEMENT RESEARCH ADVISORY COMMITTEE

W. R. DAVIDSON, Chairman, District Engineer, VDH&T

J. M. AMOS, Resident Engineer, VDH&T

J. P. BASSETT, Materials Division, VDH&T

- T. R. BLACKBURN, District Materials Engineer, VDH&T
- DR. ROBERT CHENG, Professor of Civil Engineering, Old Dominion University

C. M. CLARKE, Assistant District Engineer, VDH&T

E. L. COVINGTON, JR., Assistant District Engineer - Maintenance, VDH&T

G. W. HESTERBERG, Area Engineer - Richmond/Salem, FHWA

J. G. G. MCGEE, Construction Control Engineer, VDH&T

K. H. MCGHEE, Senior Research Scientist, VH&TRC

W. A. MCKAY, Highway Geologist, VDH&T

A. D. NEWMAN, Pavement Management Engineer, VDH&T

B. W. SUMPTER, Assistant District Engineer, VDH&T

C. S. TAYLOR, JR., Programming/Systems Development Supervisor, VDH&T

SUMMARY

The purpose of this project was to develop a random sampling plan for use in selecting segments of the secondary highway system for evaluation under the Department's PMS. The plan developed is described here. It is a simple, workable, random sampling plan that will select a 5% cross section of secondary roads on a per county basis and also yield condition rating forms for each roadway section. The condition surveys of the 5% sample can be used to evaluate the condition of the entire secondary system.

-1678

FINAL REPORT

SAMPLING PLAN FOR PAVEMENT CONDITION RATINGS OF SECONDARY ROADS

by

R. R. Long, Jr. Research Assistant

INTRODUCTION

Over the last few years, a great deal of effort has gone into the development and implementation of a pavement management system (PMS) for use by the Department of Highways and Transportation in planning major highway maintenance activities. Essentially, the PMS permits managers to evaluate the service conditions of roadways and establish priorities for needed pavement maintenance within existing budgetary constraints. The service conditions are determined by visual inspections and measurements of ride quality recorded on standard rating forms.

The PMS shows a great deal of promise and is being implemented for use on the state's flexible interstate and primary roads. For the interstate and primary roads, condition ratings have been made and processed. To complete the system, a scheme for evaluating the secondary roads has been devised and is being implemented. Because of the limited mileage they comprise, all interstate (1,013 mi.) and all primary (7,896 mi.) roads will be rated; however, for the extensive secondary system (comprising 31,450 mi.) only selected segments can feasibly be rated. (Note: The mileage totals listed are hard-surface roads only and are taken from the Department's December 31, 1982, Mileage Tables.) Under this approach, a method of randomly selecting the segments for evaluation has been devised.

PURPOSE AND SCOPE

The purpose of this project was to develop a random sampling plan for use in selecting segments of the secondary highway system for evaluation under the Department's PMS. Upon completion of the evaluations of these segments, management will have in hand information needed to project needed levels of funding for maintenance on the whole secondary system. Implementation of this plan will complete the pavement service condition evaluation portion of the Department's PMS for flexible pavements.

1890

APPROACH

A computer program has been developed that will randomly sample 5% of the secondary highway system as reported in the secondary system road inventory. A 5% sample size was selected because it would yield a small enough number of sections to realistically permit annual or biennial ratings. Also this sample size would permit statistically valid interpretations to be drawn. Standard rating forms have been devised for the selected sections. Upon evaluation of these sections, the service condition of the secondary highway system can be extrapolated.

BACKGROUND

The data base for this project has been drawn from the Virginia Department of Highways and Transportation Road Inventory Mileage Records - Secondary System (T & S 5-1). The sections of roadway to be evaluated have been selected as listed in this file. Based on the selection criteria established, it has been determined that the only restriction necessary is that the sections be hard-surfaced. Further, it has been decided that dividing the sections into groups based upon daily traffic volumes will ensure the most representative sampling approach. The groups in Table 1 have been established.

Table 1

Traffic Groupings

Traffic Group	Traffic Volume (ADT)
1	0 - 100
2	101 - 300
3	301 - 750
4	751 - 1,500
5	1,501 - 4,500
6	4,500 and up

Note: These groupings are based on an "average" distribution of roadway sections so as to most evenly divide the sections.

SAMPLING PLAN

Following is a description of the execution of the sampling plan by the computer. (See Figure 1 for flowchart.)

- 1. Scan the file and select all hard-surfaced sections (i.e., eliminate all non-hard-surfaced sections from the list). As these sections are selected, assign a code consisting of the section's traffic group and a random number which is generated using a random number generating routine.
- 2. Sort the sections by traffic group and list in ascending order by random number.
- 3. Total the mileage for each traffic group. Compute 5% of each total to represent the minimum mileage "limit" to be sampled.
- 4. Select the sections to be evaluated by listing the sections in order for each traffic group and accumulate the lengths until the 5% mileage "limit" is reached. (Note: Since the section lengths are so variable, the accumulation of sections seldom yields the limit exactly--usually the total is greater than the limit; e.g., if 5% of the mileage is 10 miles and the accumulated mileage is 9.0, and the next section is 2 miles, then the section will be included in order to total the mileage to the 5% limit, but the total mileage will be 11 miles instead of 10.)
- 5. Resort the selected sections and list by district, county, route, and section number. Include the most pertinent information for the section listings from the Road Inventory (e.g., termini, length, pavement type, number of lanes, ADT, etc.). See Figure 2.
- 6. Produce rating forms from the sample listings for each section by county and compile by district. See Figure 3.

The sampling plan has been pilot tested in the Lynchburg District, where the secondary roads in Amherst County were successfully sampled and evaluated. The plan is being implemented and will be performed on a biennial basis upon completion of the first ratings.

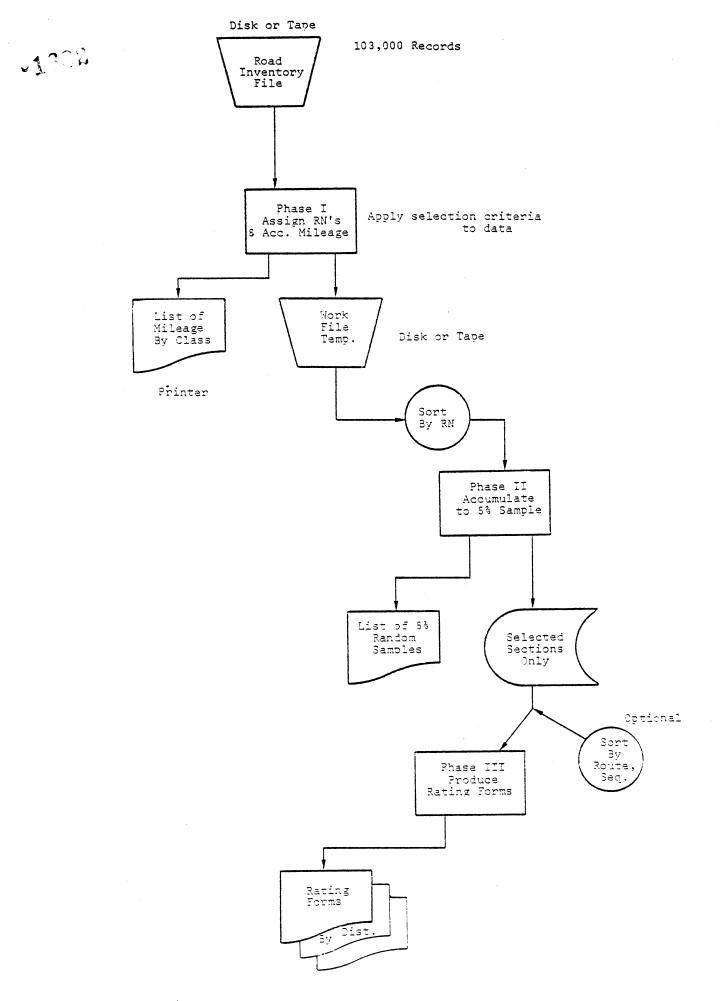


Figure 1. Input/Output flowchart for secondary system random sampling plan.

	99-92		VIRGINIA DEPARTMENT UF HIGHMAYS AND TRANSPOTATION Secundany system pavement managemmet data LIST OF Mandum samples by class									12-01-43			
CO-CTTY	RTE	3EU	TEANI	NI	LENGTH	PW, SW. PI.KH.LN	401	M.P1	ŋ_u_p	RN CI	L <u>ASS</u>	LENG.	Ay-CL	_AX-CI	
05	1066	005	RT 1030	084E RT 1030	A	(20,04,46,20,00)	47	0.0	0.08			DUA	0.08	0.01	
0 Ş	1302	005	E PT 1301	15MNW RT1301	15	(20,07,42,20,00)	9/1	0.0	1.15	117	1	0.15	0.23	0.2	
0 <u>5</u>	<u> 652</u>	070	S PT 787	DEAU END	100	(20,05,12,20,00)		1.84	5 A4			1-20	<u>_l+23</u> _		
95	1001	015	RT 685 RT 1056	DEAD END	162	(18,04,42,20,00)	43	0.15	1.62	11A 119	1	1.62	2.AS	2.H 2.9	
	1355	005	RT 1341	CUL DE SAC	7	(20.06.42.20.00)	Şu	0.0	n 07	150	1	0.07	3.02	3.0	
ñš	737	040	013 MEPT 054	PT 50A	17	(10,05,42,20,00)	241	3.12	3,20	115	2	0.17	0.17	3.1	
	666	020	120MN RT 59A	RT 530	5	(18,06,42,20,00)	240	2.60	2.55	115	Ž.	0 05	0.22	3.2	
05	636	040	RT 653	RT 638	270	(16.02.42.20.00)	255	3.47	4.17	115	Ş	2.70	5.05	5.9	
	739	030	151ME BL 855	PT 55H	55	(14,04,42,20,00)	200		2.39	116	_2	0.55	3.07	6.4	
n5 n5	1027	005	RT 622 RT 1006	RT 29 RAMP W RT 1007	40	(12,02,47,20,00)	1×4 254	0.0	0.40	117	2	0.40	3.47	5.8	
05	705	010	4 RT 130	RT 730	10	(12.03.42.20.00)	144	0.20	0.10	-112	-2	_0_95	3.92	<u> </u>	
05	1005	010	97 1017	PT 1018		(12.03.42.20.00)	150	9.05	0,12	118	2	9.00	0.19	7.1	
15	731	915	49ME RT 825	62MSE RT A25	13	(22.07.02.20.00)	242	0.88	1.01	118	2	0.13	1.21	7.2	
05	_212_	105	RT_151	S.PI DLL	20	(14.02.42.20.00)	1.09	e	0.20		2	0.20		7.4	
*5	1505	030	RT 1507	RT 1205		(10,02,42,20,00)	235	1) . 4A	0.54	119	2	0.10	4.51	7.5	
05 05	629	<u>120</u> 005	025MW RE 713	PT 625	<u>205</u> 150	(10.05.42.20.01)	162		3-20-	120	2	2.25-			
-			-			(16,04,42,20,00)		0.0	1.50			1.50	A. hn	11.0	
05	635	015	RT 702	30 MN RT 702	30	(20.05.42.20.00)	505	0.10	0,40	115	3	0.30	0.30	11.9	
		105_	N INT PJ 29	11549 21 29		(14.01.42.29.00)			-1-15-	_115_		1.15_	45_		
05143	594 1103	050 005	01MN RT 6635 Rt 29 RUS	N RT 663 NCL AMHERST		(14,03,42,20,00)	452	3.13	3.69	116	3	0.56	2.01		
9914 <u>9</u> 95	1063	005	RT 1049	RT 1062		(20,04,42,20,00)	467	<u></u>	0,09	117	<u>_</u>	0.45	2.46	14.2	
15	1028	005	RT 1040	11MN RT 1040	11	(18.04.42.20.00)	457	9.9	0.11	119	ĩ	9.11	2.56	14.3	
115	635	100	RT 6AB	E 91 60		(10.04.42.20.00)	312	A.99	11.71	120	3	1.72	4,38	16.0	
n5	645	U05	208 65 19	RI 645	A 3	(22,02,42,20,00)	1470	0.0	n. A 5	117	4	0.83	0.83	10.8	
ns	681	020	# RT 1046	E RT 1046	15	(24.07.63.20.00)	2189	0.00	0.81	116	5	0.15	0.15	17.0	
	1095	020	N PT 1022	S RT 1022	۲	(24,83,47,20,00)	1706		0.20	119	5	0.03	n.18	17.0	
05	766	005	B1 50	PT 6AS	15	(20.02.45.20.00)	2201	u.n	0.15	119	5	0.15	0.33		
n5 n5	<u>677</u> 833	075	PT 409	01MS RT 409	·!	(22.04.45.20.00)	1945		_3.35_	-129-	5	0.01	0.34		
"5 05	766	035	RT 684	RT 1045 RT 1326		(14,03,52,20,00) (20,02,62,20,00)	1402	0.74	^ 7·)	121	5	0.03	0.37		
	669	005	RT 29	RT 789		(14,02,42,20,00)	2302	1.01	-1-12-	-131 - 131		9.11. 0.25	0.48		
				W RT H33		(24, 07, 62, 20, 00)	44.55	9.00	7.67	153	h	0.07	0.07	17.6	
ns	525	050	11ME HT 1042												

Figure 2. Selected sections in Amherst County - 1st run. (For an explanation of the coding - see Appendix A.)

1 604									12-0	
SECTION LUCAT			RIPIJ	ON			35.			
SYSTEM DISTRICT					I MILE I BEG.					
RESIDENCY					I END				030	
COUNTY	AMPERS	T			ILENGTH		UCT L		030	
ROUTE 106 HWY TYPE: Tw		DIRE	CTIO	4	ALL LA	NES				
PAVEMENT WID Shoulder wid										
SURFACE TYPE LIGHT RIT BASE TYPE - T E MACAD	UMINOUS				- GRADED	AGG. 8/	SES			
LIGHT RIT BASE TYPE - T B MACAD	UMINOUS AM, CRU 22). U 8 2	SHED 	466RE	EGATE	SURVEY	و بین خب حقاقی عی خب ه	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	 EHE		-28)
LIGHT RIT BASE TYPE - T 8 MACAD (1- 322051066	UMINOUS AN, CRU 22). U B E	SHED 00 <u>REGUE</u>		EGATE	SURVEY	DATE				 3-28)
LIGHT RIT BASE TYPE - T 8 MACAD (1- 322051066	UMINOUS AM, CRU 22). U 8 2 E !1 I N 1	SHED 00 <u>REGUE</u> 6 1	AGGRE	EGATE	SURVEY SI 1 1 N	DATE EVERIIY				
LIGHT RIT BASE TYPE - T B MACAD (1- 322051066 CRACKING	UMINOUS AM, CRU 22). U 8 E E I1	SHED 00 <u>BEGUE</u> F 1	AGGRE	EGATE	SURVEY SURVEY	DATE EVERITY			<u>SEV</u> 1	(29-30
LIGHT RIT BASE TYPE - T B MACAD (1- 322051066	UMINOUS AM, CRU 22). U E E I1 I N I I1 I N I	SHED 00 REGUE		EGATE	SURVEY SI	DATE EVERIIY 		<u>EHE</u>	<u>SEV</u> 1	(29-30
LIGHT RIT HASE TYPE - T E MACAD (1- 322051066 1.	UMINOUS AN, CRU 22). U 8 E I1 I N 1 I1 I N 1 I1	SHED 00 <u>BEGUE</u> F 1	AGGRE		SURVEY SI	DATE EVERITY	- 	<u>EHE</u>	<u>SEV</u> 1	(29-30 (31-32
LIGHT RIT BASE TYPE - T B MACAD (1- 322051066 CRACKING RUTTING PUSHING	UMINOUS AN, CRU 22). U 8 I1 I N 1 I1 I N 1 I1 I N 1	SHED 00 <u>REGUE</u> R 1 R 1	AGGRE		SURVEY SI I I N I I N I	DATE EVERIIY ISIV ISIV ISIV	- 	<u>EHE</u>	<u>SEV</u> 1	(29-30 (31-32
LIGHT RIT HASE TYPE - T & MACAD (1- 322051066 CRACKING RUTTING	UMINOUS AM, CRU 22). U 8 2 E 2 E 2 E 2	SHED 00 <u>REGUE</u> R 1 R 1		EGATE	SURVEY SI I N I N I N I N I N	DATE EVERITY S V S V S V S V S V		<u>EHE</u>	<u>SEV</u> 	(29-30 (31-32 (33-34
LIGHT RIT BASE TYPE - T & MACAD (1- 322051066 CRACKING RUTTING PUSHING RAVELLING	UMINOUS AM, CRU 22) U 8 I1 I N 1 I1 I N 1 I1 I N 1 I1 I N 1	SHED 000 <u>REGUE</u> R 1 1 - R 1 1 - R 1 		EGATE	SURVEY SI N N N N N N	DATE EVERITY S V S V S V S V S V		<u>EHE</u>	<u>SEV</u>	(29-30 (31-32 (33-34 (35-36
LIGHT RIT BASE TYPE - T B MACAD (1- 322051066 CRACKING RUTTING PUSHING	UMINOUS	SHED 00 <u>REGUE</u> R 1 1 - R 1 1 -			SURVEY SI N N N N N N N N	DATE EVERITY S V S V S V S V S V		<u>EHE</u> 	<u>SEV</u>	(29-30 (31-32 (33-34 (35-36

Figure 3. Rating form for visual inspection of pavement. (Section shown is first one listed in Figure 2.)

DISCUSSION

Only one change has been made in the original sampling plan. At first, only roads numbered 600 - 999 were to be sampled. This eliminated school roads, subdivision roads, park entrances, etc., all of which were not deemed important to achieving the overall goal of sampling the condition of the secondary road system. It was pointed out, however, that these roads are part of the secondary system and deletion of them would, in effect, prevent the selection of a truly representative sample. Also, by not including routes greater than 999, the plan essentially biased the data base and thus diminished the randomness of the sample. This problem was easily overcome by including all roadway sections as listed in the inventory. No other real problems were encountered.

The lengths of very short sections were discussed as possibly being cause for concern. Some sections in the inventory are very short (a few hundredths of a mile long). Sections of this size could present some problems for the condition rating teams, because it is extremely difficult to accurately assess the ride quality of sections this size. However, eliminating sections under a certain length from consideration would also bias the data base (even more so in this case), and reduce the randomness of the selection process. So, it was decided that very short sections would be included and dealt with on a individual basis with the ratings being left to the judgment of the raters.

To examine the sampling plan in operation, the pilot run in Amherst County was made on the sections of road shown in Figure 2.

The best way to statistically evaluate the usefulness of this plan in presenting an accurate picture of the service condition of all secondary roads is to assess just how random the selection process really is. Obviously, the more random the process, the more representative the sample is of the whole system.

Figure 4 and Figures 4a - 4f show the selected sections plotted on a map of Amherst County. This map illustrates the random nature of the selection process, and an examination of this may raise questions about the "scatter" of the sections. It should be kept in mind, however, that roadway sections in the higher traffic volumes will naturally cluster around urban centers. Since Amherst County is relatively rural, the selected sections tend to concentrate around Lynchburg. So, this particular plot is a good one and clearly illustrates a random sample.

Further verification of the random nature of the sampling plan was gained by making a second run on Amherst County and comparing the results to those of the first. The second set of selected sections (Figure 5) was composed of 45 sections, whereas the first run yielded 35. Between the two runs, only 1 section was duplicated. This equates to a rate of about 2.5% recurrence, which, considering the total number of sections involved, is very good.

CONCLUSION

The purpose of this project has been fulfilled. A simple, feasible, valid random sampling plan has been developed for selecting 5% of the secondary road system and is being implemented. An evaluation of the ratings made on these selected sections can be extrapolated to confidently assess the service condition of the entire secondary system. Upon completion of this process, all the service condition information for all state maintained flexible roads will be complete and ready for evaluation under the Department's pavement management system.

ACKNOWLEDGEMENT

The author gratefully acknowledges the contributions of A. D. Newman, pavement management engineer, who provided background information and assisted in establishing the pavement section selection criteria, and C. S. Taylor of Information Systems who was in charge of the programming and coding. Without their assistance, completion of this project would not have been possible.

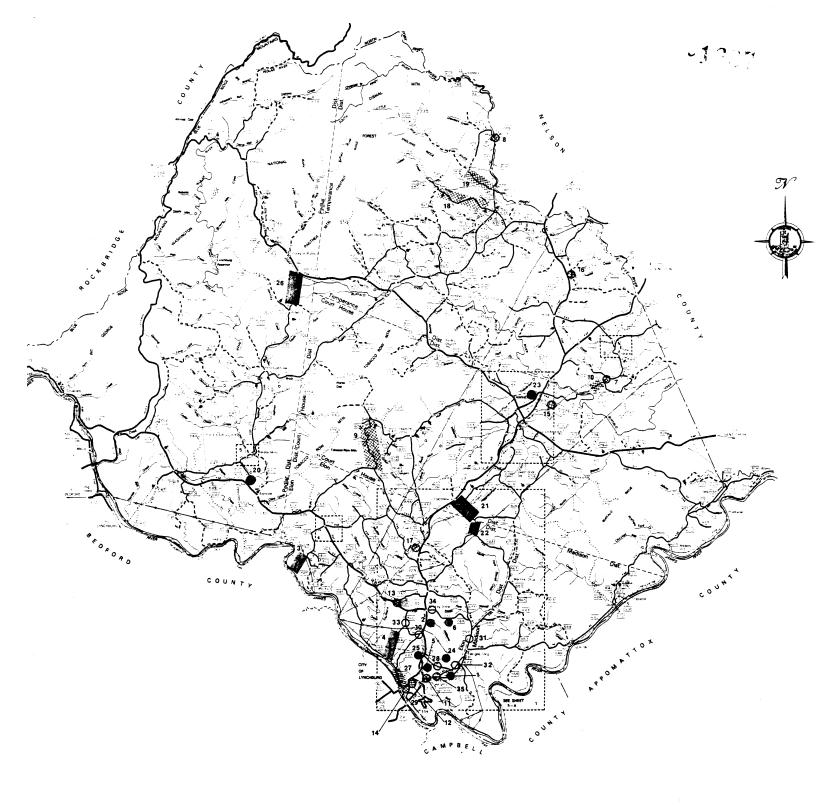


Figure 4. Locations of selected sections.

		E20-2	408-02					RTMENT UF HEGHWAY
	-10-10-00000000000000000000000000000000					SEC		SYSTEM PAVEMENT N DE RANDUM SAMPLES
	DCU- SI CIIY S	ELECTE	D HTE	SEN	TERMI	NI	LENGTH	PW, SW, PT, KH, LN
	r 305	1	1000	005	RT 1030	08ME RT 1030	я	(20,04,46,20,00)
	305	2	1302	005	F PT 1301	15MNW R11301	15	(20,07,42,20,00)
	305	3	652	070	S PT 787	DEAU END	100	(20,05,42,20,00)
1)	305	4	684	005	R1 685	162MN RT 685	102	(18,04,42,20,00
•	305	5	1001	015	RT 1036	DEAU END	1.0	(10,01,42,20,00
	L 305	6	1355	005	RT 1341	CUL DE SAC	7	(20,06,42,20,00
	r 305	7	739	040	013 MERT 058	HT 608	17	(10,05,42,20,00
	305	8	606	050	120MN RT 698	RT 630	5	(18,06,42,20,00
	305	9	636	040	RT 653	PT 638	270	(10,02,42,20,00
	305	10	739	030	121MF RT 822	PT 058	55	(14,04,42,20,00
\sim	305	11	1027	005	RT 622	RT 29 RAMP	40	(12,02,47,20,00
2	305	12	1021	010	<u>PT 1006</u>	W RT 1007	5	(12,02,42,20,00
9	305	13	705	005	N RT 130	RT 730	10	(12,03,42,20,00
	305	14	1005		91 1017	RT_1018	<u>6</u>	(12, 03, 42, 20, 00
	305		731	015	49ME RT 825	6245E RT 825	13	(22,07,62,20,00
	305	16		005	<u></u>	<u>_S_PT_611</u>	20	(14.02.42.20.00
	305	17 18	1202	030 020	RT 1207	PT 1205	10	(16,02,42,20,00
	L_{305}^{305}	19	629	905	025MW RT 713 RT 660	RT 625 RT 723	150	(10,02,42,20,00)
	r 305	20	635	015	97 702	30 MN RT 702	30	(20,05,42,20,00
	305	21	663	005	N THT RT 29	115MS PT 29	115	(14.01.42.20.00
\sim	305	22	504	050	01MN RT 6635	N RT 063	56	(14,03,42,20,00
(?)	30516		1103	005	RT_29 BUS	NCL AMHERST	45	(20,04,42,20,00
S	305	24	1003	005	RT 1049	RT 1062	9	(20,06,46,20,00
	305	25	1028	005	RT 1040	11MN RT 1040	11	(18,04,42,20,00
_	L 305	26	635	100	RT 688	ERTON	172	(10,04,42,20,00
4	305	27	545	005	RT 29 RUS	RT 685	93	(22,02,42,20,00
-	- 305	28	681	0.50	W RT 1046	E RT_1046	15	(24,07,63,20,00
	305	29	1005	020	N PT 1022	S RT 1022	3	(24,83,47,20,00
_	305	30	700	005	PT 29	PT 683	15	(20,02,62,20,00)
	305	3 1	677	075	RT BOY	DIMS RT AUA	1	(55.04.45.50.00
(5)	305	32	533	035	PT 1067	PT 1045	3	(18,03,52,20,00
\sim	305	33	760	915	RT 684	RT 1326	11	(20,02,52,20,00
	L 305	34	569	005	RT 29	RT 789	25	(18,02,42,20,00
(6)	305	3 5	622	0.50	11ME RT 1042	W RT 833	7	(24,07,62,20,00

Traffic Groups

Gr	Group							
1	0							
2								
3								
4	\oslash							
5	\bigcirc							
6								

Traffic V	olui	me (ADT)
0	-	100
101	-	300
301		750
751		1500
1501		4500
4501		

Figure 4a. Map key for selected sections.

10

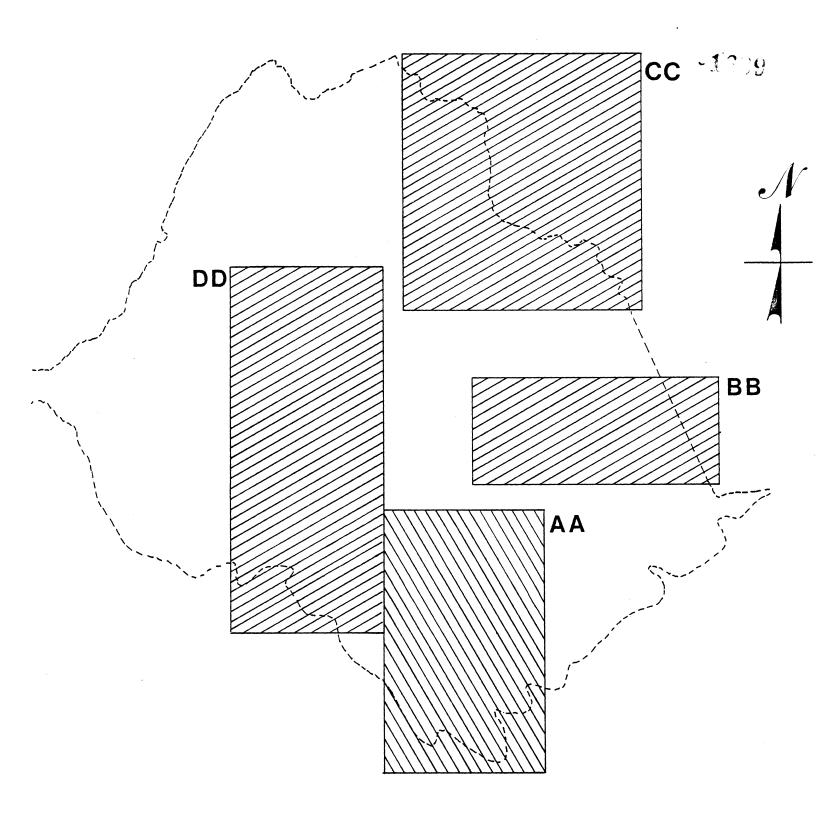


Figure 4b. Location of supplements.

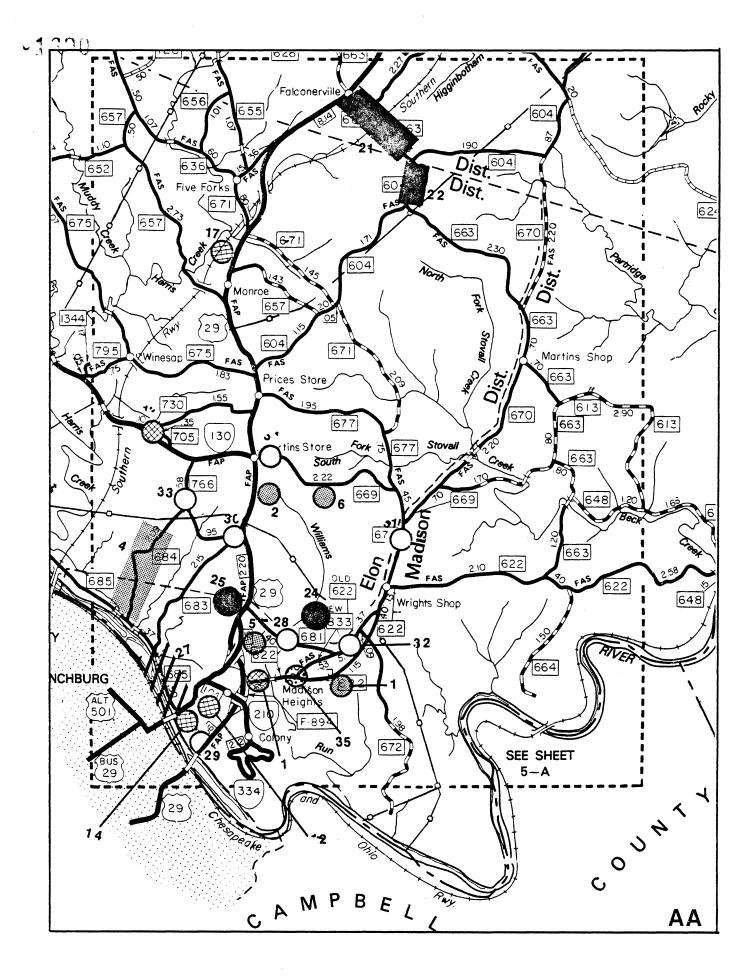


Figure 4c. Supplement AA.

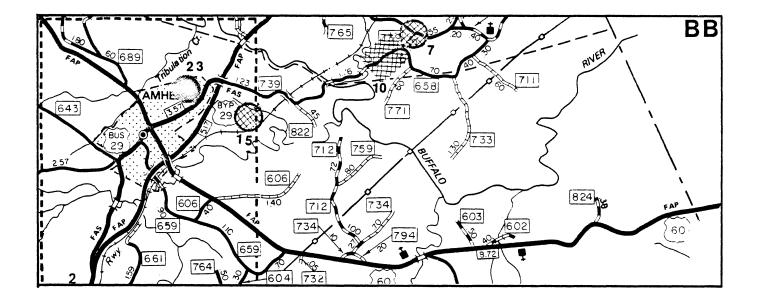


Figure 4d. Supplement BB.

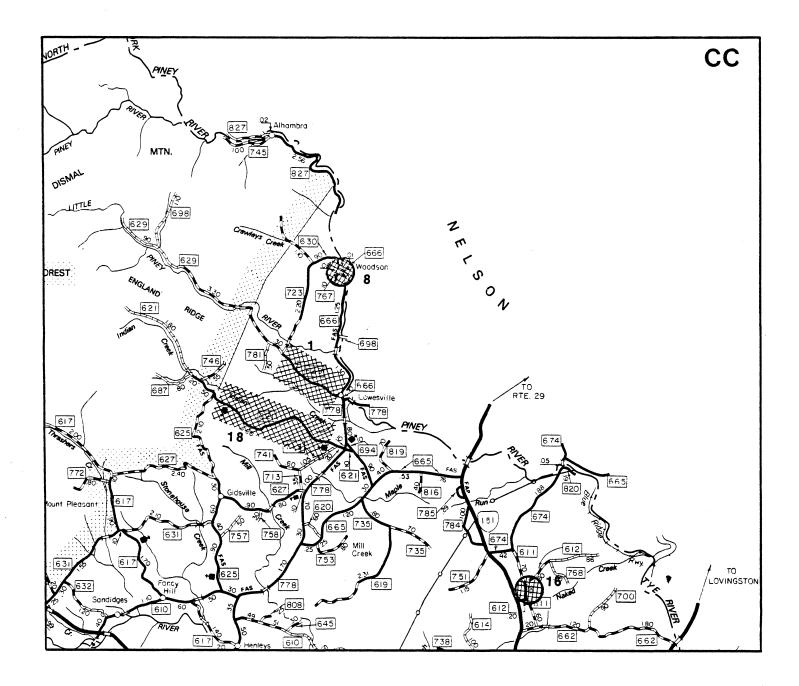


Figure 4e. Supplement CC.

-1233

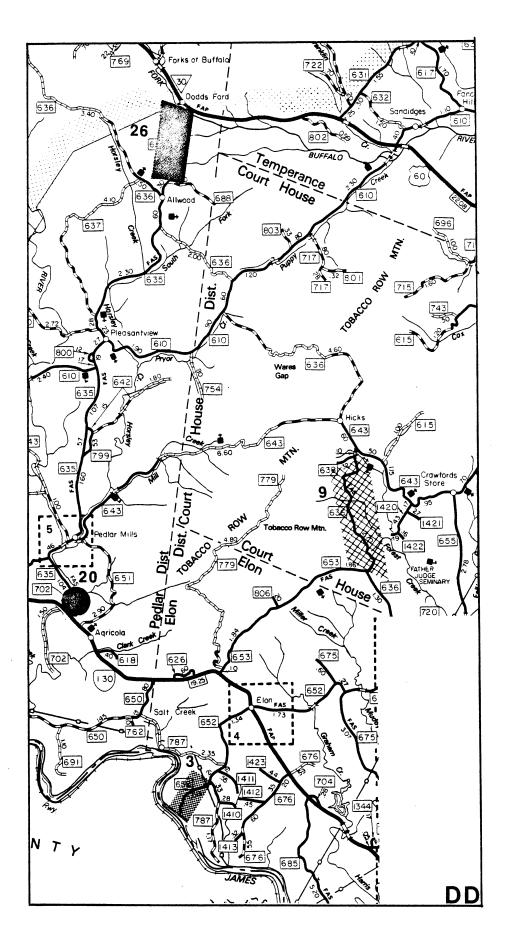


Figure 4f. Supplement DD.

									-						
0-CITY	PIE	81.0	TERHI	NT	LENGTH	P. 4 , 51	, <u>PT, KH</u> , L	AD	۲ <u> </u>	P19			ASB LE	16. <u>.</u> 7¥=C	L. 87=CN
5163	1119		BT So BAS	R1 60									1		
5	630 1043	010 005	PT 767 PT 1054	P1 723	90					. 116	0.25	117	1 0.1		
5	1042	005	PT 622	DEAD END			1.52.20.0			•V	0.10	<u>117</u>	1		
\$	1017	020	PSMERTIONS	R1 1005	Ň					12	0.15				
5	715	005	RIAN	R1 696	47		42.20.1				0.47	118	1 0.4		
5	1060	_005_	PT 1030	20MS PT 1040			.45.20.0			• 0		118	1.1		
5 ' 5	1335 1317	005	P1 1330 R1_1313	S CULDESAC	10					• <u>•</u>	1.11	114	1 0.		
<u>2</u>	1320	405	RT 677	-1044 HT 1313 R1 771			.42.20.0	a statement of				<u>} } } #</u>	<u>1</u>		
5	672	005	PT 833	0943 RT 833			.42.20.0				0.09	120	1		
5	1021	0.50	F RT 1007	DEAD END			, 12.20.0			20	0.52	120	1 0.7		
5	1059	005	0646 RT 1001	PT 1001			45.50.0					. 177	1		
5	121	0.05	E P1 130	0444 RT 130			.47.20.0			•	0.06	172	1 0.0		2.86
5	1301	020	RT 1303				. 42. 24.9			-14	1.22	172	-1		
	1-03		., ,,,,,						• •	• •		1.1		····	· · · ·
5	770	005	RI 661	R1 663	25	(16.0)	. 12.20.0	11) 24	n	. n	7,25	115	2 0.	>= 1.25	5.27
5	735	005	NT 665	PT 619	90		145.50.0			. 0	0,80	115	2 0	80 1.05	
5	739	479	FT 610	NELSON CL			.42.20.0			.51	7,14	116	2 1.0		
5	610	185	PT 603	RT 727			1.42.20.0 1.42.20.0			• ^ ? • 7 ?	27.24 8.99		2 1.		
5163	1123	010	PT 1124	PT 1109			,47,20,0			0.0	n_n.,	117	2 0 0		7.65
5	1017	010	RT 1007	PT 1006	ĥ		. n			0.0	0.10		2 0.0		
5	705 *	005	H RT 130	HT 730	10	(12.0	1, 12, 20, 0	0) 14	A 1)		0.10	117	Z . n.		
5	1303		RT 1301	DEAD END			.45.50.0			. 0	1.25	114	2 0.		
5			P1 664	P1 608		_(15,0)	,45,50,0	0)2	54	.90		_ 11#	- ? ? • '	······································	10.h?
5	622	155	E 91 600	TEMP HT BOK	a 2	(22.0)		n) 5a	n 17	(n:A	17.50	115	3 . 0.		11.11
5	1324	005	RT 130	44-SH PT 130			42.20.0			.0	n 10	115	3 0.	14 0.06	
5	761	050	07Mm RT 639	PT 29					۹. ۱	.20	0.25	115	3 0		_ 11.54
5	761	015	0446 HT 637	07"# HT 630	3					.21	0.24	115	3 0.		11.57
<u></u>		_035	<u>¥1 1331</u>	R1 1360			· <u>12·20</u> ·0			.31_	1.3H		. <u>.</u>		
5	622	nes 143	RT 20 RT 823	81 1304 8 81 600	30		,,46,20,0 ,,42,20,0			. 13	17.76	116	τ 0. τ 0.	10 1.27 73 2.00	
<u>}</u>	-615	- 125-	RI 647	W 01 643	·		42.20.0			11	1.40	117	3	10 2.00	
5	1201	010	SU21 18	RT 120A	12					05	0.18	118	3		
5	1336	005	R1 669	PT 1337	6	(24,0)	. 12.20.0	01 10	n u	. n	0,04	120	3 0		13, 17
5	6/15	025	42248 PT 130	39545 91 136			•45•50•0			-13 _	2.40	120	3 0.		
5	652	035	PT 1402 HT 1401	N RT 110 05"# HT 1901	רע גע		1.02.20.0			. A1	1,10	120	3 n.	27 1.24 15 1.20	
5	675	-010	R1 1.22	P1 1051			1.42.20.0 5.67.20.0			. 07	2.75	121	3 0.9		
,			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		• •	()				•	••••	171			• • •
5	677	055	P1 1350	S RT 669		118.0	1. 12. 2n. n	61 119	۲ ۲	1	3.05	116	1 4.		11.55
·		010	RT 622	151HE B1 655		- (22.0)	62.20.0	9 <u>}.</u>	<u> </u>	.53	_1.74	116		21 1.25	15.76
					• •				• · ·				• • •	14 0.34	
5			<u>.11ME RT 677.</u> RT 789	<u>P1B1A</u>			5 <u>,72,20,</u> 9 2,42,20,9			.25	7,94	110	5 2.		
-					,		• • • • • • • •			• • •					
5	622	015	FAMP 29	P1 1927	31	120.0	1.52.20.0	1) 521	n n	. n	0.4	152	n n.	11 0.11	16.71
														.	
+ • •			section.												

Figure 5. Selected sections in Amherst County - 2nd run.

APPENDIX

Secondary System 5% Random Sample Output Code

.1200

Code	District	Code	District
1	Bristol	5	Suffolk
2	Salem	6	Fredericksburg
3	Lynchburg	7	Culpeper
4	Richmond	8	Staunton
Code	County	Code	County
00	Arlington	49	King & Queen
01	Accomack	50	King William
02	Albemarle	51	Lancaster
03	Alleghany	52	Lee
04	Amelia	53	Loudoun
05	Amherst	54	Louisa
06	Appomattox	55	Lunenburg
07	Augusta	56	Madison
08	Bath	57	Mathews
09	Bedford	58	Mecklenburg
10	Bland	59	Middlesex
11	Botetourt	60	
12			Montgomery
	Brunswick	61	Nansemond
13	Buchanan	62	Nelson
14	Buckingham	63	New Kent
15	Campbell	65	Northampton
16	Caroline	66	Northumberland
17	Carroll	67	Nottoway
18	Charles City	68	Orange
19	Charlotte	69	Page
20	Chesterfield	70	Patrick
21	Clarke	71	Pittsylvania
22	Craig	72	Powhatan
23	Culpeper	73	Prince Edward
24	Cumberland	74	Prince George
25	Dickenson	76	Prince William
26	Dinwiddie	77	Pulaski
28	Essex	78	Rappahannock
29	Fairfax	79	Richmond
30	Fauquier	80	Roanoke
31	Floyd	81	Rockbridge
32	Fluvanna	82	_
33	Franklin	83	Rockingham Russell
34		84	
	Frederick		Scott
35	Giles	85	Shenandoah
36	Gloucester	86	Smyth
37	Goochland	87	Southampton
38	Grayson	88	Spotsylvania
39	Greene	89	Stafford
40	Greensville	90	Surry
41	Halifax	91	Sussex
42	Hanover	92	Tazewell
43	Henrico	93	Warren
44	Henry	95	Washington
45	Highland	96	Westmoreland
46	Isle of Wight	97	Wise
47			
	James City	98	Wythe
48	James City King George	98 99	Wythe York

<u>Code</u>	*	<u>City or Town</u>	Code	*	City or Town
140	(95)	Abingdon	196	(25)	Clintwood
160	(01)	Accomac	197	(41)	Clover
161	(12)	Alberta	198	(97)	Coeburn
100	(00)	Alexandria	199	(96)	Colonial Beach
162	(15)	Altavista	106	(20)	Colonial Heights
163	(05)	Amherst	200	(32)	Columbia
164	(97)	Appalachia	201	(87)	Courtland
165	(06)	Appomattox	107	(03)	Covington
166	(42)	Ashland	202	(07)	Craigsville
100	(12)	nonitana	202	(67)	Crewe
141	(09)	Bedford	203	(23)	Culpeper
167	(01)	Belle Haven	204	(23)	ourpeper
168	(21)	Berryville	205	(95)	Damascus
101	(97)	Big Stone Gap	108	(71)	Danville
150	(60)	Blacksburg	206	(82)	
142	(67)	Blackstone	200	(90)	Dayton Dendron
169	(07)	Bloxom	207		
143	(92)	Bluefield		(14)	Dillwyn Drahaa Branch
170			209	(19)	Drakes Branch
	(33)	Boones Mill	210	(77)	Dublin
171	(16)	Bowling Green	211	(84)	Duffield
172	(21)	Boyce	212	(76)	Dumfries
173	(58)	Boydton	213	(84)	Dungannon
174	(87)	Boykins	01/		
175	(87)	Branchville	214	(65)	Eastville
176	(82)	Bridgewater	215	(85)	Edinburg
102	(95)	Bristol	216	(82)	Elkton
177	(82)	Broadway	109	(40)	Emporia
178	(12)	Brodnax	217	(65)	Exmore
	(58)	Brodnax		()	
179	(15)	Brookneal	151	(29)	Fairfax
180	(11)	Buchanan	110	(29)	Falls Church
103	(81)	Buena Vista	144	(73)	Farmville
181	(67)	Burkeville	218	(11)	Fincastle
			219	(31)	Floyd
182	(65)	Cape Charles	145	(87 [.])	Franklin
183	(87)	Capron	111	(88)	Fredericksburg
184	(92)	Cedar Bluff	220	(38)	Fries
185	(19)	Charlotte C. H.	112	(93)	Front Royal
104	(02)	Charlottesville			
186	(58)	Chase City	113	(17)	Galax
187	(71)	Chatham	221	(84)	Gate City
188	(65)	Cheriton	222	(95)	Glade Spring
131	(64)	Chesapeake	223	(81)	Glasgow
189	(86)	Chilhowie	224	(35)	Glen Lyn
190	(01)	Chincotegue	225	(68)	Gordonsville
154	(60)	Christiansburg	226	(81)	Goshen
191	(90)	Claremont	227	(71)	Gretna
192	(58)	Clarksville	228	(82)	Grottoes
193	(83)	Cleveland		(07)	Grottoes
194	(29)	Clifton	229	(13)	Grundy
105	(03)	Clifton Forge	>	()	
195	(84)	Clinchport			
	(34)	orrection			

•

.

Code	*	<u>City or Town</u>	Code	*	<u>City or Town</u>
230	(41)	Halifax	266	(35)	Narrows
231	(01)	Hallwood	267	(65)	Nassawadox
232	(53)	Hamilton	268	(22)	New Castle
114	(27)	Hampton	269	(85)	New Market
115	(82)	Harrisonburg	121	(94)	Newport News
233	(76)	Haymarket	270	(87)	Newsoms
234	(25)	Haysi	271	(84)	Nickelsville
235	(29)	Herndon	122	(64)	Norfolk
236	(53)	Hillsboro	146	(97)	Norton
237	(17)	Hillsville			
0.0.0	(00)		272	(76)	Occoquan
239	(83)	Honaker	273	(01)	Onancock
116	(74)	Hopewell	274	(01)	Onley
331	(71)	Hurt	275	(63)	Orange
240	(38)	Independence	276	(01)	Painter
241	(03)	Iron Gate	277	(06)	Pamplin City
242	(51)	Irvington		(73)	Pamplin City
243	(87)	Ivor	278	(01)	Parksley
			279	(35)	Pearisburg
244	(91)	Jarratt	280	(35)	Pembroke
	(40)	Jarratt	281	(52)	Pennington Gap
245	(52)	Jonesville	123	(26)	Petersburg
			282	(19)	Phenix
246	(01)	Keiler	283	(92)	Pocahontas
247	(55)	Kenbridge	147	(99)	Poquoson
248	(19)	Keysville	284	(16)	Port Royal
249	(51)	Kilmarnock	124	(64)	Portsmouth
- 19	(66)	Kilmarnock	285	(97)	Pound
	(00)	Rimarmock	125	(77)	Pulaski
250	(58)	La Crosse	286	(53)	Purcellville
250	(12)	Lawrenceville	200	(55)	FUICEIIVIIIE
252	(83)		287	(76)	
		Lebanon	207	(76)	Quantico
253	(53)	Leesburg	107	((0))	- 16 1
117	(81)	Lexington	126	(60)	Radford
254	(54)	Louisa	288	(30)	Remington
255	(53)	Lovettsville	289	(35)	Rich Creek
159	(69)	Luray	148	(92)	Richlands
118	(15)	Lynchburg	127	(20)	Richmond
			290	(44)	Ridgeway
256	(56)	Madison	128	(80)	Roanoke
155	(76)	Manassas	157	(33)	Rocky Mount
152	(76)	Manassas Park	291	(53)	Round Hill
119	(86)	Marion	292	(98)	Rural Retreat
120	(44)	Martinsville			
257	(26)	McKenney	293	(52)	Saint Charles
258	(01)	Melfa	294	(97)	Saint Paul
259	(53)	Middleburg	129	(80)	Salem
260	(34)	Middletown	295	(86)	Saltville
261	(54)	Mineral		(95)	Saltville
262	(45)	Monterey	296	(01)	Saxis
263	(96)	Montross	297	(41)	Scottsburg
264	(82)	Mt. Crawford	<i>L J i</i>	\ ∀ ▲ /	ococcoburg
265	(85)	Mt. Jackson			
205	(65)	nt. Jackson			

Code	*	City or Town	Code	*	City or Town
298	(02) (32)	Scottsville Scottsville	316	(59)	Urbanna
299	(69)	Shenandoah	317	(55)	Victoria
300	(46)	Smithfield	153	(29)	Vienna
130	(41)	South Boston	149	(80)	Vinton
301	(58)	South Hill	318	(41)	Virgilina
302	(39)	Stanardsville	134	(75)	Virginia Beach
303	(69)	Stanley			
132	(07)	Staunton	319	(01)	Wachapreague
304	(34)	Stephens City	320	(91)	Wakefield
305	(91)	Stony Creek	156	(30)	Warrenton
306	(85)	Strasburg	321	(79)	Warsaw
307	(70)	Stuart	322	(78)	Washington
133	(61)	Suffolk	323	(91)	Waverly
308	(90)	Surry	136	(07)	Waynesboro
			324	(84)	Weber City
309	(01)	Tangier	325	(50)	West Point
310	(28)	Tappahannock			
158	(92)	Tazewell	327	(51)	White Stone
311	(30)	The Plains	137	(47)	Williamsburg
312	(82)	Timberville	138	(34)	Winchester
313	(85)	Toms Brook	328	(46)	Windsor
314	(38)	Troutdale	329	(97)	Wise
315	(11)	Troutville	330	(85)	Woodstock
			139	(98)	Wytheville

*Applicable county code shown in parentheses.

-120

L	1	يمو پُ	CODE
	- 1		

ROUTE NUMBER (RTE)

Code Direct

3 Coded
11 Alternate Coded
250 Bypass Coded
360 Business Coded
600 Coded
3015 Coded
100 Frontage Road Coded
700 Frontage Road Coded
264 Extension Coded

0003 A011 B250 C360 (Commercial Bus.) 0600 3015 F100 F700, etc. E264

STATE

CODE	SEQUENCE NU	MBER (SEQ)
Code Direct	10 Coded 20 Coded	010 020, etc.

CODE TERMINI - FROM

Code Direct Limit to 12 characters and spaces 15 MN Rt 220; 115 MN Rt 360; etc.

CODE TERMINI – TO

Code Direct Limit to 12 characters and spaces 1115 MN 501; 1115 MN 4519; etc.

- CODE
- LENGTH
- Code Direct

0.03 Mile Coded	00003
0.15 Mile Coded	00015
1.76 Mile Coded	00176
10.13 Mile Coded	01013
109.25 Mile Coded	10925; etc.

CODE	WIDTH - SUR	FACE (PW)
Code Direct	10 Coded 16 Coded	10 16

For curb and gutter sections show width curb to curb.

CODE	WIDTH - SHOU	JLDER (SW)
Code Direct	4 Coded 10 Coded	04 10; etc.

-17-1 SURFACE TYPES CODE Unbuilt Mileage Α В Primitive 0 Unimproved 1 Graded and Drained 2 (Reserved for Future Use) 3 Untreated-Soils, Gravels, Stones, etc. Light Bituminous Treatments (Sand and Gravel Treatments) 4 5 Heavy Bituminous Treatments (M.I.P. & Penetration Treatments) 6 Plant Mix (Bituminous Concrete-Sand Asphalt) 7 Rock and Sheet Asphalt 8 Portland Cement Concrete 9 Stone Block, Brick С Cold Mix (Bituminous Treatment) CODE BASE TYPES 0 Not applicable, Unknown or Unstabilized 1 Bituminous Concrete (Black Base) 2 Stabilized with Selected Materials (Soil, Gravel, Stone, etc.) 3 Stabilized with Portland Cement (Soil, Gravel, Stone, etc.) 4 Stabilized with Bituminous Material (Soil, Gravel, Stone, etc.) 5 Stabilized with Chemical (Soil, Gravel, Stone, etc.)

> T. B. Macadam, Crushed Aggregate & Graded Aggregate Bases Penetration Macadam and Water Bound Macadam

Portland Cement Concrete

Dual Type

6

7

8

9

USE OF SURFACE AND BASE CODES (PT)

An unimproved road is just what the term implies. It could be best described as a Class 4 Secondary Road that has not been graded, drained, or surfaced. The use of the "O" in the surface type column indicates that it is an unimproved road. Since unimproved roads have no surface, they have no base, and a "O" is used in the base type column for a combination code of "OO".

A graded and drained road is also a Class 4 Secondary Road that has been graded and drained, but is unsurfaced. Surface type code "1" is to be used to identify graded and drained roads. As these roads do not have a surface, they have no base, and the "0" is used in the base type column for a combination code of "10".

As these Class 4 (unsurfaced) roads have no surface type they have no surface or shoulder width. Both the surface width and shoulder width should be coded "00".

Both a surface type and surface width should be shown for all other roads.

An untreated soil, gravel or stone road can be either a Class 3 or Class 2 Secondary Road depending upon its stability or performance.

- (a) An untreated surface that is of insufficient quantity or quality to ensure all-weather performance would be a Class 3 (light surface) road. Surface type code "3" will identify such surfaces as untreated soils, gravels, stones, etc., and "0" in the base type column denotes that such materials are unstabilized. Until a road surface is sufficiently stable to be all-weather it is not stabilized, and the base type is to be coded unstabilized - "0".
- (b) An untreated surface that is of sufficient stability to assure reasonable all-weather performance would be a Class 2 (all-weather) road. Surface type code "3" is used to identify such surfaces as untreated soils, gravels, stones, etc. A "2" would be used in the base type column if stabilized with selected materials; "3" if stabilized with portland cement; "4" if stabilized with bituminous material; and "5" if stabilized with chemicals.

A light bituminous treatment would be coded "42" when applied to a soil stabilized with select materials, and "41" when applied to a bituminous concrete surface.

A heavy bituminous treatment would be coded "54" when applied to a gravel stabilized with bituminous material, and "51" when applied to a bituminous concrete surface.

Plant mix applied to penetration or water bound macadam would be coded "67".

Rock asphalt applied to portland cement concrete would be coded "78".

Portland cement concrete would be coded "80".

Plant mix applied to bituminous concrete (black base) would be coded "61".

A "9" will be used as the second digit of the code whenever the surface or base, or both, are dual type. All dual type mileage is to be coded the predominating surface type when the types are of unequal widths. When the types are of the same width, the higher surface type is to govern.

Portland cement concrete 12 feet wide laid adjacent to bituminous treated gravel 12 feet wide would be coded "89", but portland cement concrete 12 feet wide laid adjacent to bituminous treated gravel 16 feet wide would be coded "49".

A sand asphalt surface covering the combined width of portland cement concrete 12 feet wide laid adjacent to bituminous treated gravel 8 feet wide would be coded "69", and a sand asphalt surface covering the combined width of portland cement concrete 8 feet wide laid adjacent to bituminous treated gravel 12 feet wide would also be coded "69". In the case of a divided lane road, each lane of which is a different surface type, the foregoing principle applies. For example, a portland cement concrete lane 20 feet wide laid parallel to, but separated by a grass plot from, a bituminous treated traffic bound macadam lane 18 feet wide would be coded "89".

17 3

Code	<u>Kind of Highway (Use a Two Digit Combination Code - KH)</u>	
	Number of Lanes	
0	Not Applicable	
1	One-lane	
2	Two-lane	
3	Three-lane	
4	Four-lane	
5	Five-lane	
6	Six-lane	
7	Seven-lane	
8	Eight-lane	
9	Nine-lane	
A	Ten-lane	
В	Eleven-lane	
C	Twelve-lane	
F	Reserved for accident section	
	Type of Facility and Access Control	
•		
0	Two-way, non divided	
2	Divided, no control of access	
3	Divided, partial control of access	
4	Divided, full control of access	
5	One-way, part of a one-way system	
6	Two-way, part of a one-way system	
7	One-way couplet Transition*	
9	Not applicable	
R	Reserved for accident section	
*Transition -	when the increase or decrease in the number of lanes	
	is accompanied by a change in the pavement width, the	
	transition always carries the lower number of lane.	
Codo	Number of Interators Lance Onen to Traffic	
Code	Number of Interstate Lanes Open to Traffic	
	<u>5 Years More (LN)</u>	
	(Interstate Only)	
Code Direct	04 Coded 04	
	06 Coded 06	
Code Zeros (O	00) For all other records	

174

Code

Average Daily Traffic (ADT)

Average daily traffic coded in these columns to the unit portion. For example, ADT of 19,924 vehicles per day is coded 019924. When ADT is unknown use a code of "000000".

Code

Milepoint

Code XXX.XX with an assumed two place decimal point. The coded mileage represents the distance in miles from a set reference point to the beginning of this highway segment.

Random Number (RN)

The random numbers assigned to each section by the computer. They are listed in ascending order.

Class

The traffic group into which each section falls.

Group	Traffic Volume (ADT)
1	0 - 100
2	101 - 300
3	301 - 750
4	751 - 1500
5	1501 - 4500
6	4501 and higher

Length (LENG.)

Actual decimal listing of the length of each section.

By Class (BY-CL)

Accumulating lengths of sections by class.

By County (BY-CO.)

Total accumulating lengths of sections by county.