Computer Models for Predicting the Probability of Violating CO Air Quality Standards — The Model SIMCO — bу William A. Carpenter Former Senior Scientist Ronald L. Heisler Systems Analyst and Samuel F. Curling Environmental Specialist (The opinions, findings, and conclusions expressed in this report are those of the authors and not necessarily those of the sponsoring agencies.) Virginia Highway & Transportation Research Council (A Cooperative Organization Sponsored Jointly by the Virginia Department of Highways & Transportation and the University of Virginia) In Cooperation with the U. S. Department of Transportation Federal Highway Administration Charlottesville, Virginia VHTRC 83-R7 August 1982 . F.C.L. #### ENVIRONMENTAL RESEARCH ADVISORY COMMITTEE - E. T. ROBB, Chairman, Asst. Environmental Quality Engr., VDH&T - L. E. BRETT, JR., District Engineer, VDH&T - A. R. CLINE, District Environmental Coordinator, VDH&T - R. L. HUNDLEY, Environmental Quality Engineer, VDH&T - B. N. LORD, Research Environmental Engineer, FHWA - W. P. TUCKER, Right-of-Way Engineer, VDH&T - R. G. WARNER, Assistant Construction Engineer, VDH&T - R. B. WELTON, Environmental Coordinator, FHWA - D. C. WYANT, Highway Research Scientist, VH&TRC - J. E. YEATTS, Asst. Location & Design Engineer, VDH&T #### ABSTRACT This report presents the user instructions and data requirements for SIMCO, a combined simulation and probability computer model developed to quantify and evaluate carbon monoxide in roadside environments. The model permits direct determinations of the probability of violating the one- and eight-hour National Ambient Air Quality Standards for carbon monoxide. It also provides information on the magnitude and frequency of carbon monoxide concentrations. The probability of violating an air quality standard is a function of the random influences of meteorology, traffic volumes, emission patterns, and background pollution levels. SIMCO simulates carbon monoxide concentrations based on these parameters. Generally ten years of hourly concentrations are simulated for each analysis. The input data required by SIMCO are the source and receptor coordinates, representative historical meteorological records, temporal vehicle traffic volume and emission patterns, and representative background pollutant statistics. The model can be used to provide a comprehensive microscale analysis for highway environmental impact studies and state implementation plan hot spot analyses, and for monitor-siting studies to determine the attainment and maintenance of the standards for carbon monoxide. Computer Models for Predicting the Probability of Violating CO Air Quality Standards — The Model SIMCO — рÀ William A. Carpenter Former Senior Scientist > Ronald L. Heisler Systems Analyst > > and Samuel F. Curling Environmental Specialist In this report the input requirements and some details of the use of SIMCO are discussed. The reader should refer to a report by Carpenter, Hudson, and White (1980) for the details of predicting P(V) using simulation. #### INPUT DATA The Appendix contains the computer listing for SIMCO and study examples. The input data for SIMCO fall into five categories; geometric, traffic, background, temporal, and meteorological. The data requirements and data sources in each of these categories are discussed below. #### Geometric Data The geometric data required by SIMCO are the number of the highway line sources emitting CO, their locations, and the location of the receptor. SIMCO analyzes only highway line sources. Point sources are not presently addressed by SIMCO. Area sources are addressed as background CO. SIMCO is capable of analyzing up to 13 highway line sources. A line source is assumed to be a single highway traffic lane having a spatially homogeneous (or nearly homogeneous) CO emission strength. All line sources are of finite length. They may cross over each other and they may connect end to end. Thus, for example, a single traffic lane having two or more distinct traffic density segments may be decomposed into two or more line **,** 508 sources connected end to end. Also, for example, a single lane having two or more different speed zones may be decomposed into two or more end to end line sources.* The coordinate system used to locate the sources and receptors is oriented with the +X direction as East, the +Y direction as North, and the origin being an arbitrarily fixed point. The line source locations are specified by giving the (East, North) coordinates of the end points of the ground-level line sources. The receptor location is specified by giving the (East, North) coordinates of the receptor and the receptor'e elevation above ground level. The (East, North) coordinates used to specify source and receptor locations are easily determined from the Universal Transverse Mercator (UTM) coordinates found on U. S. Geological Survey topographic maps. Since UTM coordinates are expressed in metres, the metre is the unit of measure used for specifying the source and receptor locations in SIMCO. In general, more detailed maps than U.S.G.S. topographic maps will be necessary. Overlay gridding systems can be used over construction plans to determine geometric inputs, with the metre always being used as the unit of measure for coordinate inputs. #### Traffic Data The traffic data required by SIMCO are the speed-capacity relationship and the traffic data necessary to specify the expected traffic volume for each hour of a year. SIMCO employs the normal approximation to the Poisson distribution to obtain simulated hourly traffic volumes and speeds from the expected hourly traffic volumes. Specifically, SIMCO requires the following data for each line source: the slope of the speed-capacity relationship in mph/vehicle; the posted speed limit in mph; the annual average hourly traffic volume in vehicles/hour; the annual average vehicle type percentages; the annual average hot and cold start (catalyst) operating condition percentages; and the monthly, day-of-week, and hour-of-day factors for the vehicle type percentages and vehicle operating condition percentages. It also requires the average ratio of cold start non-catalyst operation to cold start catalyst operation. ^{*}For less detailed modeling, the line source could be modeled by lane groupings (i.e., modeling three northbound and three southbound lanes as one northbound lane and one southbound lane. However, this method is not recommended by the authors since it tends to artificially concentrate pollutants. In the simulation process SIMCO computes simulated hourly traffic volumes from average hourly traffic volumes at each hour in a year using the Poisson assumption. Under the Poisson assumption (Baerwald 1976; Highway Research Board 1965), traffic volumes will have a Poisson distribution with a single parameter given by the average volume. Since the average volume for any interesting site will generally be of an order of magnitude greater than 50 vehicles/hour, the Poisson distribution can be approximated by a normal distribution having the mean and variance equal to the average volume (Myer 1965). It should be noted that the traffic data factors for SIMCO have the following properties: The sum of the monthly factors for any item, (such as percentage of diesel trucks) equals 12. The sum of the day-of-week factors for any item equals 7. The sum of the hour-of-day factors for any item equals 24. There are many sources of traffic data and sources of information describing methods for collecting traffic data. Shirley and Benson (1980) discuss the traffic data requirements relative to air quality analyses and examine methods of collecting such data. Chaves (1980) also discusses some of the needs and problems associated with obtaining traffic data for air quality analyses. Pollack et al. (1979) examine some of the traffic data requirements for air quality analyses and present some typical data on the relationship between traffic data and hour of day. Box and Oppenlander (1976) discuss the variations of traffic parameters with time throughout a year and present graphs of typical hourly, day-of-week, and monthly variations in traffic volumes. DeMarrais (1977) presents the results of an empirical study relating the diurnal variation of traffic flow to the diurnal pattern of observed CO concentrations at several locations. Tittemore et al. (1972) present an empirical study of urban area travel relative to time of day. Graphical relationships between traffic and time of day for several study areas are included in the report. Buszek (1979) has analyzed extensive data relating traffic volumes to season and hour of day and categorized by the geographical region of the continental United States and local population. He also discusses trending patterns in the data and supports his arguments using historical data. The bulk of the data analyzed by Buszek were from national control stations maintained by the Department of 5 m0 Transportation, Federal Highway Administration (FHWA). The Highway Statistics Division of the FHWA obtains these data from participating state departments of transportation in the form of hourly volume records for continuous automatic traffic recording stations. Additional data are available in state reports such as "Automatic Traffic Recorder Data " and "Average Daily Traffic Volumes on Interstate, Arterial, and Primary Routes," which are published by the Virginia Department of Highways and Transportation. Finally, state departments of transportation generally have traffic engineering sections that collect, analyze, and project traffic data for use in air quality analyses. The traffic engineering methods employed in these activities are contained in works such as those of the Highway Research Board (1965) and Baerwald (1976). The Highway Research Board (1965) reference contains graphs from which the slope of the speed versus volume to capacity ratios can be determined. #### Background
Data SIMCO requires as input the geometric means and geometric standard deviations of background CO. These parameters are used with the lognormal distribution (Larsen 1971) to simulate hourly background CO concentrations. The principal source of background pollution data is the EPA's Storage and Retrieval of Aerometric Data system maintained by its National Aerometric Data Bank at Research Triangle Park, North Carolina. Under the SAROAD system, published volumes of Air Quality Annual Statistics are available from the EPA, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina 27711. From these annual statistics one can find the annual geometric mean and geometric standard deviation of background CO at locations throughout the United States. Since there are significant fluctuations of CO with month and hour of day, SIMCO uses the hourly and monthly geometric mean CO concentrations as input. These data are not readily available in the SAROAD system and must be determined or estimated using other data. (Since hourly and monthly data are difficult to obtain, the geometric standard deviations are assumed to be constants.) State air quality departments may be able to supply hourly and monthly geometric mean data for given locations. Otherwise, one might use the annual geometric mean at one location as a scaling factor to scale monthly and hourly geometric means from another location expected to have similar background fluctuations. Dimitriades (1976) presents some data on the fluctuations of background contaminants which may be helpful. If no information about the hourly and monthly variation of CO is available, the user must resort to using the annual geometric mean for each month and hour of day. - ---- The terms "geometric mean" and "geometric standard deviation" are defined by Hunt (1972). A characteristic of the geometric mean is that if y is the pollution variable in units of, say, ppm, and Y_g is the geometric mean of y in ppm, and if x is the pollution variable in units of, say, gm/m^3 , and x_g is the geometric mean of x in gm/m^3 , and y = ax where a is the conversion factor from gm/m^3 to ppm, then it is also true that $$Y_g = a \times x_g$$. (1) Using the same notation and allowing σ_{gx} and σ_{gy} to indicate the geometric standard deviations of x and y, respectively, one can show from Hunt's definitions that $$\sigma_{gx} = \sigma_{gy}. \tag{2}$$ SIMCO requires that the geometric means and geometric standard deviations of CO be specified based on units of ppm. Equation (1) states that if the available geometric mean data are based on units other than ppm, then a simple linear conversion will suffice to convert to geometric means based on units of ppm. Equation (2) states that the units upon which available data are based are of no consequence in specifying the geometric standard deviation, since the geometric standard deviation is independent of the units used to measure concentrations. #### Temporal Data Computer models that employ meteorological data collected by the National Weather Service are often based on a standard time clock and are, therefore, often confusing to the user who thinks in terms of a standard/daylight saving time clock. SIMCO attempts to avoid this confusion by having all user-supplied inputs specified in terms of the standard/daylight saving time clock. In this manner, for instance, the morning rush hour will be from, say, 7:00 a.m. to 9:00 a.m. every day of the year. The user simply specifies all inputs in terms of the actual clock time (be it standard time or daylight saving time) in effect during the month for which the input is to apply. To automatically handle the clock parameter, SIMCO requires that the user specify the first and last months (to the nearest month) of daylight saving time. SIMCO then internally converts the meteorological data, which are supplied in standard time, to the proper clock time depending on the month. All computations performed by SIMCO are then executed relative to the actual clock time in effect for each month of the year. ## 772 #### Meteorological Data SIMCO requires as input a historical record of hourly meteorological conditions. This input is supplied to SIMCO as the output file of the program PWCLASS created by Carpenter, Heisler, and Curling (1979). Each record of the meteorological input file contains the year, month, day, and hour of the observation, the wind direction and speed, the temperature, and the atmospheric stability class. SIMCO uses the temporal data on the meteorological file to control the hourly simulation process and uses the windspeed, wind direction, temperature, and stability class data to estimate the hourly CO concentration for each simulated hour. #### NOTES ON SIMCO SIMCO evaluates the probability of violating a CO standard based on maximum allowable one- and eight-hour CO concentrations supplied by the user as two of the SIMCO inputs. This feature of SIMCO allows the user to find the probability of exceeding any chosen CO concentration more than once per year. In addition to predicting the probability of violation based on CO contributed from background and highway sources, SIMCO predicts the probability of violation assuming that the only source is the background. The violation probability obtained by considering only background CO, denoted by P [V(B)], informs the user of the degree (relative to the specified CO standard) to which the background air is polluted without the effects of any additional sources. For comparison and testing purposes, SIMCO also performs three probability analyses in addition to the maximum likelihood analysis discussed by Carpenter, Hudson, and White (1980) and the analyses described above. These analyses are the Larsen analysis, binomial analysis, and the annual average analysis. Using the lognormal probability model presented by Larsen (1971), SIMCO predicts the expected annual maximum and expected annual second-maximum CO concentrations. The model also outputs the mean and standard deviation of the natural logarithms of the simulated CO concentrations. Using these statistical outputs and a table of normal probabilities, one can estimate the Larsen probability of violation; that is estimate the violation probability, assuming that sequential pollution levels are independent, identically distributed lognormal random variables. Using the binomial assumption, SIMCO makes a maximum likelihood estimate of the probability of violation conditioned on a calendar year starting time based on calendar year meteorological data. In order to predict this condition probability, SIMCO assigns values of y_i = 1 for each simulated calendar year (year = i) in which the standard is exceeded twice or more, and assigns values of y_i = 0 otherwise. Under the assumption that a time lag of one year is sufficient to ensure independence, SIMCO estimates $P_{\tau=0}(V)$ and Var $[P_{\tau=0}(V)]$, the maximum likelihood estimate and variance of the maximum likelihood estimate of the calendar year conditioned probability of violation, from the following formulations given by $$P_{\tau=0}(V) = (\sum_{i=1}^{N} y_i)/N$$, and ... (3) $$Var[P_{\tau=0}(V)] = P_{\tau=0}(V) [1-P_{\tau=0}(V)]/N,$$... (4) where N is the total number of simulated years. Myer (1975): Using the Central Limit Theorem, SIMCO outputs the average and the standard deviation of the calendar-year averages of hourly average CO concentrations (both with and without the highway sources). Since there are 8,760 hours in a year, the Central Limit Theorem (Myer 1975) states that the yearly average hourly CO concentration should be approximately distributed. (Note: The yearly average concentration is not the same as the hourly average concentration. In particular, hourly average concentrations are not normally distributed.) Thus one can use the average and standard deviation of the calendar-year averages of hourly average CO concentrations with a table of normal probabilities to determine P[V(μ)] and P[V(YB)], the probabilities of violating any yearly average CO standard where μ and YB are the calendar-year averages of hourly average CO concentrations with and without the highway sources, respectively. In the next section the input variables for SIMCO are defined. . #### GLOSSARY OF INPUT VARIABLES FOR SIMCO AHT REAL ARRAY -- DIMENSION 13 -- INPUT. THE ANNUAL AVERAGE TRAFFIC VOLUME IN VEHICLES/HOUR INDEXED BY SOURCE. APCS REAL ARRAY -- DIMENSION 13 -- INPUT. ANNUAL AVERAGE PERCENT COLD STARTS INDEXED BY SOURCE. APDT REAL ARRAY -- DIMENSION 13 -- INPUT. ANNUAL AVERAGE PERCENT DIESEL TRUCKS INDEXED BY SOURCE. APGT REAL ARRAY -- DIMENSION 13 -- INPUT. ANNUAL AVERAGE PERCENT GAS TRUCKS INDEXED BY SOURCE. APHS REAL ARRAY -- DIMENSION 13 -- INPUT. ANNUAL AVERAGE PERCENT HOT STARTS INDEXED BY SOURCE. APLT REAL ARRAY -- DIMENSION 13 -- INPUT. ANNUAL AVERAGE PERCENT LIGHT TRUCKS INDEXED BY SOURCE. DSTMI INTEGER SCALAR -- INPUT. THE FIRST MONTH OF DAYLIGHT SAVING TIME. DSTM2 INTEGER SCALAR -- INPUT. THE LAST MONTH OF DAYLIGHT SAVING TIME. F REAL SCALAR -- INPUT. THE RATIO OF COLD START NON-CATALYST OPERATION TO COLD START CATALYST OPERATION. REAL ARRAY -- DIMENSION 13.7 -- INPUT. DAY-OF-WEEK PERCENT COLD START FACTORS INDEXED BY SOURCE AND DAY. FCSD (I,D)*FCSM(I,M)*APCS(I) IS THE AVERAGE HOURLY PERCENT COLD STARTS FOR DAY-OF-WEEK D, MONTH M, AND SOURCE I. REAL ARRAY -- DIMENSION 13.25 -- INPUT. HOUR-OF-DAY PERCENT COLD START FACTORS INDEXED BY SOURCE AND HOUR. FCSH (I,H)*FCSD(I,D)*FCSM(I,M)*APCS(I) IS THE AVERAGE HOURLY PERCENT COLD STARTS FOR HOUR-OF-DAY H, DAY-OF-WEEK D, MONTH M, AND SOURCE I. NOTE, FCSH(I,25) IS SET EQUAL TO FCSH(I,L) INTERNALLY TO HANDLE THE DAYLIGHT SAVING TIME CONDITION. FCSH IS INPUT RELATIVE TO "CLOCK" TIME. FOR INSTANCE, FCSH(I,9) WOULD BE THE FACTOR FOR 9 AM STANDARD TIME FOR NOVEMBER THROUGH APRIL, AND FCSH(I,9) WOULD BE THE COLD START FACTOR FOR 9 AM DAYLIGHT
SAVING TIME FOR MAY THROUGH OCTOBER. SO THE TIME REFERENCE FOR FCSH (AND FOR ALL INPUT TERMS WHICH ARE RELATIVE TO "CLOCK" TIME) IS THAT TIME WHICH WE WOULD HEAD ON THE CLOCK. ANOTHER WAY E.'''6 TO EXPRESS THIS NOTION IS THAT "CLOCK" TIME REFERENCES ARE EITHER ST OR DST WHICHEVER IS APPLICABLE TO THE MONTH UNDER CONSIDERATION. FCSM REAL ARRAY -- DIMENSION 13,12 -- INPUT. MONTHLY PERCENT COLD START FACTORS INDEXED BY SOURCE AND MONTH. FCSM (I,M)*APCS(I) IS THE AVERAGE HOURLY PERCENT COLD STARTS FOR MONTH M AND SOURCE I. FDTD REAL ARRAY -- DIMENSION 13.7 -- INPUT. DAY-OF-WEEK PERCENT DIESEL TRUCK FACTORS INDEXED BY SOURCE AND DAY. FDTD(I,D)*FDTM(I,M)*APDT(I) IS THE AVERAGE HOURLY PERCENT DIESEL TRUCKS FOR DAY-OF-WEEK D, MONTH M, AND SOURCE I. FDTH REAL ARRAY -- DIMENSION 13,25 -- INPUT. HOUR-OF-DAY PERCENT DIESEL TRUCK FACTORS INDEXED BY SOURCE AND HOUR. FDTH (I,M)*FDTD(I,D)*FDTM(I,M)*APDT(I) IS THE AVERAGE HOURLY PERCENT DIESEL TRUCKS FOR HOUR-OF-DAY H, DAY-OF-WEEK D, MONTH M, AND SOURCE I. SEE NOTE UNDER FCSH. FDTM REAL ARRAY -- DIMENSION 13, 2 -- INPUT. MONTHLY PERCENT DIESEL TRUCK FACTORS INDEXED BY SOURCE AND MONTH. FDTM(I,M)*APDT(I) IS THE AVERAGE HOURLY PERCENT DIESEL TRUCKS FOR MONTH M AND SOURCE I. REAL ARRAY -- DIMENSION 13,7 -- INPUT. DAY-OF-WEEK PERCENT GAS TRUCK FACTORS INDEXED BY SOURCE AND DAY. FGTD(I,D)*FGTM(I,M)*APGT(I) IS THE AVERAGE HOURLY PERCENT GAS TRUCKS FOR DAY-OF-WEEK D, MONTH M, AND SOURCE I. FGTH REAL ARRAY -- DIMENSION 13,25 -- INPUT. HOUR-OF-DAY PERCENT GAS TRUCK FACTORS INDEXED BY SOURCE AND HOUR. FGTH(I,H)*FGTD(I,D)*FGTM(I,M)*APGT(I) IS THE AVERAGE HOURLY PERCENT GAS TRUCKS FOR HOUR-OF-DAY H, DAY-OF-WEEK D, MONTH M, AND SOURCE I. SEE NOTE UNDER FCSH. FGTM REAL ARRAY -- DIMENSION 13,12 -- INPUT. MONTHLY PERCENT GAS TRUCK FACTORS INDEXED BY SOURCE AND MONTH. FGTM(I,M)*APGT(I) IS THE AVERAGE HOURLY PERCENT GAS TRUCKS FOR MONTH M AND SOURCE I. FHSD REAL ARRAY -- DIMENSION 13,7 -- INPUT. DAY-OF-WEEK PERCENT HOT START FACTORS INDEXED BY SOURCE AND DAY. FHSD (I,D)*FHSM(I,M)*APSH(I) IS THE AVERAGE HOURLY PERCENT HOT STARTS FOR DAY-OF-WEEK D, MONTH M, AND SOURCE I. REAL ARRAY -- DIMENSION 13,25 -- INPUT. HOUR-OF-DAY PERCENT HOT START FACTORS INDEXED BY SOURCE AND HOUR. FHSH(I,H)*FHSD(I,D)*FHSM(I,M)*APHS(I) IS THE AVERAGE HOURLY PERCENT HOT STARTS FOR HOUR-OF-DAY H, DAY-OF-WEEK D, MONTH M, AND SOURCE I. SEE NOTE UNDER FCSH. FHSM REAL ARRAY -- DIMENSION 13,12 -- INPUT. MONTHLY PERCENT HOT START FACTORS INDEXED BY SOURCE AND MONTH. FHSM (I,M)*APHS(I) IS THE AVERAGE HOURLY PERCENT HOT STARTS FOR MONTH M AND SOURCE I. FLTD REAL ARRAY -- DIMENSION 13,7 -- INPUT. DAY-OF-WEEK PERCENT LIGHT TRUCK FACTORS INDEXED BY SOURCE AND DAY. FLTD(I,D)*FLTM(I,M)*APLT(I) IS THE AVERAGE HOURLY PERCENT LIGHT TRUCKS FOR DAY-OF-WEEK D, MONTH M, AND SOURCE I. FLTH REAL ARRAY -- DIMENSION 13,25 -- INPUT. HOUR-OF-DAY PERCENT LIGHT TRUCK FACTORS INDEXED BY SOURCE AND HOUR. FLTH(I,H)*FLTD(I,D)*FLTM(I,M)*APLT(I) IS THE AVERAGE HOURLY PERCENT LIGHT TRUCKS FOR HOUR-OF-DAY H, DAY-OF-WEEK D, MONTH M, AND SOURCE I. SEE NOTE UNDER FCSH. FLTM REAL ARRAY -- DIMENSION 13,12 -- INPUT. MONTHLY PERCENT LIGHT TRUCK FACTORS INDEXED BY SOURCE AND MONTH. FLTM(I,M)*APLT(I) IS THE AVERAGE HOURLY PERCENT LIGHT TRUCKS FOR MONTH M AND SOURCE I. FTVD REAL ARRAY -- DIMENSION 13,7 -- INPUT. DAY-OF-WEEK TOTAL VEHICLE TRAFFIC VOLUME FACTORS INDEXED BY SOURCE AND DAY. FTVD(I,D)*FTVM(I,M)*AHT(I) IS THE AVERAGE HOURLY TRAFFIC VOLUME FOR DAY-OF-WEEK D, MONTH M, AND SOURCE I IN VEHICLES/HOUR. FTVH REAL ARRAY -- DIMENSION 13,25 -- INPUT. HOUR-OF-DAY TOTAL VEHICLE TRAFFIC VOLUME FACTORS INDEXED BY SOURCE AND HOUR. FTVH (I,H)*FTVD(I,D)*FTVM(I,M)*AHT(I) IS THE AVERAGE HOURLY TRAFFIC VOLUME FOR HOUR-OF-DAY H, DAY-OF-WEEK D, MONTH M, AND SOURCE I IN VEHICLES/HOUR. SEE NOTE UNDER FCSH. FTVM REAL ARRAY -- DIMENSION 13,12 -- INPUT. MONTHLY TOTAL VEHICLE TRAFFIC VOLUME FACTORS INDEXED BY SOURCE AND MONTH. FTVM (I,M)*AHT(I) IS THE AVERAGE HOURLY TRAFFIC VOLUME FOR MONTH M AND SOURCE I IN VEHICLES/HOUR. HGCO REAL ARRAY -- DIMENSION 25,12 -- INPUT. THE GEOMETRIC MEAN OF THE PPM CO BACKGROUND INDEXED BY HOUR AND MONTH. MGCO IS CONVERTED TO THE MEAN OF THE LN(CO)BEFORE USE. NOTE THAT MGCO(25,J) IS SET TO MGCO(I,J) INTERNALLY TO HANDLE THE DAYLIGHT SAVING TIME CONDITION. MGCO IS INPUT RELATIVE TO "CLOCK" (SEE FCSH)TIME. NOTE THAT MGCO IS VERY NEARLY APPROXIMATED BY THE ARITHMETIC MEAN. THUS, IF GEOMETRIC MEANS ARE UNAVAILABLE, THE ARITHMETIC MEANS MAY BE USED. 3...5 NOMYR INTEGER SCALAR -- INPUT. THE NOMINAL YEAR FOR THE ANALYSIS. NS INTEGER SCALAR -- INPUT. THE NUMBER OF SOURCES (ROADWAYS) USED IN THE ANALYSES. OX,OY,OZ REAL SCALARS -- INPUTS. THE X, Y, AND Z COORDINATES OF THE RECEPTOR LOCATION IN METRES. SGCO REAL ARRAY -- DIMENSION 12 -- INPUT. THE GEOMETRIC STANDARD DEVIATION OF THE BACKGROUND CO INDEXED BY MONTH FOR CO IN PPM. SGCO IS CONVERTED TO THE STANDARD DEVIATION OF LN(CO) BEFORE USE. STAND REAL SCALAR -- INPUT. THE CO LEVEL IN PPM NOT TO BE EXCEEDED MORE THAN ONCE PER YEAR. STAND8 REAL SCALAR -- INPUT. THE EIGHT HOUR CO STANDARD IN PPM NOT TO BE EXCEEDED MOR THAN ONCE PER YEAR. THIS PROGRAM ASSUMES A COUNTING SCHEME FOR THE EIGHT HOUR STANDARD WHICH SKIPS AHEAD EIGHT HOURS WHENEVER AN EIGHT HOUR AVERAGED CO LEVEL EXCEEDING STAND8 IS FOUND. TEST LOGICAL SCALAR -- INPUT. IF TEST . EQ. . TRUE. THEN THE PROGRAM WILL OUTPUT AUXILIARY INFORMATION FROM THE SIMULATION. TS REAL ARRAY -- DIMENSION 13 -- INPUT. THE SLOPE OF THE SPEED VOLUME RELATIONSHIP IN MPH/(VEH/HR) INDEXED BY SOURCE. TSPD REAL ARRAY -- DIMENSION 13 -- INPUT. THE POSTED SPEED LIMIT IN MPH INDEXED BY SOURCE. X1,Y1 REAL SCALARS -- INPUTS. THE X AND Y COORDINATES OF THE WEST-MOST END POINT OF A ROADWAY, IN METRES. X2,Y2 REAL SCALARS -- INPUTS. THE X AND Y COORDINATES OF THE EAST-MOST END POINT OF A ROADWAY IN METRES. The next section details the specific input card sequence and format requirements for SIMCO. ## 3110 #### CARD SEQUENCE AND FORMAT #### Input Data Requirements Card 1, Format (12): NOMYR Column 1: The nominal year of the analysis. Card 2, Format (2(F5.0, 1X), L1): STAND, STAND8, TEST Column 1: Maximum allowable one hour CO concentration in ppm. Column 7: Maximum allowable eight hour CO concentration in ppm. Column 13: In general use an "F". A value of "T" will generate additional histogram results. (see listing.) Card 3, Format (3(Fg.0, 1X)): 0X,0Y,0Z Column 1: The X coordinate of the receptor in metres. Column 8: The Y coordinate of the receptor in metres. Column 15: The Z coordinate of the receptor in metres. Card 4, Format (I2): NS Column 1: The number of line sources, (NS<13): Let K = 4: For I - 1 to NS (for each value of I, input the following card). Card K + I, Format (4(F6.0,1X), F2.0,1X, F7.4): X1,Y1,X2,Y2,TSPD(I),TS(I) Column 1: The X coordinate in metres of the West-most end of line source I. Column 8: The Y coordinate in metres of the West-most end of line source I. Column 15: The X coordinate in metres of the East-most end of line source I. Column 22: The Y coordinate in metres of the East-most end of line source I. 085 Column 29: The posted speed limit in mph for line source I. Column 32: The slope in mph/veh of the speed capacity relationship for line source I. Let K = 4+NS+1: Let Card K, Format (F6.0): F Column 1: The ratio of cold start non-catalyst operation to cold start catalyst operation. Let K=K+1: Card K, Format (13F6.0): (AHT(I), I=1, NS) Column (6×I)-5: The annual average hourly traffic volume in veh/hr for source I, I-1 to NS. Let K=K+1: Card K, Format (13F6.0): (APGT(I),I=1, NS) Column (6×I)-5: The annual average heavy duty gas truck percentage for source I, I-1 to NS. Let K=K+1: Card K, Format (13F6.0): (APDT(I), I=1,NS) Column (6×I)-5: The annual average diesel truck percentage for source I,I-1 to NS. Let K=K+1: Card K, Format (13F6.0): (APLT(I), I=1, NS) Column (6×I)-5: The annual average light truck percentage for source I,I=1 to NS. Let K=K+1: Card K, Format (13F6.0); (APHS (I), I=1, NS) Column (6×I)-5: The annual average hot start percentage for source I,I=1 to NS. Let K=K+1: Card K, Format (13F6.0): (APCS(I), I=L, NS) . 574 Column $(6\times I)-5$: The annual average cold start (catalyst) percentage for source I, I-1 to NS. For M = 1 to 12 (For each value of M, input the following group of six cards.) Card $K+L+(M-1)\times 6$, Format (13F6.0) = (FTVM(I,M), 1-1,NS) Column (6×I)-5: The monthly factor for the total hourly traffic volume for month M and source I, I-1 to NS. Card $K+2+(M-1)\times6$, Format (13F6.0): (FGTM(I,M), I-1,NS) Column (6×I)-5: The monthly factor for the heavy duty gas truck percentage for month M and source I, I=1 to NS Card $K=3+(M-1)\times6$, Format (13F6.0): (FDTM (I,M),I=1, NS) Column (6×I)-5: The monthly factor for the diesel truck percentage for month M and source I, I=1 to NS. Card $K+4+(M-1)\times6$, Format (13F6.0): (FLTM (I,M), I=1, NS) Column $(6 \times I)$ -5: The monthly factor for the light truck percentage for month M and source I, I=1 to NS. Card $K+5+(M-1)\times6$, Format (13F6.0): (FHSM (I,M), I=1, NS) Column $(6 \times I)-5$: The monthly factor for the hot start percentage for month M and source I, I=1 to NS. Card $K+6+(M-1)\times6$, Format (13F6.0): (FCSM (I,M), I=1, NS) Column $(6 \times I) - 5$: The monthly factor for the cold start (catalyst) percentage for month M and source I, I=1 to NS. Next M: Let K = K+72 For D = 1 to 7 (For each value of D, input the following group of six cards.) Card $K+1+(D-1)\times 6$, Format (13F6.0): (FTVD (I,D), I=1, NS) Column (6×I)-5: The day-of-week factor for the total hourly traffic volume for day D and source I, I=1 to NS. Card $K+2+(D-1)\times6$, Format (13F6.0): (FGTD (I,D), I=1, NS) Column (6×I)-5: The day-of-week factor for the heavy duty gas truck percentage for day D and source I, I-1 to NS. Card $K+3+(D-1)\times6$, Format (13F6.0): (FDTD (I,D), I=1, NS) Column (6×I)-5: The day-of-week factor for the diesel truck percentage for day D and source I, I=1 to
NS. Card $K+4+(D-1)\times6$, Format (13F6.0): (FLTD (I,D), I=1, NS) Column (6×I)-5: The day-of-week factor for the light truck percentage for day D and source I, I=1 to NS. Card $K+5+(D-1)\times6$, Format (13F6.0): (FHSD (I,D), I=1, NS) Column (6×I)-5: The day-of-week factor for the hot start percentage for day D and source I, I=1 to NS. Card K+6+(D-1)×6, Format (13F6.0): (FCSD (I,D), I=1, NS) Column (6×I)-5: The day-of-week factor for the cold start (catalyst) percentage for day D and source I, I=1, to NS. Next D: Let K = K+42: For H = 1 to 24 (For each value of H, input the following group of six cards.) Card $K+1+(H-1)\times 6$, Format (13F6.0): (FTVH (I,H), I=1, NS) Column (6×I)-5: The hour-of-day factor for the total hourly traffic volume for hour H and source I, I=1 to NS. Card $K+2(H-1)\times6$, Format (13F6.0): (FGTH (I,H), I=1, NS) Column (6×I)-5: The hour-of-day factor for the heavy duty gas truck percentage for hour H and source I, I=1 to NS. Card $K+3+(H-1)\times6$, Format (13F6.0): (FDTH (I,H), I=1, NS) Column (6×I)-5: The hour-of-day factor for the diesel truck percentage for hour H and source I, I=1 to NS. Card $K+4+(H-1)\times6$, Format (13F6.0): (FLTH (I,H), I=1, NS) Column (6×I)-5: The hour-of-day factor for the light truck percentage for hour H and source I, I=1 to NS. Card $K+5+(H-1)\times6$, Format (13F6.0): (FHSH (I,H), I=1, NS) Column (6×I)-5: The hour-of-day factor for the hot start percentage for hour H and source I, I=1 to NS. Card $K+6+(H-1)\times6$, Format (13F6.0): (FCSH (I,H), I=1, NS) Column (6×I)-5: The hour-of-day factor for the cold start (catalyst) percentage for hour H and source I, I=1 to NS. #### Next H: Let K = K+144+1: Card K, Format (12F6.0): (SGCO (M), M=1, 12) Column (6×M)-5: The geometric standard deviation of CO concentration (relative to ppm CO) for month M, M=1 to 12. Let K = K+1: 504 For H = 1 to 24 (For each value of H, input the following card.) Card K+H, Format (12F6.0): (MGCO (H,M), M=1, 12) Column (6×M)-5: The geometric mean of CO concentration relative to ppm CO for hour-of-day H and month X, M=1 to 12. #### Next H: Let K = K+24+1: Card K, Format (12, 1×, 12): DSTM1. DSTM2 Column 1: The first month of daylight saving time. Column 4: The last month of daylight saving time. #### REFERENCES - Baerwald, J. E., (editor). 1976. Transportation and Traffic Engineering Handbook, Institute of Traffic Engineers. Prentice Hall, Inc., Englewood Cliffs, New Jersey. - Box, P. C., and Oppenlander, J. C. 1976. Manual of Traffic Engineering Studies, Institute of Transportation Engineers. Arlington, Virginia. - Buszek, B. 1979. <u>Counting Cars</u>. Traffic Audit Bureau, Inc. Canterbury Press, New York. - Carpenter, W. A., Heisler, R. L., and Curling, S. F. 1979. "Analyzing Historical Meteorological Data for Air Quality Analyses," VHTRC 79-R54. Virginia Highway and Transportation Research Council. Charlottesville, Virginia. - Carpenter, W. A., Hudson, J. L., and White, C. C. 1980. "A Probabilistic Approach to the Near Roadway Impact of Nitrogen Dioxide," FHWA-RD-80-124. Federal Highway Administration, Washington, D. C. - Chaves, J. R. 1980. "Project Level Air Quality Analyses, A Discussion Paper," Attachment, FHWA Bulletin, June 18, 1980. Federal Highway Administration, Washington, D. C. - DeMarrais, G. A. 1977. "Diurnal Variations in Traffic Flow and Carbon Monoxide Concentrations," EPA-600/4-77-016. Environmental Protection Agency. Research Triangle Park, North Carolina. - Dimitriades, B. 1976. "Photochemical Oxidants in the Ambient Air of the United States," <u>EPA-600/3-76-017</u>. Environmental Protection Agency. Research Triangle Park, North Carolina. - Highway Research Board. 1965. "Highway Capacity Manual," Special Report 87, Highway Research Board, Washington, D. C. - Hunt, W. F. 1972. "The Precision Associated with the Sampling Frequency of Log-Normally Distributed Air Pollutant Measurements," J. Air Poll. Control Assoc., 22:9, p. 687. - Larsen, R. I. 1971. "A Mathematical Model for Relating Air Quality Measurements to Air Quality Standards," Environmental Protection Agency Publication AP-89. Office of Air Programs. Research Triangle Park, North Carolina. - Myer, S. L. 1975. <u>Data Analysis for Scientists and Engineers</u>. John Wiley & Sons, Inc. New York. - Pollack, R. I., Anderson, G. E., Burton, C. S., Killus, J. P., Meldgin, M. J., Roth, P. M., Tesche, T. W., and Whitten, G. Z. 1979. "Transportation Issues Related to a Short Term Nitrogen Dioxide Air Quality Standard," FHWA-RD-78-172. Federal Highway Administration, Washington, D. C. - Shirley, E., and Benson, P. 1980. "Traffic Data for Air Quality Analysis-Requirements and Collection Methods," Conference Session Paper in Air Quality Measurements and Analysis, Fifty-Ninth Annual Meeting of the Transportation Research Board. Washington, D. C. - Tittemore, L. H., Birdsall, M. R., Hill, D. M., and Hammond, R. H. 1972. "An Analysis of Urban Area Travel by Time of Day," FH-11-7519. Federal Highway Administration, Washington, D. C. #### APPENDIX #### EXAMPLE APPLICATIONS AND PROGRAM LISTING # . 3.03 #### EXAMPLE APPLICATIONS #### Overview In this section, three study examples are presented. Unlike worst-case modeling, SIMCO simulates concentrations using historically derived input data for each one-hour time period in a year and then evaluates the simulated concentrations statistically to provide direct comparison to the NAAQS's. The model requires input for all hours in a year. Even if only one air quality event is of concern, it must be evaluated in perspective with all other such events in a year. It is essential to input appropriate sourceemission data, background CO data (CO which would exist even if the highways were not present), and a representative meteorological record of statistically valid duration (e.g., ten years). Proper site selection is also necessary to obtain informative results. When a study site is analyzed with SIMCO, the reception is assumed to receive continuous year-round exposure (similar to that for a continuously monitored site). Although the sites and their associated geometry provided in the examples are hypothetical, efforts were taken to represent realistic study conditions. For the examples, data inputs were obtained using Virginia-specific information with the exception of hot and cold operating condition estimates. These were derived from The Determination of Vehicular Cold and Hot Operating Fractions for Estimating Highway Emissions, September, 1978, by George Ellis et al., US DOT, FHWA. Data representative of background CO (which would exist even without the modeled highways) were obtained from monitoring records of a local air pollution agency. A ten-year meteorological record was obtained from a National Weather Service tape of data from a local airport. Care was taken to assure that the hypothetical sites were located in microscale regimes. References on siting criteria should be consulted to determine proper application of the model. The receptor site coordinates in the examples identify the analyses as either hot spot or Environmental Impact Statement studies. The height of two metres represents approximate breathing height (over 1.5 metres). Monitor-siting guides would have dictated an elevation near three metres. SIMCO models all line sources as at-grade with surrounding terrain. Although receptor height is a variable input, it is relative to the same ground elevation as the source(s). Appropriate center of lane to receptor set-back distance will vary according to siting criteria guidelines. What is considered reasonable (or practical) can vary based on the objective, the type of study, and particular circumstances at a site. It should be recognized that SIMCO assumes year-round exposure at a receptor. The probability of whether an actual receptor occupies a site on less frequent periodic intervals is not accounted for in the model. A site should, at a minimum, represent a location where the potential to violate the NAAQS's is high and where a member of the general public would have continuous year-round access (i.e., exposure). As previously stated in this report, SIMCO computes the probability of violation based on a maximum likelihood analysis and provides additional information pertaining to the magnitudes and frequencies of carbon monoxide concentrations. The results of the maximum likelihood analysis are the preferred evaluative statistics as discussed by Carpenter in A Procedure for Estimating the Frequency Distribution of CO Levels in the Micro-Region of a Highway, June 1979, Virginia Highway and Transportation Research Council. Additional information is provided by SIMCO for research and comparison purposes. The maximum likelihood analyses are based on a simulated history of CO concentrations. The output item Pl is the probability of any random one-hour concentration being greater than the specified standard. The output item POl is the probability of any random one-hour concentration less than the standard being followed by a one-hour concentration greater than the standard. The eight-hour maximum likelihood analysis is similar to the one-hour analysis. The only major difference is that the eight-hour analysis is based on overlapping eight-hour average concentrations. In the lognormal (Larsen 1971) analysis performed by SIMCO, pollution levels are assumed to be identically distributed, sequentially independent random variables from a lognormal distribution. (An assumption which is not generally accepted.) SIMCO produces estimates of the maximum and second maximum concentration estimates based on the geometric mean and standard geometric deviation of the simulated levels. Using the mean and standard deviations of the natural logarithms from the example printout, and a normal cumulative distribution table, the Larsen one-hour probability of violating the NAAQS can be determined by first examining the area of probability (P_{t} , or $1-F(\chi)$) defined
above the test point of Z standard deviations where # Z = ln (X ppm) - (Mean of the ln of the concentrations) (Standard deviation of the ln of the concentrations and X = the specified standard. The probability (P_t) corresponding to the test point Z may be translated to the probability of exceeding the specified standard twice or more in any random year by substituting the value (P_t) into the equation Probability of Violation = $$1 - [1 - (P_t)]^{8,760} - 8760 (P_t) [1 - (P_t)]^{8,759}$$ In the binomial calendar year analysis performed by SIMCO, each simulated calendar year is tested for two or more one-hour concentrations exceeding the standard. Assuming independence between successive calendar years, the fraction of calendar years having two or more concentrations above the standard is the probability of violation. The yearly average analysis performed by SIMCO provides the averages and standard deviations of the calendar-year average hour concentrations with and without the modeled highway sources. These statistics are similar to those traditionally found in monitoring summaries. The probability of violating a yearly-average hourly standard may be determined from these parameters by first determining Z as and then finding the probability of exceeding Z. #### Examples The specific scenarios and analysis results for each example are discussed below. Dimensional illustrations of the site geometry and computer output for each example are also provided for reference. Data inputs prepared as described in the main text are provided on the computer output of each example. #### Example A General Description In this example a study site adjacent to a six-lane, limited access highway is examined. The receptor is approximately eleven metres west of the center of the nearest lane. The highway is aligned in a north-south direction and carries bi-directional traffic of moderate volume (refer to Figure A-1 and the computer output sheets for example A). Northbound traffic is heaviest in the morning. Southbound traffic is heaviest in evening. Hot and cold vehicle operation modes vary by hour, but not by direction of travel. Monthly and day of week traffic and emission patterns do not vary appreciably. Average vehicle speed (posted speed) is 35 miles per hour (56.3 km/hr) and decreases approximately four miles per hour per thousand vehicles per hour per lane. The background CO (without the highway) is low to moderate (this fact is not readily apparent from the input). The data describe conditions for a nominal year of 1980. Ten years of hourly CO concentrations are simulated using ten years of meteorological data. #### Analysis of Results The maximum likelihood analysis shows that for this example the probability of violating the one-hour NAAQS is zero. The probability of violating the one-hour NAAQS with only CO background is, logically, also zero. The probability of violation assuming a lognormal fit of the simulated concentrations is also zero. This estimate was calculated using a test point, Z, of 4.93, which corresponds to a Pt below 0.000001. The binomial calendar year analysis also shows zero as the one-hour probability of violation. The maximum one-hour simulated total concentration given in the output histogram is in the 19 to 20 ppm range and is higher than the 15 ppm maximum estimate based on the lognormal fit of the simulated concentrations. The maximum likelihood analysis eighthour probability of violation is zero. In view of these statistics the facility, as modeled for the nominal year, would not result in a violation of the NAAQS's at the hypothetical site. Figure A-1. Example A. | 72. SPEED. SLOPE 11. 0. 45277. 550.03040 72. SPEED. SLOPE 12. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Y2,
Y2,
Y2,
Y2,
Y2,
Y2,
Y2, | 18. | | | | | | | | | | | |--|---------------------------------------|---------------------------------------|---|--|--|--------|--------------|---------------------------
--|---|-------------------------------------|--|--------|------| | 74. SPEED SLUPE 14. 0. 33427. 353.3040 74. SPEED SLUPE 14. 0. 33427. 350.3040 74. SPEED SLUPE 18. 0. 10. 105427. 350.3040 74. SPEED SLUPE 27. 0. 105. 105427. 350.3040 74. SPEED SLUPE 27. 0. 105427. 350.3040 74. SPEED SLUPE -36. 488. 1127. 350.3040 74. SPEED SLUPE -45. 488. 11. 0. 350.3040 74. SPEED SLUPE -27. 488. 12. 27. 37. 370.3040 74. SPEED SLUPE -27. 488. 12. 27. 37. 370.3040 74. SPEED SLUPE -27. 488. 12. 27. 37. 370.3040 74. SPEED SLUPE -27. 488. 12. 27. 37. 370.3040 74. SPEED SLUPE -27. 488. 12. 27. 37. 370.3040 74. SPEED SLUPE -27. 488. 12. 27. 37. 370.3040 74. SPEED SLUPE -27. 488. 12. 27. 37. 27. 370.3040 74. SPEED SLUPE -27. 488. 12. 27. 37. 27. 37. 270.3040 74. SPEED SLUPE -27. 488. 12. 27. 27. 27. 27. 27. 27. 27. 27. 27. 2 | | X X X X | Y21
Y21
Y21
Y21
Y22
Y23 | الد
الدي
الدي | | | .0 | 35. | -427. | 35. | 0+00-0- | The state of s | | | | 74. SPEED. SLUDPE 27. 0. 121427. 350.0304 74. SPEED. SLUDPE 27. 0. 121427. 350.0304 74. SPEED. SLUDPE 27. 0. 125427. 350.0304 74. SPEED. SLUDPE 27. 0. 125427. 350.0304 74. SPEED. SLUDPE 24. 48. 11. 0. 350.0304 74. SPEED. SLUDPE 27. 48. 11. 0. 350.0304 74. SPEED. SLUDPE 27. 48. 11. 0. 350.0304 74. SPEED. SLUDPE 27. 48. 13. 31. 231. 231. 231. 231. 231. 231. 231. | | X | Y21
Y21
Y21
Y21 | : · | | 4. | • 0 | 96. | -427. | -65 | -0.0040 | | | | | 71. SPEED: SIGNE 30. 0. 135. 0.277. 55. 0.0330 72. SPEED: SIGNE -45. 488. 10. 0. 35. 0.3340 72. SPEED: SLOPE -45. 488. 10. 0. 35. 0.3340 72. SPEED: SLOPE -45. 488. 10. 0. 35. 0.3340 72. SPEED: SLOPE -45. 488. 10. 0. 35. 0.3340 72. SPEED: SLOPE -23. 488. 10. 0. 35. 0.3340 72. SPEED: SLOPE -23. 488. 34. 0. 35. 0. 2040 72. SPEED: SLOPE -23. 488. 34. 0. 35. 0. 2040 72. SPEED: SLOPE -23. 488. 34. 0. 35. 0. 23. 231. 231. 2 72. SPEED: SLOPE -24. 488. 34. 0. 35. 0. 23. 231. 2 72. SPEED: SLOPE -25. 488. 34. 0. 35. 0. 23. 231. 2 72. SPEED: SLOPE -26. 488. 34. 0. 35. 0. 23. 231. 2 72. SPEED: SLOPE -27. 488. 34. 0. 35. 0. 231. 231. 2 72. SPEED: SLOPE -27. 488. 34. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 34. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 34. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 34. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 34. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 34. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 34. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 34. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 34. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 34. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 34. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 34. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 34. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 35. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 35. 0. 35. 0. 231. 2 72. SPEED: SLOPE -27. 488. 35. 0 | | Y 1, | Y2,
Y2,
Y2, | 7 7 | | · . | • | | -421. | υ κ
υ κ | 0.00.0- | | | | | 72. SPEED: SLIDER -45. 488. 11. 0427. 350.0349. 72. SPEED: SLIDER -45. 488. 11. 0. 350.0340. 72. SPEED: SLIDER -45. 488. 14. 0. 350.0340. 72. SPEED: SLIDER -45. 488. 14. 0. 350.0340. 72. SPEED: SLIDER -45. 488. 15. 0. 350.0340. 72. SPEED: SLIDER -45. 488. 15. 0. 350.0340. 72. SPEED: SLIDER -45. 488. 27. 0. 350.0340. 72. SPEED: SLIDER
-27. 27. 27. 27. 27. 27. 27. 27. 27. 27 | | Y 1. | Y2.
Y2,
Y2. | 2. | | 0. | .0 | 105. | -427. | 35. | -0.0040 | THE R. P. LEWIS CO., LANSING, MICH. LANSING, MICH. | | - | | 231, 231, 231, 231, 231, 231, 231, 231, | | | Y2,
Y2, | SL | | 4. | 0 | 109. | -421. | 35. | -0.03340 | | | | | 72, 9FEPD, 5LUPE -41. 488. 15. 0. 350.0340 72, SPEED, SLUPE -41. 488. 15. 0. 350.0340 72, SPEED, SLUPE -23. 488. 27. 0. 350.0340 72, SPEED, SLUPE -22. 488. 34. 31. 231. 231. 231. 231. 231. 231. 231. | | * .
> . | 721 | 22.5 | ı | | .88. | : | ं | 35. | 0+00.0- | | | | | 747. SPEED: SLOPE | | - T T | ر
> | 7 5 | | | 38. | - + - | • | | 0 0 0 | | | | | Y2. SPEED, SLUPF -27. 488. 39. 5. 550.040 Y2. SPEED, SLUPF -27. 488. 34. 0. 550.040 Y2. SPEED, SLUPF -27. 488. 34. 0. 550.040 Y2. SPEED, SLUPF -27. 488. 34. 0. 51. 231. 231. 231. 231. 231. 231. 231. 23 | |
- > | 7.2 | 7 7 | | | • 0 0
0 0 | 27. | . | | 0.0040 | | | | | 721. SPEFDL SLOPE -21. 488. 34. 34. 353.0010 231. 231. 231. 231. 231. 231. 231. 231. | - | . Y 1, | ۲2, | 75 | - | | 88. | 30. | .0 | 35. | -0.0040 | | | | | VY DUIY GAS TRUCKS BY SCURCE 2.0 | | Y 11. X | Y21 | 7 | - | 4 | 88. | 34. | C | 15. | -0.00,00 | | | | | 711. 731. 231. 231. 231. 231. 231. 231. 231. 2 | SMC | TO CSC |) | and the same of th | A COMPANY OF THE PROPERTY OF THE PROPERTY OF | | | | e de la companya l | | en un dammanunt von unt disposition | | | | | VY DUIY GAS TRUCKS BY STURCE 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 | P.C.F. | | 231. | 231. | 231. | 231. | 231. | 231. | 231. | 231. | 231. | 231. | 231. | | | SEL TRUCKS FY SOURCE 1.5 | RAG | i | EAVY DUT | GAS T | λ | SOURCE | | | | | | | | | | SEL TRUCKS BY SDURCE 1.5 | | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | | | | | | | HT TRUCKS BY SOURCE 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 | RAG | C PERCENT D | 1 1 | S BY | SOURCE | | | | | | | | | | | HT TRUCKS BY SOURCE 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 | | •i | | • | • | • | • | • | • | • i | • | • 1 | • | | | START OPERATION BY SQURCE 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | PERCENT | | S BY | JURCE | | | | | | | | | | | 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 | | | | | | | | | | | | | | | | START OPERATION BY SQURCE 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 | | 0.0 | 0.9 | 0.9 | 0.9 | 6.0 | 6.0 | 6.0 | | 0.9 | 9 | 1 • 1 | 0.9 | | | T OPERATION BY SCURCE 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 | RAG | E PERCENT H | } | | | URGE | | | | THE ART AND THE PERSON OF | | Alam galammatay bay and a property of the second acts. | | | | T OPERATION BY SCURCE 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 | | 12.0 | 2 | C1 | 2 | | CI | ~ | 2 | 12.0 | 12. | 2 | \sim | | | T DPERATION BY SCURCE 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 | | | | | | 1 1 | | | | | | 1 | | | | GAS TRUCK, DIESEL TRUCK, LIGHT TRUCK, HDF STARF, AND COLD STARF FACTURS BY 0,8800 0,8800 0,8800 0,8800 0,3800 0,8800 0,8800 0,3800 0,8800 0,8 1,0000 1,0000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,0 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,0 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,0 1,000 1 | F A C | PERCENT | _ | OPERA | Β. | OURCE | | | | | | | | | | IC VOLUME, HEAVY DUTY GAS TRUCK, DIESEL TRUCK, LIGHT TRUCK, HOF STARF, AND COLD START FACTURS BY U. 3800 0.88000 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.88000 0.88 | | 9 | | 16.9 | 9 | 9 | 0 | 0 | C | j • | 0. | | 6. | | | U. 3800 0.8800 0.8800 0.8800 0.8800 0.8800 0.3800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800 0.8000 0 | FIC | VOLUAE, HE. | AVY DUTY | GAS TR | 1 | , , | 1 1 | TRUCK, H | 1 1 | AND | 1 1 | FACTUR | 1 1 | F OK | | 1,0000
1,0000 1, | 7. | 0.3800 | 0.8800 | 0.8800 | 0.8800 | 0.8800 | 0.8400 | 0.3830 | 0,8800 | 0.8830 | - 1 | 0.8800 | 0.8800 | | | 1,0000 | - 1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.4000 | | 1.0000 | 1.0000 | | | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 00000- | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | | - 5 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | 1.0000 | 1.0000 | | | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 | 5 | 1.000 | 1.0000 | 1.0000 | 1.0000 | 1 0000 | | manufacture of the second | | | 1 | | | | | 3. | | (,,) | 4 | The second secon | | | | | | | | The second second second second second | | | | | | | | | And the second s | | | | | | | | | | | | | | | | and the second s | | and the same of th | | | | | | | | | | | | | | |--------|---------|----------|---------|--|---------|---------|----------|--------|----------|---------|---------|--|-----------|---------|------------|---------|---------|---------|---------|--------|--|--------|--------|---------|--------|--------|-----------|--------|--------|--------|---------------|---------|--------|---------|--------|--------|--|----------------
--|--------|--------|---------|-----------|--------|---------|--------|---|---------|---------|----------|--------------|--------| | 1.0000 | 1.0000 | 1.00.00 | 1.0030 | 0.42.0 | 1.0000 | 1,0000 | 1.0200 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.0202 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1 0000 | 1.0000 | 1.0000 | 1.0300 | 1.0000 | 1.0400 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0800 | 1.0300 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0600 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0100 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9900 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | -0056-0- | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0000 | 1,0000 | 1.0200 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0400 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0800 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0600 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0100 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9900 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | | 1.0000 | 1.0000 | 1.0000. | 1.0000 | 0,050.0 | 00000 | 1.00000 | 1.0000 | 1.0000 | 2007 | 0000.1 | 1.0000 | 1,0000 | 1.0300 | 1.0200 | 1.0000 | 1.0000 | 1,2000 | 1.0000 | 1.000 | 00001 | 1.0000 | 1,0000 | 1.0000 | 1.0400 | 0000 | 1.0000 | 1.0000 | 1.0000 | 1.0800 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0300 | 1.0000 | 1.0000 | 1.0000 | 000001 | 1.0000 | 1.0000 | 1.0000 | 00000 | 1.0100 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9900 | 1.0000 | 1.0000 | 00000 | 1,0000 | | 1.0000 | 1.0033 | 1.0000 | 1.0000 | 0.658.0 | 1.00.10 | 00000 | 0000*1 | 1.0000 | | 00000 | 1.0000 | 1.0000 | 1.3030 | 1.0200 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1 2000 | 0000 | 1.0000 | 1.0000 | 1.0000 | 1.0400 | 00000 | 1.0000 | 1.0000 | 1.0000 | 1,3800 | 0000 | 1.0000 | 0000.1 | 1.0000 | 1.0000 | 1.3000 | 0000.1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0000-1 | 1.0100 | 1.0000 | 1.0000 | 00001 | 1.0000 | 0.9900 | 1.0000 | 1.0000 | 0000 | 1.0000 | | 1.0000 | 1.0000 | .1.0000. | 1.0000 | 0.020.0 | 1.0000 | 1.0000 | 1.0004 | 1.0000 | 1,000 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.3200 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.00.00 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.0400 | 0000.1 | 1.0000 | 1.0000 | 1.0000 | 1,0800 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1 00000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | 0000 | 1.0100 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9900 | 1,0000 | 1.0000 | 0000-1 | 1.0000 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.52.0 | 1,0000 | 1.0000 | טטטטיין. | 1.0999 | | 1,0000 | 1.00.00 | 1,0000 | 1.0000 | 1.02.00 | 0000.1 | 1.0000 | 1,0000 | 1.0000 | 1.04.10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0400 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,3300 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0333 | 1.0000 | 1.3000 | 1,0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.00:10 | 1.0000 | 1.0000 | 1.0030 | 1.0000 | 1.0300 | 0.66.0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | 1.0350 | 1.0300 | 0000-1 | 1.0000 | 0.9500 | 1.0000 | 1.0000 | 1.0369 | 1.0300 | 1.0200 | 1.0000 | 1.0000 | 1,000 | 1.0000 | 1.0200 | 1.0000 | 1.0000 | 1,0000 | 1.0300 | 0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0400 | 1,0000 | 1.0000 | 1.0000 | 1.0000 | 1.0900 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0300 | 1.0000 | 1.0000 | 1.0300 | 1.0000 | 1.0000 | 1.0000 | 1.0300 | 00001 | 1.0300 | 1.0000 | 1.0000 | 1.0000 | 0000 | 0.66.0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | D 35 00 | 1,0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1,0200 | 1.0000 | 1.0000 | 1,0000. | 1.0000 | 1.0400 | 1.0000 | 1,0000 | 1,0000 | 1.0000 | 1.0400 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0800 | 1.0000 | 1 0000 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0000 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | 1.0000 | | 1.0000. | 1.0000 | 0.35.0. | | 1.0000 | 1.0000 | | α | \circ | 1.0000 | \circ | 0 | 1,0200 | 99 | 1.0000 | Q | \circ | 90 | 1.0000 | 1.0000 | 0 | 1.0000 | \circ | 1.0000 | 1.0000 | 20 | 1.0000 | 1,0000 | 0 | 1.0000 | \circ | 1.0000 | 1.0300 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0300 | 20 | 1.0000 | 1.0000 | 1.0000 | 0.66.0 | 0 | \circ | 1.0000 | 1.0000 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.25.0 | 1.0000 | 0000 | 00001 | 1.0000 | 1.0000 | 1.0000 | 0000 | 0000 • 1 | 1.0000 | 1.0200 | 1.0000 | 0000 | 1,0000 | 1.0000 | 1.0400 | 0000 | 1.0000 | 1.0000 | 1.0000 | 1.0400 | 1.0000 | 1.0000 | 000001 | 1.0000 | 1.0800 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0300 | 1.0000 | 1.0000 | O. | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | 1.0000 | 1.0000 | 1.0000 | 0.9900 | 100 | 000 | 1.0000 | 1.0000 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | U.35.JU | 1.00.00 | 1.0000 | 0000-1 | 1.0000 | 1.0020 | 1.0030 | 0000 | 1.0000 | 1.0000 | 1.0200 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0400 | 00001 | 1.0000 | 1.0000 | 1.0000 | 1,0400 | 1.0000 | 1,0000 | 0000 | 1.0000 | 1,0900 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0300 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | 00000.1 | 1.0000 | 1,0000 | 1.0000 | 0000.1 | 0.66.0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | 1.0700 | 1.0000 | 1.0000 | 1.00.10 | | 1,0000 | 1.0020 | 0000 | 1.0303 | 1.0202 | 1,0000 | 1.00.1 | 1.0000 | 1.0000 | 1.4210 | 1.0000 | 1.00.00 | 00001 | 0 | 1.0100 | 1.0000 | 0000. | : C | 1.0000 | | 1.0000 | 1,0000 | 1.0000 | 1.0000 | 1,0800 | 1.0300 | 0000 | 1.0003 | 1.0330 | 0000 | 1.0000 | 1.0000 | 1:0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.00.10 | 1.0000 | 1.0900 | 1.0003 | 00001 | 0.65*(| 1.0300 | 1.0330 | 1.0300 | 1.0000 | | | | 2 HS | 2 CS | 3.14 | 3 61 | | 7 L | 3 CS | İ | | 4.01 | 4 HS | i . | - 1 | | 5 17 | 5 HS | | | 6 6T | 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - | ı | · | 7 1 7 | 7 61 | 7 11 | 110 | 7 65 | | | 9 71
8 1 T | | Ì | - 1 | 100 | 1 | I | \$ C S | 75 | | | I) | 20 0 | | 10.1 | 1 | 2 H 7 | | 2 01 | 2 DT | 7 LT | | | MONTH | I I Z Z | MENITH | MONTH | MCNTH | MUNITH | | E E E | MCNTH | _ | = : | MUNIM | I I NOW | :
: == | _ | T : | MUNIT | : = | I | | | HLNUE | : = | | MUNIH | | MCNTH | Z H Z C X | TINOS | | _ | N I I | | | | NO. | 1 | _ | NCN THE SECOND | 1- | - | - | | MONTH POR | MONTH | MONTH 1 | MONTH | M C T T T T T T T T T T T T T T T T T T | MONTH I | MCNTH L | MCN TH 1 | MINOW THINDS | 2 2 | | | | | ! | A- | . 8 | | | | | | ٠٠, | | | | | | - | | | | | | | | | j. | | j | | | | 1. 1. 1. 1. 1. 1. 1. 1. | DAY 1 TV | 0. 6400 | 0.8800 | 0.8800 | 0.8400 | 0083.0 | 0.8800 | 0.88.0 | 0.8800 | 0.8800 | 0.8300 | 0.8800 | 0.8800 | |
--|---------------|--------------|---------|------------------|----------|---------|---------|------------|--------|---------|--------|---------|----------|--| | 1.1. | - | | • | 1.0000 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | THE RESERVE THE PROPERTY OF TH | | 1 | - | 1, 42.20 | 1,0000 | 1,0000 | 1.0000 | 1.0000 | 1.0000 | 1.000 | 1.000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, | | 1.00.0 | 1.0030 | 1.0000 | 1.0000 | 1,0000 | 1.0300 | 1.0030 | 1.0000 | 1.0030 | 1.0000 | 1.0000 | 1.0000 | | | 10.000 1.0000 1 | | 1,0000 | 1.0000 | • | 1.0000 | 0000 | 00000 | ٦¦- | 0000 | 0000 | 0000 | 1.0000 | 1.0000 | | | 2 11 1 1233 1 1090 1 10 | ⊸ ი | 1.0010 | • | _
_
_
_ | 00000.0 | 0000 | 0.0000 | ⊣ Ċ | 00000 | 0000 | 0000.0 | 00000 | 0000 | | | 2 11 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 | 0000 | • • | •: • | 1.0000 | 1.0000 | 1.0000 | ` - | 1.0000 | 1.0000 | 1.0300 | 1.0000 | 1.0000 | | | 7 11 1.000 1 | ۰ د | 1.0000 | 00001 | • | 1,0000 | 1.0000 | 1.0000 | | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | | | 17. 1.0000 1.00 | AY 2 | 1.0000 | 1.3030 | | 1.0000 | 1.0000 | 1.0300 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0300 | | | 1.17 1.0300 1.0000 1.0 | AY 2 | • | 0000 | • | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0000 | 1.0000 | 0000.1 | 1.0000 | 000001 | | | 1, | A Y
A Y | | 0.0030 | 0.0000 | 0.9800 | 0.9800 | 0.6300 | 0.0000 | 0.9300 | 1.0000 | 0.0000 | 0.9800 | 1.0000 | | | 1 | ٦ | • • | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0300 | 1.00000 | 1.0000 | 1.0000 | 1.0000 | The second secon | | 1.17 1.07 | ~ | • 1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,9000 | 1.0000 | 1.0000 | | | 3 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Ç | • | 1.0000 | • | 1.0000 | 1.0000 | 1.0360 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | 1, 173.0 1, 173.0 1, 175.0 | ~ | 1.0000 | 1.00.0 | 1.0000 | 1.0000 | 1.0000 | 1.0300 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | 4 17 1 1000 1
1000 1 10 | с | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | 1,000 1,00 | + 4 | 0000 | 1.0000 | 0000 | 1 • 0000 | 1.0000 | 0000 | 000001 | 1.0000 | 00000 | 00001 | 0000 | 1.0000 | | | 4 11 1. 1.0.304 1.0009 | 2 4 | 1.0030 | 1.0000 | 1.0000 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | 4 15 1.0000 1.0 | 7 | 1.0300 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0030 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | 4 CS 1.0000 1.00 | 4 | 1.0003 | 1.0000 | • | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | \$ CT CT CT CT CT CT CT CT | 4 n | 1.0000 | 1.0000 | 1.0000 | 90 | 1. 0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | \$ 6.0 1,000
1,000 | يا م | 0000 | 1.0000 | • . | 3 | 1.0000 | 1.0000 | 1.0000 | 1 0000 | 1.0200 | 0000 | 0000 | 1 0000 | | | 5 HZ 1 (10000 1. | ۍ د | 0000 | 1.0000 | • • | ़ | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | 1.0000 1 | 5 | 1.0000 | 1.0000 | 1.0000 | 0. | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | 5 C | 5 | 1.0000 | 1.0000 | 1.0000 | 9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | 6 67 1.0000 1.000 | s d | 1.0000 | 1.0000 | 1.0000 | ٦. | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.3030 | 1.0000 | 1.0000 | 1.0000 | | | 6 LT 1.0000 1.00 | 9 | 1.0000 | 1.0000 | | 10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | 6 K1 1 1.0003 1.0000
1.0000 1. | 9 | 1,0000 | 1.0000 | | 의 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | • 1 | | | F CS (1.033) 1.0000 1.0 | s s | 1.0000 | 1.0000 | • | ç, c | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | 7 IV 619400 0.98400 0.99400 0.99800 0. | 2 | 0000 | 0000 | | | 0000 | 1.0000 | 0000 | 00000 | 0000 | 2000 | 0000 | 0000 | | | 7 61 1.0000 0.2700 0.2700 0.3600 0.3600 0.2700 0.2700 0.3600 0.3600 0.10 | ; - | 0.9400 | 0.9800 | 980 | 5. | | 0.8800 | 0.9830 | | 0.4800 | 0.9300 | 0.9800 | 0.9800 | | | THAT I TOURD | 2 7 | 1.3000 | • | ٠ | 0, | • | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | TRAFFIC VALUME, HEAVY BUIY GAS TRUCK, DIESEL TRUCK, LIGHT TRUCK, HUT STAKT, A., D CULD START FACTURES BY SDURGE FOR LOUGO 1.0000 | A 7 / D | 1.0000 | | • | 이 | • | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0000 | 1.0000 | 1.0000 | | | TRAFFIC WILUME, HEAVY DUIY GAS TRUCK, DIESEL TRUCK, LIGHT TRUCK, HUT STAKT, A.A COLD STAKT FACTORS BY SOUNCE FOR LIGHT CWILUME, HEAVY DUIY GAS TRUCK, DIESEL TRUCK, LIGHT TRUCK, HUT
STAKT, A.A COLD STAKT FACTORS BY SOUNCE FOR LIGHT CALVING 0.3800 0.3800 0.22700 0.22700 0.1400 0.10 | 1 | | 1.0000 | | | • • | 1.0000 | 00001 | 1.0000 | 1.0000 | 0000 | 1.0000 | 1.0000 | | | TRAFFIC VALUME, HEAVY DUIY GAS TRUCK, DIESEL TRUCK, LIGHT TRUCK, HUT STAKT, A,0 CULD START FACTURS BY SDURCE FOR STAND 0.3600 0.3600 0.2700 | AY 7 C | | 1.0000 | 000 | 0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | TV U. 36.00 0.36.00 0.2700 0.2700 0.2700 0.36.00 0.36.00 0.36.00 0.1400 0.1400 0.1400 0.1400 0.1000 0.1000 0.1400 0.1000 0.1200 | TGTAL TRAFFIC | VOLUME, HE | 4 V Y | A S | K, 01E | 1 1 | | : 1 | 1 1 | AND COL | 1 1 | FACTURS | SOURCE F | ~ | | Octobrol | - | • 1 | 0.3600 | • 36 | .2 | 0.2700 | 0.2700 | 0.3600 | 0.3600 | 0.3600 | C.2700 | 0.2700 | • | | | 1 1 0.11700 0.1170 | - | • | 0.0700 | ٠ | ∹. | 0.1400 | 0.1400 | 0.0700 | 0.0700 | 0.0700 | 0.1400 | 0.1400 | 0.1400 | | | 1 115 | - - | • | 0.1000 | • | 0.1000 | • | 0001.0 | 0.1000 | 0001.0 | 0.1000 | 0.1000 | 0.1000 | 0.1.000 | · ···································· | | 1 CS 1.4430 1.4460 1.4460 1.4400 1.4400 1.4460 1.4400 0.1100 0.11 | | | 0.37.30 | | 0.3200 | | 0.3200 | 0.3200 | 0.3700 | 0.3700 | 0.3200 | 0.3200 | 0.2230 | | | 2 HY 0.2200 0.2200
0.2200 0.1100 0.1100 0.1100 0.2200 0.2200 0.1100 0.1100 2 GT 0.0700 0.0700 0.0700 0.0700 0.0700 0.0700 0.0700 0.07700 0.07700 0.07700 0.07700 0.07700 2 LT 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.0700 2 HS 0.5200 0.520 | - | , . | 4. | 4 | 1.4400 | | 1.4400 | 1.4400 | 1.4400 | 1.4400 | 1.4400 | 1.4400 | 1.4400 | | | 2 0T 0.0700 0.07 | c. | | 4 | 2 | 4:1 | • : | 0.1100 | 0.2200 | 0.2200 | 0.2200 | 0.1130 | 0.1100 | 0.1100 | | | 2 H5 | ~ ~ | • | 9 0 | 0 0 | | 0.0700 | 0.0700 | 0.0700 | 0010.0 | 0.0700 | 0.0730 | 0.0700 | 0.0700 | | | 2 HS | 2 | | |) : - | 0.0700 | 0.0100 | • • | 0.100 | 0.1000 | 0.1300 | 0.0700 | 0.0700 | 0.0700 | | | 2 CS 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 1.3000 3 TV 0.1500 0.1500 0.1500 0.1100 0.1100 0.1100 0.1100 0.1500 0.1500 0.1500 0.1100 0.1100 0.1100 0.1500 0.1500 0.1500 0.1100 0.1100 0.1100 0.1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1000 | 2 H | . 520 | - | 5 | 0.5200 | 0.5200 | • [| 0.5200 | 0.5200 | 0.5200 | 0.5200 | 0.5200 | 0.5200 | | | 3 6f 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | - C
-> ≻ | . 300
150 | ~ ~ | 1.3000 | 1.3000 | 1.3000 | 1.3000 | 1.3000 | 1.3000 | 1.5000 | 1.3300 | 1.3000 | 1.3000 | | | 3 01 6.0 3.0 0.0 0.0 0.1000 0.1000 0.1000 0.0 0.0 | 3 6 | | 0 | • • | 0.0700 | 0.0700 | 0.0700 | 0.0 | | 0.0 | 0.0700 | 0.0700 | 0.0700 | The state of s | | 3-17 - 0.0700 0.0790 0.1000 0.1000 0.1000 0.1000 0.0700 0.0700 0.0700 0.1000 | 3.0 | 9 | 0 | 0 | 0.1000 | 0.1000 | 0.1000 | 0.0 | 0.0 | 0.0 | 0.1300 | 0.1000 | 0.1000 | | | GDA OF DELATE DE | m r | ਼ | .0. | • | 0.1000 | | 0.1300 | 0.070.0 | 0.0700 | 0.0700 | 0.1300 | 0.1000 | 0.1003 |) (| | | | · | i. | C . | | è. | 06./9.0 | | 00/4.6 | | 110000 | 00.00 | 00.4.0 | 1 | | 0.0200 | 0.6000 | 0060. | 0700 | 0700 | • | .1830 | 1.46/10 | 1900 | 3600 | 6900 | .2000 | .9700 | 30.00 | .6 500 | .2300 | 0800 | 1900 | .3100 | •0200 | 2 3 0 0 | 1600 | 0006 | .3800 | 3,000 | 9600 | | 7800 | 4800 | 5000 | 4900 | 8300
3800 | 2000 | 3600 | .6000 | 7300 | 8300 | 2400 | 000 | | 3900 | . 3900 | 3900
0200
6600 | 3900
0200
5600
3100 | 3900
0200
6600
3100
7900 | 3900
2500
3100
7900 | 3900
0200
6600
3100
7900
5000 | 39 00
5 00
31 00
79 00
5 0 0 0
5 0 0 0
5 0 0 0 | 3900
6600
3100
7900
2400
3000
26200
2100 | 3900
0200
6600
3100
7900
5000
2400
3000
6200
7600 | 3900
6600
3100
7900
2400
2400
2200
6200
7600 | 3900
3100
3100
3100
2400
2600
2700
2100
7600
3800 | |----------------------|-----------|---------------------|---------------|--------|---|------------|-------------|----------|--------|--------|--------|--------|-----------|------------|--------------|--------|--------|--------|--------|---------|--------|----------|---------|--------|----------|---------------|---------|--------|-----------|-----------|--------------|--------|--------------|--------|--------|----------|---------|------------|--------|-----------|--------|----------------------|------------------------------|--------------------------------------|---|--|--|---|--|--|--| | | 1 2400 | 0 | 0 00 <i>1</i> | 700 | | 7 | 2200 | 006 | 7 | 9 9 | - | - | | ٠. | 1.2300 I. | 1- | (3 | 00 2 | 2 2 | 00 | 1 | _ | 3800 2. | i VI (| 7 | 2300 1. | | _ | .6000 2.6 | 2 | | 7 | 1.3600 1. | 1 | | | 1 | _ | | • | 200 | 000 | 0000 | 00000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | 000000000000000000000000000000000000000 | | | 1 | 2.000 0.0 | ! | 0 | 0 | 0.0 | . . | 000 |
000 |): C | , Ç | | | .3000 1.3 | | | 1- | ~ | 2. | 2 | - | | o | 2 | તે (| 7 | | | | 2 | | .8300 1.8 | 1 | | 1 | - 1 | | 1 | - | 2 | | ~, | ~ - | 2 | ~ - 0 | 20-6 | 2 - 0 - 2 - 2 | 2 - 1 0 - 1 - 2 - 2 - 1 | 2 - 0 - 2 | 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 0 2 0 | 2 - 0 - 2 - 0 - 1 - 2 - 0 - 1 - 2 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 | | 935 | - | · つ | 00 | | 0 | 1. | |) (| | 0 | - | ,4 | ٦. | | 4 (. | 1- | (7) | 2 | 2 | | - | 0 | 7 | (/ (| 7 | - - | | _ | 2 | 7 | | 7 | ··· | 2 | | | | ′ – | | 1 12 | - | | | | | 77070 | | | | | | | 233 | 0.0000 | د ٠
ا | ი:
ი: | 0 | 7 | | ⊃ ;⊂ | 2 | į. | ر ر | | , | | -
-
 | → ⊂ | - | . 🔾 | 7 | 7 | | | | 7 | ∾ . | ٠ [٣ | | | | 7 | 7 | ? - | | · | 2. | 7 | ~ . | 4 | ; <u>-</u> | 7 | 1 ~ | - | | - | : | -:-: | - 5 - 6 | 7 7 7 - | 1 2 2 2 1 1 | 0-144-0 | -0-1-7 | | | 0.0
0.0 | 0.0000 | CO 1 7 0 | 0°0 | 0.0500 | | ∹ - | 0.1200 | 0.1000 | | 690 | | 5.7 | 0 | 0069.1 | 0.86.00 | 1.0800 | | 2.6700 | 2.6300 | 1.4000 | 1.1600 | 00.6.0 | 1.150) | 2,4600 | 3.4000 | 1.2300 | 0.7800 | 1.2500 | 2.7600 | 2 • 73 00 | 2.1200 | 00.67 | 1.3100 | 2.8200 | 2.5400 | 2.2500 | 1. 2900 | 1.6400 | 2.5300 | 2 • 24 00 | i • | | ? | • | | | 1 • 51 00
0 • 79 00
1 • 51 00
2 • 46 00
2 • 54 00 | | 1.5100
0.7900
1.5100
2.4600
2.4600
1.9500
1.2100
0.7600 | 1.3100
0.7900
1.7900
2.4600
2.4600
2.4600
1.3500
0.7600 | 1.5100
0.7900
0.7900
2.4600
2.5400
1.9500
1.3500
0.7600
1.3500
1.3500
2.3500 | | | 1,52,10 | | ر
د د
د | 0.0500 | 0.00 | 1.18.00 | 0.00 | 0.1.0 | 0070-0 | 0.6930 | | • : | 1.0100 | 1.6530 | | 1.0800 | | 2.6730 | 2.6300 | 1.4000 | 1.1600 | 0006*0 | 1.1500 | 2.4630 | 3.4000 | 1.23.00 | 0.7330 | 1.2500 | 2.7600 | 2.7300 | 2,1200 | 0.000 | 1.3100 | 2.8230 | 2.5400 | 2.2500 | 0 7800 | 1.0400 | 2.5300 | 2.2430 | 1.7330 | 1.3100 | | 0.67.0 | 0.7900 | 0.7900
1.5100
2.4600 | 0.7900
1.5100
2.4600
2.5400 | 0.7900
1.5100
2.5400
2.5400
1.9500 | 0.7900
1.5100
2.4600
2.5400
1.9500
1.2100
0.7600 | 0.7900
1.5100
2.4600
2.5400
1.9500
1.2100
0.7600
1.3300 | 0.7900
1.5100
2.4600
2.5400
1.9500
1.2100
0.7600
1.3300
2.3300 | | 0.0 | 24.00 | • 0 | 0.0700 | • • | 9 | ~ ` | 0.4500 | • - | 4 7 | | 1.2300 | • | 1.3000 | 1.6303 | 0.8600 | 1.0900 | 2.7900 | 2,3100 | 2.0200 | 1.2300 | • | | 2.3800 | 2.3900 | 0096-7 | 1.7300 | 0.7800 | 1.4800 | 2.6000 | 2.4900 | 1.8300 | 0.7900 | 1.3600 | 2.6700 | 1.7300 | 1.8300 | 7830 | 1,3300 | 2.3900 | | 1.6500 | 1.3100 | | • | • • | | 24
24
30 | | • • • • • • • | | | | | 0.6000 | . 0 | 0.0700 | 0.0700 | 긺 | 1.1800 | 2200 | J | * 60 | r vo | 1.2000 | 1.9700 | 1.3000 | 1.6500 | 0.8600 | 1.0800 | • | 2.3100 | •1 | ٠ | • | ٠ | • | ٠ | 2.5600 | 1, 2300 | 0. 7800 | 1.4800 | 2.6000 | 2.4900 | 1.8300 | 7900 | 1.3600 | 2,6000 | 1.7300 | 1.8300 | 0 7800 | 1.3800 | 2.3900 | 2.0200 | 1.6600 | 1.3100 | C C C | 0067 0 | - 75 6 | 1.5000
2.2400
2.3000 | 1.5000
2.2400
2.3000 | 1.5000
2.2400
2.3000
1.6200 | 1.5000
2.2400
2.3000
1.6200
1.2100
0.7600 | 7. 7900
2. 2400
2. 3000
1. 6200
0. 7600 | 1.5000
2.2400
2.3000
1.6200
1.2100
0.7600
1.3900
2.1100 | | 0.0 | 1. 24.00 | • • | 0.0700 | | • | ~` | 0.4600 | • - | 0.3500 | | | • | 1.3000 | 1.6330 | • | | | 2.3100 | - 41 | • | • 4 | • | 2,3800 | • | 2.9600 | • | 0.7800 | | | | 1.8300 | | | 9 | • 1 | ໝຸເ | 0 7800 | ٠. | 2.3900 | | 9 | | | | | | | | | | | | .020 | • | 0.1000 | • | 20 | 009 | 180 | <u>-</u> - | • • | 0.0700 | 690 | 200 | 530 | 1.0100 | 0.0 | 0.074 | Ö | 6 | ंठ | 9 | ٠,4 | 7 | ŏ. | - | ÷. | 4 | 9 | | 2 | .76 | - | 2.1200 | | - 6 | 8 | • 54 | 25. | - | . 3 | 5 | . 240 | .730 | 310 | 062. | | 510 | 510 | 510
460
540
950 | 510
460
540
950
210 | 510
546
540
950
760 | 510
540
540
950
760
330 | 330
340
340
350
330
330
340 | | 0.0
2.0
3.0230 | - | 0.1000 | • | • • | 09* | | ج ئے | 000 | 7.0 | • | 100 | 0.5300 | 1.0100 | | √ ¤ | • • | • | 2.6700 | 9 | 4 | - | <u>ۍ</u> | | 4. | •)
•) | υ η | ١٠. | ~ | - | | 2.12.30 | | - w | Œ | 3 | ~ . | J, | | . 53 | . 24 | .730 | .310 | . 30
0 | | . 510 | 510 | 510
460
540
950 | 510
460
540
950
210 | . 510
. 540
. 540
. 950
. 760 | 510
540
950
210
760
330 | 510
540
540
350
390
390
390 | | 0.0
0.0
0.0230 | 0. 29.1U | 00110 | | 0.0500 | V. 6200 | • | 0.1500 | <i>-</i> | • . | | | 0.5310 | | 550 | 0.062.1 | 1080 | 9.30 | | - | 4 | - | ~` | | ₹. | Jr ∣∶ | x | - ا | \sim | _ | 1 | 2.1200 | سا ان | س - | œ | S | α | ת ויי | ~ √ | : ' | . ~ | - | 3 | _ | ٠ | 4.1 | N. 2 . R | union union | ania ania vi | 54.)
54.)
54.)
76.0 | AN CALAN CO. WILL WISH | さんりょう クライ きょうしょ | | 4 6T
4 DT
4 LT | 4 HS | 5 17 | | 1 | 5 HS | | 71.9 | - T | 11 4 | | 1 | | 7 61 | - 1 | | 20 6 | ×1 8 |] | 8 DT | | - 1 | | - 1 | | ! | - 1
6
6 | 1 | | 0 | | 10 LT | | 5 - - | | _ | | | ٠, | 2 | | 2 | 2 | 12 CS | • | 3 1 | 2 6 6 | 100 E | 3 H | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 4 3 3 B B B B B B B B B B B B B B B B B | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | HCUR
HGUR
HGUR | HOUR | HOUR | HOUR | HCUR | HOUR | HCUR | HOUR | HOLL | HOUR | HOUP | HOUR | HOUR | HOUR | HOUR | | HOLES | HOUR | HOUR | HOUR | HOUR | HOUR | HOUR | HCUR | 3 | HOUR | HOOK | HOUR | HOUR 1 | | 1 | | 1 | | | | . ہے | 10000 | 288 | HOUR 1 | OUP | | HDUR 1 | | • | HOUR 1 | | | | | | | d d ī S MONTH FOR 8 8 BACKGROUND J. SECRETAL STANDARD DEVLATIONS 94.03 1,9800 1.7700 1.7.00 | ж dd 0 | |---| | THE ESTIMATE OF PI IS 0.0 WITH A STANDARD ERROR OF 0.0 THE ESTIMATE OF POL IS 0.0 WHICH YIELD A PROBABILITY OF VIOLATING THE CO STANDARD OF 0.0 OZC WITH A STANDARD FRROR OF 0.0 OZD | | AUXILIARY PESULIS OBTAINED UNDER VARIGUS ASSUMPTIONS ARE INCLUDED UN THE FULLUMINS PAGE. | FOR THE PREDICTED CO. CUNCENTRATION (NO ASSUMPTIONS) WITH A STAMDARD OF 35.00 PPM. | |---| | THE ESTIVATE OF YEARLY AVERAGE CONCENTRATION IS 0.113885E JI PPM | | THE STANDARD DEVIATION OF YEARLY AVERAGE CONCENTRATION IS 0.337444E-01 PPM | | | | ASSUMING THAT THE ONLY SCURCE OF CO. 15 THE BACKGROUND CO. WITH A STANDARD OF 35.00 PPM | | THE ESTIMATE OF YEARLY AVERAGE CONCENTRATION IS 0.640954E OU PPM | | THE STAMDARD DEVIATION OF YEARLY AVERAGE CONCENTRATION IS 0.326638E-02 PPM | 33.0 .LT. X .LE. 34.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |--|----------|--------|---------|--------|-------|--------|--------|--------|----------|--------|--------|-----|---|---------|---------|--------|---|--------|--|--| | X . LE . 34.0 X . LE . 35.0 X . LE . 36.0 X . LE . 39.0 X . LE . 40.0 X . LE . 42.0 X . LE . 45.0 X . LE . 46.0 X . LE . 46.0 X . LE . 46.0 X . LE . 49.0 X . LE . 49.0 X . LE . 50.0 X . LE . 50.0 |) a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | | | | | . 0 | 0 | 0 | 0 | C | C | 0 | 0 | C | U | O | C | C | 0 | 0 | 0 | 0 | 0 | | Annistrymus mysicharpassonymysta annum socialannassiste. A 190 de mars manufatament um men | | | <u>u</u> | × .LE. | x .1 E. | X
.LE. | X LE. | X .LE. | X .LE. | X .LE. | x . L.E. | X .LE. | х
П | Lm. | X | X · LF. | . L. F. | x .LF. | | × .LE. | AND THE PROPERTY OF PROPER | | | • ! | FREM THE ANALYSIS DE 10 YEARS OF SIMULATION DATA AITH AM ETCHT HOUR STANDARD DE 9.00 PPM PRUBB = 0.0 0/0 SPROBB = 0.0 0/0 | |------|---| **** | į. | | | | | | | | | ,a' | | ## Example B . 1 #### General Description In this example a study site located northeast of an intersection with three road approaches is examined. Each road approach consists of four lanes. The receptor, at its minimum distance from the sources, is east of the northernmost road section approximately five metres from the center of the nearest lane. (Refer to Figure A-2 and computer output sheets for example B). At this point, the receptor is unusually close to the road. The highways carry bi-directional traffic of moderate to heavy volume. Traffic is heaviest in the evening for southbound and westbound lanes. Northbound and eastbound volumes are heaviest in the morning. Hot and cold operation modes vary by time of day, although not by direction. Typical monthly and day-of-week volumes vary only a little. The speeds for the northern and southern road legs are 25 miles per hour (40.2 km/hr) and decrease by four miles per hour per thousand vehicles per hour per lane. The speed for the eastern leg is below the normal posted speed. All vehicles must perform a 90-degree turning movement, which decreases the operating speed for this leg near the intersection. The average speed is 20 miles per hour (32.2 km/hr) and decreases at a rate of six miles per hour per thousand vehicles per hour per lane. The data describe conditions for the nominal year 1980. The same background CO and ten-year meteorological record used in example A were used in this example. ### Analysis of Results The maximum likelihood analysis shows that the probability of violating the one-hour NAAQS is 59.41 percent. This means that the likelihood of exceeding 35 ppm twice or more in any random oneyear period would be 59.41 percent. The probability of violating the one-hour NAAQS with only background CO is zero. This implies that the highways are the major contributors to the high CO concentrations. To determine the probability of violation assuming the lognormal fit, the test point Z is first calculated using 0.297424 and 0.774572, respectively, as the mean and standard deviation of the logarithms of the simulated concentrations. The resultant Z = 4.21 corresponds to a probability of violation of about 0.4 percent. The binomial calendar year analysis provides a probability of violation of 60 percent. The output histogram shows that out of ten years of simulated one-hour concentrations (87,647 hours), 20 one-hour concentrations exceeded 35 ppm. The Larsen lognormal fit estimate of the CO maximum is 25.8 ppm, assuming lognormality of the simulated levels. (Note that the output histogram shows 68 CO levels occurred in excess of 26 ppm.) The eight-hour probability of violation from the maximum likelihood analysis is ll.ll percent. This is the likelihood of continuous eight-hour average concentrations being greater than 9 ppm twice or more in any random one-year period where overlapping periods in which the standard is exceeded are counted as a single occurrence. In view of the proximity of the receptor to the road, this conclusion is not surprising. The likelihood of violating the eight-hour NAAQS may seem surprisingly low (11.11 percent) in view of the one-hour results. However, as indicated earlier, the background CO is low and adverse source-emission and meteorological conditions must persist for periods up to eight hours to yield high eight-hour concentrations. The likelihood of violating the eight-hour NAAQS in any random one-year period is only 11 percent and should not be a primary concern. When analysis results (such as those given in this example for the one-hour probability of violation) are borderline between violating and not violating the standards, the modeler should reexamine his initial assumptions and consider whether his input data could be detailed further. ## EXAMPLES B & C Figure B-1. Examples B & C. | | SOURCE | $\mathbf{x_1}$ | Y ₁ | $\mathbf{x_2}$ | Y 2 | |-----------------------|--------|----------------|----------------|----------------|------| | | 1 | -19 | -25 | -14 | -500 | | | 2 | - 9 | -20 | 300 | - 20 | | | 3 | -19 | -25 | 80 | -500 | | | 4 | -13 | -25 | - 8 | -500 | | NOT TO SCALE | 5 | -10 | -26 | 300 | - 26 | | Y | 6 | -13 | -25 | 92 | 500 | | ★
MN | 7 | -16 | -25 | -11 | -500 | | 1 GN | 8 | -10 | -23 | 300 | - 23 | | 7° 124 MILS 1°34′ | 9 | -16 | -25 | 89 | 500 | | 28 MILS | 10 | -10 | -25 | - 5 | -500 | | | 11 | -10 | -29 | 300 | - 29 | | True North Adjustment | 12 | -10 | -25 | 95 | 500 | | E 3 XII YIL XZI YZI SPEED SIGNE -192514500. 250.0000 E 4 XII YIL XZI YZI SPEED SIGNE -192530500. 50. E 5 XII YIL XZI YZI SPEED SIGNE -192530500. 50. E 6 XII YIL XZI YZI SPEED SIGNE -192530500. 250.0000 E 7 XII YIL XZI YZI SPEED SIGNE -10253020. 250.0000 E 8 XII YIL XZI YZI SPEED SIGNE -10253020. 250.0000 E 1 XII XII XZI YZI SPEED SIGNE -10253020. 250.0000 E 1 XII XII XZI YZI SPEED SIGNE -10253020. 250.0000 E 1 XII XII XZI YZI SPEED SIGNE -1025302020. 250.0000 E 1 XII XII XZI YZI SPEED SIGNE -1025302020. 250.0000 E 1 XII XII XZI YZI SPEED SIGNE -1025302020. 250.0000 E 1 XII XII XZI YZI SPEED SIGNE -102530202020. 250.0000 E 1 XII XII XZI YZI SPEED SIGNE -102530202020202020202 | SOURCI
SOURCI
SOURCI | | DX. DY. 02 | | 00 | 2 | | | | | | | | | | |---|----------------------------|---|-------------|--------|--------|-----------|--------|--------------|--------|--------
--|-----------|------------|---|-----| | E 3 XI, YI, XZ, YZ, SPEEL, SILDPE -19, -25, -19, -500, -20, 0.0040 E 4 XII, YII, XZ, YZ, SPEEL, SILDPE -19, -25, -80, -500, -20, 20, 0.0040 E 5 XI, YII, XZ, YZ, SPEEL, SILDPE -19, -25, -80, -500, -20, 20, 0.0040 E 6 XII, YII, XZ, YZ, SPEEL, SILDPE -10, -25, -80, -500, 25, -0.0040 E 7 XII, YII, XZ, YZ, SPEEL, SILDPE -10, -25, -80, -500, 25, -0.0040 E 10 XII, YII, XZ, YZ, SPEEL, SILDPE -10, -25, -93, -500, 25, -0.0040 E 11 XII, XII, XZ, YZ, SPEEL, SILDPE -10, -25, -93, -93, -20, 25, -0.0040 E 12 XII, YII, XZ, YZ, SPEEL, SILDPE -10, -25, -93, -93, -20, 25, -0.0040 E 12 XII, YII, XZ, YZ, SPEEL, SILDPE -10, -25, -93, -93, -20, 25, -0.0040 E 12 XII, YII, XZ, YZ, SPEEL, SILDPE -10, -25, -93, -93, -20, 25, -0.0040 I AVERAGE PERCENI HEAVY DUIY CAS TRUCKS BY SOURCE 1. AVERAGE PERCENI LIGHT IRUCKS IRUCK, DIESEL IRUCK, LIGHT IRUCK, HOT START, AND COLO START FACTORS BY AVERAGE PERCENI LIGHT IRUCK, LIG | SOURCE
SOURCE
SOURCE | | | | | | | | | | | | | | | | 1 | SOURCE | | ۲۱, | i | SPEED, | 1 | 19. | -25. | -14. | -500. | 25. | 00 | | | | | E 4 XI YIL XZ. YZ. SEREIG SILVE - 102585050202000000 E 6 XI YIL XZ. YZ. SEREIG SILVEE - 102592202020202020202 | SOURCE | | ۲۱, | ł | SPEEC | | 19. | -25. | 80. | 500 | 25. | | | | | | E 5 XII VII XZ 1 YZ SPEED SIDE | ALL MILLS | | X13 | | SPEED | - | 3. | -25. | 80 | -500 | 25. | 0 | | | | | AVERAGE PERCENT HIGHT TRUCKS BY SOUNCE L B | SOURCE | | ¥1, | | SPEED. | | •0• | -26. | 300. | -26. | 20. | 0900.0- | | | | | E 8 XII TIT XXX 7XX 97EED 3107E - 100 - 221 - 110 - 223 - 200 - 200400 E 9 XII TIT XXX 7XX 97EED 3107E - 100 - 221 - 300 - 223 - 200 - 200400 E 10 XII TIT XXX 7XX 97EED 3107E - 100 - 221 - 300 - 223 - 200 - 200400 E 11 XII TIT XXX 7XX 97EED 3107E - 100 - 221 - 300 - 223 - 200400 E 11 XII TIT XXX 7XX 97EED 3107E - 100 - 221 - 300 - 223 - 200400 E 11 XII TIT XXX 7XX 97EED 3107E - 100 - 221 - 300 - 223 - 200 - 200600 E 11 XII TIT XXX 7XX 97EED 3107E - 100 - 221 - 300 - 223 - 200400 I AVERAGE PERCENT HEAVY DUTY GAS TRUCKS BY SOURCE 1 AVERAGE PERCENT LIGHT TRUCKS BY SOURCE 1 AVERAGE PERCENT COLD START OPERATION START AND COLD START FACTOR START AND COLD START START START START START START START ST | SOURCE | | X | 1 | SPEEC | | 3. | -25. | 92. | 500. | 25. | -0.0040 | | | | | E 9 | SUCKL | | - > | | | | • | -65. | -11- | -200- | , ç, | 0,00,0 | | | | | E 10 XII XIX YZ YZ YZ SPEEFI SIGNE -10252020202020202020 | NO TO S | | -
-
- | 1 | COLEN | | 7 | -63- | 300 | .679 | £0. | 0000 | | THE RESERVE AND ADDRESS OF THE PARTY | | | F X X X X X X X X X | SOURCE | | | 2 X | | | • • | -25. | | -500. | 25. | 0.00.01 | | | | | 1 | SOURCE | | , ,
, , | ~ > | | | | -29.
-25. | 95. | -29. | 20. | 00 | | | | | OF CSNC TO GSC 1-00 Y SOURCE 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 354. 333. 200. 356. 35 | | | | | | | | | | • | | | | | | | L AVERAGE PERCENI HEAVY DUIY GAS TRUCKS BY SOURCE L AVERAGE PERCENI HEAVY DUIY GAS TRUCKS BY SOURCE L AVERAGE PERCENI LIGHT TRUCKS BY SOURCE L AVERAGE PERCENI COLD START OPERATION | RATIO | 1 | TO CSC | 00 | | | | | | | | | | | | | L AVERAGE PERCENT HEAVY DUIY GAS TRUCKS BY SOURCE 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 | | 1 1 | 333. | | | 333. | 200. | 354. | 333. | 200. | 354. | 1 6 | 200. | | | | L AVERAGE PERCENT DIESEL TRUCKS BY SOURCE L AVERAGE PERCENT LIGHT TRUCKS BY SOURCE L AVERAGE PERCENT LIGHT TRUCKS BY SOURCE L AVERAGE PERCENT LIGHT TRUCKS BY SOURCE L AVERAGE PERCENT COLD START OPERATION LOGOO 1.0000 1 | ANNOAL | i | PERCENT | - 1 | GAS | K S B | 1 | | | | | | | | | | L AVERAGE PERCENT DIESEL TRUCKS BY SOURCE L AVERAGE PERCENT LIGHT TRUCKS BY SOURCE 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 | |
Y-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | 2 | .0 2 | 2 | 2. | 2.0 | 2.0 | | 1 1 | 2.0 | 2.0 | 2.0 | | | L AVERAGE PERCENT LIGHT TRUCKS BY SDURCE 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 | ANNOAL | | PERCENT | DIESEL | 1 1 | S | | | | | | | | | | | L AVERAGE PERCENT LIGHT TRUCKS BY SQURCE 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 | | | | • | | | | | | | | | | • | | | L AVERAGE PERCENT LIGHT TRUCKS BY SOURCE 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 | | edan sept uma part manapaka setuakan | • | - | 2 | | | • | • | • | • { | •1 | # 1 | • | : | | L AVERAGE PERCENT HOI START OPERATION BY SOURCE 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 | ANNUAL | 1 | PERCENT | | ВУ | E
S | | | | | and an experimental property of experimental property of the second seco | | | | | | L AVERAGE PERCENT HOT START OPERATION BY SOURCE L AVERAGE PERCENT COLD START OPERATION BY SOURCE L AVERAGE PERCENT COLD START OPERATION BY SOURCE 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 | | | 0.9 | | 9 | .9 | .9 | | • | • | • | | . • | • | Î | | L AVERAGE PERCENT COLD START GPERATION BY SOURCE 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 | ANNUAL | 1 | E PERCENT | 1 1 | 1 | 1 BY | DURCE | | | | | | | | | | L AVERAGE PERCENT COLD START GPERATION BY SOURCE 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 | ٠, | | 12.0 | _ | _ | 1.2 | 1.2 | c | c | c | ç | c | · | c | | | TRAFFIC VOLUME, HEAVY DUTY GAS TRUCK, DIESEL TRUCK, LIGHT TRUCK, HOT START, AND COLD START FACTORS BY 1 1.0000 1.0 | IVINA | l i | PERCENT | 410 | 1 | > 0 | | | 4 | | | 1 | : | • i | | | TRAFFIC VOLUME, HEAVY DUTY GAS TRUCK, DIESEL TRUCK, LIGHT TRUCK, HOT START, AND COLD START FACTORS BY 1 TO 0.8800 0.80000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.80000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.80000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.80000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.80000 0.8000 0. | | | | | - | -
3 | SUUNCE | | | | | | | | | | TRAFFIC VOLUME, HEAVY DUTY GAS TRUCK, DIESEL TRUCK, LIGHT TRUCK, HOT START, AND COLD START FACTORS BY IV | | | | 16 | 16. | 9 | 9 | 9 | 9 | 6. | 9 | 9 | 9 | . 0 | | | 1 1 0,6800 0,88000 0,880000 0,88000 0,88000 0,88000 0,88000 0,88000 0,88000 0,88000 0,88000 | TOTAL | TRAFF 1C | - 1 | | GAS | - | - 1 | - | i | START | AND | | FACTORS | BY SOURCE | FCR | | GT | HONTH | 1 IV | 0.8800 | ı | - 1 | 0.8800 | 1 | 9 | 0.8800 | 0.8800 | 0.8800 | 0.8800 | 1 | 0.8800 | | | 1 LT 1.0000 1.00 | HLNON | 1 CT | 1.0000 | | | . | | - | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | 1.0000 | | | 1 HS 1.0000
1.0000 1.00 | MONTH | 17 - 1 | 00000 | 1 | | - | | - - | | 1.0000 | 1.0000 | 1.0000 | i | 1.0000 | *** | | 1 65 1.0000 1.000 | HONTH | 1 HS | 1.0000 | - | | - | | | | 1.0000 | 1.0000 | 1.0000 | | 1.0000 | * 2 | | | MONTH | 1 | 1.0000 | | i | 1 | 1 | 1 | | , , , | ,,,,,, | 2 2 2 2 4 | | 222 | | INPUT CATA LISTING | | 4. | | | 25 | | | | | | | | | | | | | | | | | , | | | | : | | | | | 1 | | | | | : | | | | | | ; | | | | | : | | | | | | |----------------|-------|----------|-------|-------|-------|---------|---------|---------|------------|------|----------------|---------|-------|-------|--------------|-------------------|-------|----------|-------|----------|---------|-------------------|-------------|-------|---------|---------|---------|---------|-------------|-------------|---------|------------|----------|-------|-------|----------|-------|-------|---------|---------|-------|-------|----------|------------|-------|-------|------------|-------|-------|---------|----------------------------| | 000 | CJ | 0000 | 1 C | (2) | C | 0 | \circ | | . c | x C | ت د | \circ | O | 220 | ∵ : c | ່ວ | ت : | C) | 0 | \circ | |) C | <i>2</i> C2 | 000 | 000 | 200 | က (| | ت اد | C | 0 | | ၁ပ | O | 000 | \sim | 0 | C | O | ט נ | Ç | O | ပ. (| \circ | 000 | C | $^{\circ}$ | 200 | 00 | 0000 | 20 | | ပေဝပ | 00 | 1.0000 1 | 18 | 00 | ၁၁ | 3 | 00 | 38 | 2 5 | 3 5 | 3 | 00 | 20 | 20 |)
(| | CC | 40 | O | 00 | | 3. C | 0 4 0 | 000 | ن | 000 | 0 0 | 200 |) i 🔾 | (3) | \circ | ⊃: c | ່ວ | 000 | 0 | 2 0 | . 0 | C | \circ | | ပ | 000 | C) < C | 5 C | 0 | 0 | ပင |) C | C | 1.00000 | ၁ပ | | 1.0000 | Ç | 1.0000 | 7 0 | Ö | Ų | 00 | 0 | 36 | - - | | 1.0000 | 00 | 02 | 20 | | 0000-1 | 00 | 04 | ၁ | 0 0 | 200 | ⊃: C | 2 0 | 00 | 0 | 00 | 000 | \circ | | 0 | 00 | 2 6 | 1.0366 | 8 | 0:0 | ၁၀ | 00 | 9 | 0 | 0 | 00 | 00 | <u> </u> | 1.0000 | 0 | 0 | 1.0000 | Y | 0 | 0000 | $\mathbf{c}_{i}\mathbf{c}$ | | 1.0000 | ÖÖ | 1.0000 | | ÕÕ | C | og. | 00 | g | | |) U | 00 | 20 | 2 | 000 | | 00 | 040 | 000 | 00 | | 2 | 040 | | ၁ | 000 | 000 | ပ္ | 000 | 000 | 000 | 000 | 230 | 8 | 000 | 30 | 000 | 09 | 000 | | 00 | 00 | C10 | ၁၉ | 20 | Ö | 000 | | 00 | 0 0 | | | 1.0000 | 00 | 1.0000 | 35 | 00 | 00 | ÖÖ | 000 | 300 | | | 1.0000 | 000 | 020 | 00 | 000 | 3 8 | 000 | 040 | 8 | | 9 (| | 040 | 000 | 0 | 000 | 000 | 8 | 000 | 000 | 000 | 000 | 1.0300 | 000 | 000 | 200 | 000 | 9 | 000 | 30 | 000 | 00 | 010 | 1.0000 | 00 | 00 | 000 | 000 | 000 | 0 | 300 | | 1.0000 | 1.000 | 1.000 | 1 000 | 1,000 | 1.000 | 1.000 | 1.000 | 730 • 1 | 1.000 | 000 | 1.000 | 1.000 | 1.020 | 1.000 | 000 | 3 8 | 000 | 4 | 000 | 000 | 200 | י
טוני
טוני | 0000 | CCO | 000 | 000 | 000 | 00 | 000 | 000 | 000 | 000 | 1.0300 | 000 | 000 | 9 6 | 000 | 090 | 000 | | 000 | 000 | 010 | 1.0000 | 000 | 000 | 000 | 000 | 00 | 0 | 30 | | 1.0000 | 1,00 | 1.CC | 100 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 200 | 1 | 1.00 | 1.00 | 1.02 | 1.00 | 1.00 | - | 1.00 | 1.04 | 1.00 | 1.00 | 1.00 | 1.00 | 1.04 | 1.00 | 1.00 | 1.00 | 1.00 | 00.1 | 1.00 | 1.00 | 1.00 | 1.00 | | 1.00 | 1.C0 | 1.00 | 1.00 | 1.06 | 1.00 | 1.00 | 1.00 | 1.00 | 1.010 | 0 0 | 000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.0 | 1.000 | | 1.00 | 1.000 | 1.000 | 1 000 | 1.000 | 1.000 | 1.000 | 220.1 | 1,000 | 1.000 | | 1.000 | 1.000 | 1.020 | 1.000 | 202. | 100.1 | 1.000 | 1.040 | 1.000 | 1.000 | 00001 | 2000 | 1.040 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.030 | 1.000 | 1.000 | 000 | 1.000 | 1.060 | 1.000 | 000 | 1.000 | 1.000 | 1.010 | 000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | 0.000.1.0000.0 | 1.000 | 1.000 | 1 000 | 1,000 | 1.000 | 1.000 | 000*1 | 1.000 | 1.000 | 000 | 88 | 1.000 | 020 | 1.000 | 000 | | 1.000 | 1.040 | 1.000 | 0 1.0000 | 1.000 | 000. | 0 1.0400 | 1.000 | 1.000 | 1.000 | 1.000 | 000 | 1.000 | 1.000 | 1,000 | 1.000 | 0 1.0000 | 1.000 | 1.000 | 0 1.0000 | 1.000 | 1.060 | 1.000 | | 1.000 | 1.000 | 1.010 | | 1.000 | 1.000 | 000 | 1.000 | 1.000 | 000 | 1.000 | | 1.0000 | 1.000 | 000. | 1000 | 000 | 1.000 | 1.000 | 1.000 | 1,000 | 1.000 | 2000 | 0 | 1.000 | 1.020 | 000 | 1.000 | | 1.000 | 1.040 | 1.000 | 1.000 | 220 | 000 | 040 | 000 | 1.000 | 220. | 1.000 | 0000 | 000 | 1.00 | 1.000 | <u>ب ا</u> | 1.030 | 1.000 | 1.000 | 000 | 1.000 | 1.060 | 1.000 | | 1.000 | 1.000 | 1.010 | 000 | 1.000 | 1.000 | 0 1.000(| 1.000 | 1.000 | 1.000 | 1.000 | | 0 1.000 | 1.000 | 1.000 | 066.0 | | 1,000 | 0 1.000 | 0 1.000 | 1.000 | 1.000 | 000 | 0 | 1.000 | 1.020 | 1.000 | 0 1.000 | | 1.000 | 1.040 | 1.000 | 1.000 | 0 1.000 | 000.1 | 000.1 0 | 000.1 | 000.1 0 | 0 1.000 | 000.1 0 | 000-1 0 | 000-1 | : : | 1.000 | 1.000 | 300 | 1.000 | 1.000 | 0 000. | 1.000 | 1.060 | 1.000 | | 1.000 | 1.000 | 1.010 | 0007 | 1.000 | 1.000 | 202 | 1.000 | 1.000 | 1.000 | 000-1 0 | | 1.0000 | 20 | 000. | 920 | | 000 | 000 | 00 | 2 | 0000 | | ၂ ပ | 000 | 020 | 000 | CO | | 30 | 040 | 000 | 00 | 000 | 0000 | 200 | | 20 | 000 | 000 | 000 | | 00 | 000 | 000 | 1.030 | 000 | 000 | 000 | | 1.060 | 000 | | 00 | 000 | 01 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | 000 | | 2 GT
2 DT | 2 H S | ن | 1 | 2 C | 1 | 3 HS | | - 1 | 4 61 | - 1 | 4 4
T V H V | Ü | | 9 | | - L
- L
- L | | - | 0 | 6 DT | | Σļ | 6 CS | ب د | | - | 7 11 | | - (2 | 8 01 | | I | S 2 6 | 0 | ۵ | 9 L1 | ت ا | | 10 01 | ⊃ - | | ပ | - 1 | 11 61 | 11 61 | I | 11 CS | ت - | 0 | | I U | | HINOM | HINCE | INO | HONIH | I I | HINCH | ONT | MONTH | ONT | ONI | N S | I I I | N | ONI | ONT | MONTH | MON W | HLNCW | | MUNIT | MONTH | HLNOW | I NOW | HINON | HINCH | NO | HINDW | MONTH | HONTH | I I I | HONIE | ONT | NO | HINOM | ONT | MONIH | HINOM | | MONTH | MONTH | I L NOW | HINOW | MCNTH | MONTH | MONTH | | MONTH | HINDM | MONTH | 8 | LNC | HINOM | | | The state of s | | | The second secon | | | | | | | | | | | | | | | | | PROFITA LANGE CONTRACTOR CONTRACT | | | | | | The state of s | | | | | | | œ | | | | | The second section of sect | | | | | | | *** | | (T) | · A | |------------------
--|--------|--------|--|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--|--------|--------|--------|--------|------------|--|--------|--------|--------|----------|--------|----------|---------------|-------|------|---------------|---------
--|-------|------|-------------|-------|------|--------|------|---------------|------------------|-----| | 1.0000 |)
)
(| | 000 | 066 | 000 | 000 | 000 | 000. | 000 | 000 | 000. | 000 | 300 | | 000 | 000 | 000 | 000 | 000 | | 000. | 000 | 200. | 200 | 220. | 000 | 000 | 1.0000 | | 200 | 1.0000 | 1.0000 | 1.0060 | BY SCURCE FCI | 276 | .140 | 100 | .22C | 776. | 110 | .070 | 100 | 200. | 770 | 110 | .070 | • 100 | 0.1000
0.6200 | | | 0.8800 | 0000 | 1.0000 | 000. | 966 | 00000 | 000 | 1.0000 | 1.0000 | 000 | 1.0000 | 1.0000 | 000 | 0000 | 0000 | 1.0000 | 1.0000 | 1.0000 | 00000. | 1.0000 | 3,000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 000 | 000 | 1.0000 | | | 300. | 1.0000 | 1.0000 | FACTORS | 276 | .140 | 100 | •22C | 076 | 110 | .070 | 100 | 070. | 300 | 110 | .070 | 100 | 0.6200 | | | 0.8800 | 2000 | 1.0000 | 1.0000 | 0066.0 | 1.0000 | 1.0000 | 0000•1 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | 0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.1500 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0000 | LD START | . 2.1 | -14 | -10 | .22 | 70. | | 0. | 2 | 0. | 200 | 11. | .07 | 9 | 0.6200 | | | 0.8800 | 1 | 1.0000 | 1.0000 | 0066.0 | 1.0000 | 1.0000 | 1.0000 | 0.000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 000001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | AND CO | 360 | .070 | 100 | 0.1700 | 440 | .220 | .070 | 0 | . 100 | 300 | 0.1500 | 0 | 0 | 0.6200 | | | 0.8800 | 0000 | 1.0000 | 1.0000 | 0066.0 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0000 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0000.1 | OT START | .360 | .070 | 100 | • | 440 | . 220 | .070 | 0 | •1 CC | 200 | | 0 | 0 | 0.6200 | | | | | 000 | 000. | 066* | 1.0000 | 1.0000 | | | 1 | | | | | | | -,- | | | 1 | _ | _ | ٦. | | | _ | | 7 | 0.9800 | 1- | - | _ | - - | - | TRUCK, H | .360 | .070 | 100 | 0.1700 | 440 | .220 | .070 | 0 | 021. | 200 | | 0 | 0.0 | 0029.0 | | | 0.8800
1.0000 | 기 (
기 (| 1.0000 | • 00 | 66 | 1.0000 | 00. | 1,0000 | 1.0000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0000-1 | LIGHT | | 7 | 7 | , | . 7 | | | ٦, | . r | • | 7 | 0 | • | 0.6200 | | | 0.8 | 7 7 7 7 | 0000 | 1.000 | 066.0 | 1.0000 | 1.000 | 1,000 | 1.000 | 1.000 | 1,000 | 1.000 | 000. | 000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1,000 | 1.000 | 1.000 | 0.980 | 1.000 | 1.000 | 1.000 | 0000 | 1.000 | EL TRUCK | .270 | .140 | 100 | 220 | 440 | 110 | .070 | 100 | 520 | 300 | ` - | 070 | 000 | .620 | | | 0.8800 | | 1.0000 | | | 1.0000 | 1.0000 | | | | | | | 1.0000 | 1.0000 | ٠, | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | ٠, | • | 1.0000 | ~ | 1.0000 | -1 | 0.9800 | | | 1.0000 | • ! | • | CK, DIES | .270 | .140 | 100 | \circ | 440 | 2 | 070 | \circ | 520 | 300 | 0.1100 | 070. | 001 | .620 | | | 0.8800 | | 000 | 000 | 366 | 90 | 000. | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0000 | 000 | ٠, | 1.0000 | • | 1.0000 | 1.0000 | 9 | 00 | 010 | 1.0000 | 40 | • | ٠ <u>٠</u> | 000 | 0.9800 | 000 | 000 | 222 | | 000. | GAS TRUCK | .360 | .07 | 001 | 0.1700 | 440 | .22 | 010 | 3 | 520 | 300 | 0.1500 | • | 0 70 | • • | | | 0.8800 | | | 00 | 366* | 7.0 | 1.000 | 000 | 0.9800 | • • | | 000 | 000 | 1.0000 | | • | 1.00 | 1,000 | 00.1 | 1- | | 1.0000 | 000 | 1.5000 | 000 | 1,0000 | 1.0000 | 000 | 0.9800 | 000 | 000 | ٠, ٠ | 000 | 000 | HEAYY DUTY | .360 | .070 | 001 | 0.1700 | 440 | | 010 | ء
-
ا | 520 | 300 | - | • | 9 6 | 0.6200 | | | 0.8800 | 35 | 0000 | 000 | 366 | 0000-1 | 1.0000 | • | 0.9800 | 10 | 000 | 0 | 1.0000 | 0000 | 1.0000 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | • | 1.0000 | 1.0000 | 0000-1 | 1.0000 | 000 | 1.0000 | • | 0.9800 | | 000 | 0 | | 2 | VOLUME, HE | .360 | .070 | 001 | 0.1700 | 440 | • 1 | 070. | 0 | 5 5 | 300 | 0.1500 | | ء
د | യ | | | 1 TV
1 GT | 1.1 | HS | S) 1 | ۲, | 10
01 | | 1 | S 2 | 1 CT | DI | | - | | İ | ì | | 1 | ? <u>?</u> | | - 1 | | - | | 1 | DI | | I | 3≥ | 15 | DT | <u> </u> | | | TRAFFIC | 1 TV | 1 GT | | 1 F. | ł | | 2 61 | ŧ | | 1 | 3 17 | | 1 | | | | DAY 1 | 740 | DAY | DAY 1 | | DAY 2 | DAY 2 | J. | DAY 2 | DAY 3 | DAY 3 | DAY 3 | A ? | 0 4 4 | | | _ | - | DAY 4 | | DAY 5 | | . j . | UAY 5 | 1 - | DAY 6 | - | - | DAY 7 | DAY 7 | DAY 7 | DAY 7 | DAY | DAT | TOTAL | HOUR | HDUR | HOUR
STORY | HOLK | HDUR | HOUR | HOUR | YOU'L | E 25 | HOUR | HOUR | HOUR | HOLE
STORY | HOUR | | | | , 1 | | | 2 | | E | | | | | | | | | | | | | | A Complete C |------------------|------|-------|--------|-------------|--------|--------------|---------|--------|--------|---------|----------|--------|----------|--------|-----------------|--------|--------|----------|--------|--|--------------|------------------|--------|--------|---------------|--------|--------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------|----------|--------|--------|--------|--------|--------|--------|----------------| | 1.24CC
0.0400 | 00 | .02C | 2094 | 0560*0 | 070. | .070 | 509. | .18C | .220 | 19C | 369* | 2000 | .30C | 630 | . 23C
. 86C | .080 | 310 | •020 | .230 | 906 | •380
5380 | 366. | 710 | •23C | .480 | 209. | 490 | .380 | 361. | 360 | .730 | .830 | . 78C | 380 | .020 | 399. | 796 | 256 | .240 | .620 | .210 | .380 | 1.8800 | 110 | , 2 P.C | | 1.2400 | | 200 | 000 | 900 | 001 | 700 | 000 | 000 |
200 | 000 | 000 | 000 | 000 | 300 | 200 | 300 | 001 | 500 | 300 | 000 | 8C0 | 000 | 001 | 300 | 000 | 000 | 000 | 000 | 006 | 000 | 300 | 000 | 9CC | 000 | 200 | 009 | 000 | 000 | 000 | 200 | 001 | 200 | 300 | 000 | 000 | | 1.2400 | 0.0 | 50 | 23 | 0060*0 | 0.0700 | 0.0700 | 00009.0 | 1.1800 | 0.2200 | 0.1900 | 0.6900 | 1.2000 | 1.3000 | 1.6300 | 0.8600 | 1.0800 | 2.3100 | 2.0200 | 1.2300 | 0.9000 | 2.3800 | 2.3900 | 1.7100 | 1.2300 | 1.4800 | 2.6000 | 2.4900 | 1.3800 | 0.7900 | 2.6000 | 1.7300 | 1.8300 | C.7800 | 1,3800 | 2.0200 | 1.6600 | 0.7900 | 1.5000 | 2.2400 | 1.6200 | 1.2100 | 0.7600 | 1.8800 | 2,1100 | 1.3800 | | 1.2400 | 0.0 | .020 | 009 | 0.1000 | 0 | .050 | 209 | 0.1500 | | ٠, c | 9 | C) W | 10 | 9:1 | 7 8 | 0 | . 9 | • | 4. | 6 | | 4 4 | | 2 | . 2 | | - | ન જ | | m @ | | ۲, | | 2 3 | ייי | | | · C | 4 4 | 9 | 2. | | 2.3900 | 4.0 | . " | | 1.2400 | 0.0 | 0.020 | 0.600 | ٠. | 0.0 | .050 | 009 | 0.1500 |):
 | 100 | 690 | .200 | .010 | . 650 | .280
.860 | 080 | .670 | • 630 | 1400 | 900 | .150 | 460 | .830 | .230 | .780 | .760 | .730 | .380 | .790 | .310 | .540 | .250 | .780 | 640 | .240 | .730 | 790 | 510 | .460 | 950 | 210 | 760 | 2.3900 | .460 | .380 | | 1.2400 | 0.0 | 0.020 | 009.0 | - 0 | 0.0 | 0.050 | 009.0 | - 0 | 0.0 | 0.100 | 0.690 | 1.200 | 1.010 | 1.650 | 0.860 | 1.080 | 2.670 | 2.630 | 1.400 | 006.0 | 1.150 | 3.400 | 1.830 | 1.230 | 0.780 | 2.760 | 2.730 | 1.380 | 0.790 | 1.310 | 2.540 | 2.250 | 0.780 | 1.640 | 2.240 | 1.730 | 0.790 | 1.510 | 2.460 | 1.950 | 1.210 | 0.760 | 7 | 1.460 | 1.380 | | 1.2400 | | 0.020 | 0.000 | - 0 | 0.070 | 0.0 | 0.6 | 1.0 | 0.2 | 0.1 | 0.6 | 1.2 | 1.3 | 1.6 | 1.2 | 1.0 | 2.3 | 2.0 | 1.2 | 6.0 | 2.3 | 2.0 | 1: | 1.2 | 1.0 | 2.6 | 2.4 | 1 | 0.7 | 1.3 | 1.7 | 8.4 | 0 | -1 | 2.0 | 1.6 | 0.7 | 1.5 | 2.2 | 1.6 | 1.2 | 0. | - | 2.1 | 1.3 | | 1.2400 | c c | 0.020 | 0.600 | -0 | 0.070 | 0.0 | 0.600 | 1.180 | 0.220 | 0.190 | 0.690 | 1.200 | 1.300 | 1.630 | 1.230 | 1.080 | 2.310 | 2.020 | 1.230 | 0.900 | 2,380 | 2.390 | 1.710 | 1.230 | 0.780 | 2.600 | 2.490 | 1.330 | 0.790 | 1.360 | 1.730 | 1.830 | 0.780 | 1.380 | 2.020 | 1.660 | 0.790 | 1.500 | 2.240 | 1.620 | 1.210 | 0.760 | | 2.110 | 1.380 | | 1.2400 | ,00 | 0.020 | 009.0 | -0 | 0.070 | 0.070 | 0.090 | 1.180 | 0.220 | 0.190 | 0.690 | 1.200 | 1.300 | 1.630 | 1.230 | 1.080 | 2.310 | 2.020 | 1.230 | 0.900 | 2,380 | 2.390 | 1.710 | 1.230 | 0.780 | 2.600 | 2.490 | 1.830 | 0.790 | 1.360 | 1.730 | 1.830 | 0.780 | 1.380 | 2.020 | 1.660 | 0.790 | 1.500 | 2.240 | 1.620 | 1.210 | 0.760 | - | 2.110 | 1.380 | | 1.2400 | 0 0 | 0.020 | 009.0 | - 0 | 0.0 | 0.0 | 0.600 | 1.18 | 0.0 | 0.100 | 0069.0 0 | 1.200 | 0 1.0100 | 1.650 | 1.280 | 1.08 | 2.67 | 7 | 1.40 | 0 | - | 2.4 | - | 1.2 | 0.7 | 2.7 | 7 | | 0 | | 2.5 | 2 - | 0.7 | - | 2.2 | 1.7 | - 0 | 1.5 | 2.4 | , - | 1.2 | 0.76 | 2.390 | 1.460 | 1.38 | | 0 1.2400 | ပ် | 0.02 | 09.0 0 | | 0.0 | 0 0.0500 | 0.6 | • | 0.0 | 0 0.100 | 0.69.0 | 1.200 | 1.010 | - | - 6 | - 0 | 2 2 | ~ | | 0 | - | | 1.8 | 1.2 | o - | 2 | 2 | | 0 | -1 | 2 | 2 - | • | - | | | 0.79 | : - | 2.460 | 956 | 1.21 | .760 | 2. | - | 0 1.3800 | | 1.2400 | 0.0 | 20 | 009 | 0.100 | 0. | 0.0 | .600 | 180 | 0 | 100 | 069 | 2 | . 0 | 1.6500 | • | 1.0800 | -; - | • | 4. | * ! * | - 1 | 2.4600 | • • | 2 | 0.7800 | | • | 2.1200 | • | | | | • • | • ' | | 1.7300 | 0.15.1 | | J 4 | 956 | .210 | .760 | 90 | .460 | .380 | | 3 CS
4 TV | 19 4 | 4 P.I | 1 | 5 CS | 1 | 5 DT
5 LT | - 1 | 5 CS | | - 1 | | 1 | | 1 | 7 LT
7 HS | 2 CS | - 1 | <u> </u> | 8 LT | 1 | | 9 GT | - 1 | Ξ | 9 CS
10 TV | 9 | - 1 | 10 LT
10 HS | ر | 11 17 | | 11 LT | 1 | 12 TV | 2 | - | 1 | - | 13 GT | 13 [1 | 13 HS | ĺ | - 0 | 14 DI | 14 L1
14 HS | | HOUR HOUR
SECTION | HOUR | HOCH | HOUR HOUS | HOUR | | | • | ٠ | | | | | | | | | | | | | ٠ | | | | | A | A - 2 | 4 | . • | .† | 1.9800 1.9900 1.7700 1.8200 1.9400 1.7000 1.6900 1.5000 1.5000 GEOMETRIC STANDARD DEVIATIONS OF BACKGROUND CO BY MONTH FOR CO IN PPM 0021.0 0021.0 0021.0 0021.0 0021.0 0021.0 0021.0 0021.0 0021.0 0021.0 0021.0 0021.0 0021.0 0021.0 0021.0 0.6000 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 0.4200 3 TIME AND LAST MONTHS OF DAYLIGHT SAVING FIRST HOUR HOUR HOUR HOUR HOUR HOUR HOUR MONTH AND HOUR 8 BACKGROUND 00 OF PPM GEOMETRIC MEANS | The state of s | | | | |--|--|--|--| | | | | | | | | | | | | | | | | FROM THE MAXIMUM LIKELYHOOD ANALYSIS WITH A STANDARD OF 35.CO PPM | |---| | THE ESTIMATE OF P1 IS 0.228188E-03 WITH A STANDARD ERROR OF 0.510186E-C4 | | THE ESTIMATE OF POI IS 0.228240E-03 WITH A STANDARD ERRCR OF 0.510305E-04 WHICH YIELD A PROBABILITY OF VIOLATING THE CO STANDARD OF 59.41 0/0 WITH A STANDARD ERROR OF 8.56 0/0 | | | | AUXILIARY RESULTS OBTAINED UNDER VARIOUS ASSUMPTIONS ARE INCLUDED ON THE FOLLOWING PAGE. | EGR THE PREDICTED CO CONCENTRATION (NO ASSUMPTIONS) WITH A STANDARD OF 35.00 PPM | |--|---| | A management of mineral services. | THE ESTIMATE OF YEARLY AVERAGE CONCENTRATION IS 0.185800E 01 PPM | | | THE STANDARD DEVIATION OF YEARLY AVERAGE CONCENTRATION IS 0.977148E-01 PPM | | | ASSUMING THAT THE ONLY SOURCE OF CO IS THE BACKGROUND CO WITH A STANDARD OF 35.00 PPM | | The state of s | THE ESTIMATE OF YEARLY AVERAGE CONCENTRATION IS 0.640854E CO PPM | | | THE STANDARD DEVIATION OF YEARLY AVERAGE CONCENTRATION IS 0.326638E-02 PPM | | | | | | | | | | | | | | de adolina i andressa de marcas m | Andrew or special states of the th | | | | - | | | | |
e e e e e e e e e e e e e e e e e e e | | | | | | obasse and marketing the state of the state of | | | | | | | | | 10 | | | | |---|--|-------------|--| | | .0 .LI. X .LE. 1 | 30081 | 87647 | | | .0 .LT. X .LE. | 13125 | 25317 | | 1. | O .LT. X .LE. | 2504 | 6835 | | 1. | .O .LI. X .LE. | 1411 | 4331 | | | .0 .LT. X .LE. | 882 | 2920
2018 | | | .0 .LT. X .LE. | 404 | 1463 | | 1. | 9.0 alla X alla | 263 | 1059 | | | 0.0 .LT. X .LE.] | 193 | 796
603 | | | 2.0 .LT. X .LE.] | 111 | 495 | | 1. | 3.0 aLIs X aLEs 1 | 92 | 384 | | 1. | 4.0 .Lf. X .LE. 1 | 14 | 302 | | 11. X 1E 18.0 16 11.1 X 1E 19.0 20 11.1 X 1E 20.0 12 12 12 12 12 12 12 1 | 6.0 .LT. X .LE. | 15 | 216 | | 17. x 16. 19.0 20 11. x 16. 20.0 17. x 16. 22.0 16. 16. 17. x 16. 23.0 10. | atta X alta 1 | 16 | 201 | | 1. | LT. X .LE. | 20 | 185 | | 1. | alle X alle | 17 | 591 | | 11. | .LT. X .LE. 2 | 20 | 128 | | 11. | .L1. X .LE. 2 | 12 | 112 | | 11. | .LT. X .LE. 2 | 01 | 100 | | | .LI. X .LE. 2 | 15 | 96 | | | T. X .IF. 2 | 5 | A CONTRACTOR OF THE PROPERTY O | | 11. X .1E. 29.0 | LI. X LE. 2 | • • | 3 6 9 | | | .LT. X .LE. 2 | 2 | 51 | | 11. X . 1E . 31.0 | ·LT· X ·LE· 3 | 8 | 55 | | 11. X . LE . 33.0 3 11. X . LE . 34.0 4 11. X . LE . 35.0 3 11. X . LE . 36.0 3 11. X . LE . 40.0 0 | .LI. X .LE. 3 | 6 | 7-7 or | | 11. X . LE. 34.0 4 11. X . LE. 35.0 4 11. X . LE. 36.0 3 11. X . LE. 38.0 2 11. X . LE. 40.0 0 11. X . LE. 41.0 0 11. X . LE. 42.0 4 11. X . LE. 42.0 0 11. X . LE. 44.0 2 11. X . LE. 45.0 0 11. X . LE. 45.0 0 11. X . LE. 45.0 0 11. X . LE. 45.0 0 11. X . LE. 45.0 0 11. X . LE. 47.0 0 11. X . LE. 49.0 0 11. X . LE. 50.0 0 11. X . LE. 51.0 3 | .LT. X .LE. 3 | 3 | 31 | | 11. X . LE . 35.0 | aLIa X aLEs 3 | 4 | 28 | | 11. X : LE : 37.0 2 11. X : LE : 38.0 3 11. X : LE : 40.0 0 11. X : LE : 41.0 0 11. X : LE : 42.0 0 11. X : LE : 45.0 50.0 0 11. X : LE : 50.0 0 11. X : LE : 50.0 0 11. X : LE : 50.0 0 | . I. X . LE. 3 | 4 0 | 24 | | LI. X .LE. 38.0 3 LI. X .LE. 40.0 0 LI. X .LE. 41.0 0 LI. X .LE. 42.0 4 LI. X .LE. 43.0 2 LI. X .LE. 45.0 0 LI. X .LE. 45.0 0 LI. X .LE. 47.0 0 LI. X .LE. 49.0 0 LI. X .LE. 50.0 0 LI. X .LE. 50.0 0 | X | | | | LI. X .LE. 39.0 2 LI. X .LE. 40.0 0 LI. X .LE. 41.0 0 LI. X .LE. 42.0 4 LI. X .LE. 45.0 0 LI. X .LE. 45.0 0 LI. X .LE. 45.0 0 LI. X .LE. 49.0 0 LI. X .LE. 49.0 0 LI. X .LE. 50.0 0 LI. X .LE. 50.0 0 | .LT. X .LE. 3 | | | | LI. X . LE. 41.0 0 . LI. X . LE. 42.0 4 . LI. X . LE. 43.0 1 . LI. X . LE. 45.0 0 . LI. X . LE. 45.0 0 . LI. X . LE. 45.0 0 . LI. X . LE. 49.0 0 . LI. X . LE. 50.0 0 . LI. X . LE. 50.0 0 | ·LT. X
·LE. 3 | | 12 | | LI. X .LE. 42.0 | ALIS A SEES 4 | 2 | 1 0 | | 11. x .le. 43.0 1 -17. x .le. 44.0 2 -17. x .le. 45.0 0 -17. x .le. 46.0 0 -17. x .le. 48.0 0 -17. x .le. 59.0 0 -17. x .le. 50.0 3 | .LT. X .LE. 4 | 9 4* | . 01 | | 11. X 1 E 44.0 2 11. X 1 E 45.0 0 11. X 1 E 46.0 0 11. X 1 E 48.0 0 11. X 1 E 49.0 0 11. X 1 E 50.0 0 11. X 1 E 50.0 3 | 6 - 11. X - 1E. 4 | | On the control of | | 11. X 1 E 46.0 0 11. X 1 E 46.0 0 11. X 1 E 48.0 0 11. X 1 E 50.0 0 | , | Z | | | .LT. X .LE. 47.0 0 .LT. X .LE. 48.0 0 .LT. X .LE. 49.0 0 .LT. X .LE. 50.0 0 .LT. X .LE. 51.0 3 | . 1. X . 1 F. 4 | o c | ~ ~ | | .LI. X .LE. 49.0 0 .LI. X .LE. 50.0 0 .LI. X .LE. 51.0 3 | .LI. X .LE. 4 | 0 | | | .LT. X .LE. 49.0 0 .LT. X .LE. 50.0 0 .LT. X .LE. 51.0 3 | .LI. X .LE. 4 | 0 | | | LT. X .LE. 51.0 3 | .LT. X .LE. 4 | 0 0 | | | | | 7 | 1 MINISTER CO. COMM. OF THE CO. MANAGEMENT OF THE CONTROL C | | | | n | n | | | | | | | | TOTAL OF MINISTER OF THE PROPERTY PROPE | | | SIMULATION HISTOGRAM | 10 YEARS CF. SIMULATION DATA WITH AN EIGHT HOUR STANDARD DE 9.00 PPM | |--| | PRQB8 = 11.11 G/O
SPRQB8 = 9.93 G/O | # Example C ## General Description In the previous example, the background CO geometric means varied by month, but not by hour. In almost all cases background CO will usually vary from hour to hour. To illustrate the effect of having more detailed data, the same inputs used in example B were used in this example, except that the monthly and hourly geometric means for the background CO were adjusted to reflect differences for each hour of day (refer to computer output sheets for example C). ## Analysis of Results Comparison of the results from this example with those of example B shows that, with the exception of the mean of the logarithms of the simulated concentrations and the one-hour probability violation with only the background, all statistics are increased for example C. The probability of violating the onehour NAAQS, assuming the lognormal fit, is 3.65 percent for this This was calculated with the test point Z = 3.96 based on the mean and standard deviation of the logarithms for the simulated concentrations and a corresponding Pt of 0.00034. The lognormal projection for the maximum CO concentration is 30.96 ppm. The histogram, however, shows that 42 one-hour concentrations exceeded 31 ppm out of the 87,647 simulated hours. The maximum likelihood analysis results show a one-hour probability of violation of 66.91 percent. The binomial calendar year analysis shows a one-hour probability of violation of 70 percent. The maximum likelihood eight-hour probability of violation is increased to 18.9 percent. | | | 1 1 | INPUT CATA | L I \$ 11 NG | | | | *************************************** | | COLUMN TO THE REAL PROPERTY OF THE | | |---|--|------------------------------|------------|--|---------|---|----------|--|--|--|-----------| | CALENCAR Y | YEAR OF THE | CF THIS ANALYSIS | 15 1580 | | | | | | | | | | Cx, CY, C. | 1 0. | • 9 | 2. | | | | | May a play and the state of the special specia | and the second s | | | | | , 12, | | -19 | | | 4.0 | 500. | | -0.0040 | | | | XI: YI: | | | | - | | | 500. | | -0.0040 | | - | | 11. | 121 | | -13 | | | • | -200- | • | 0.00.0 | | | | , <u>, , , , , , , , , , , , , , , , , , </u> | Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ Υ | SPEEC, SLUPE
SPEEC, SLUPE | 7 | | | 92. | 003 | | -0.0040 | | | | | 12, YZ, SP | | -16 | | | | -500. | • , | -0.0040 | - | | | | 2 5 | SPELL, SILFE | 1 1 | | | 89. | 500. | | -0.00.0- | | | | XI, YI, | 121 | | -10 | | | · · |
-500. | | -0.0040 | | | | 711 | , Y2, | 1 : | 77 | -29 | | 300.
95. | - 29. | 2¢.
25. | -0.0060 | | | | C SNC 10 C SC 1 | 1.00 | | | | | ademina a mesmet der derden series om o | | | | | | | SOURCE | . 200. | 354. | 333. | 200. | 354. | 333. | 200. | 354. | 333. | 200. | 354. | | AVERAGE PERCENT HEAVY CLTY GAS TRUCK | HEAVY CLT | Y CAS TRUCE | STEY | SCURCE | | | | | | | | | 2.0 | 0 2.0 | 2 · C | 2.0 | 2.0 | 3.5 | 2.0 | D • 2 | 2.0 | 2.0 | 2.0 | 2.0 | | AVERAGE PERCENT | O JESEL | TRUCKS BY SCUR | URCE | | | | | | | | | | - | .5 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | | 1.5 | 1.5 | 1.5 | 1.5 | | E"PERCENI | ANNUAL AVERAGE PERCENT LIGHT TRUCKS BY SCU | CKS_BY_SCU | FICE | e obies interestrice entre or the designation of | | | | | | | | | 3.9 | ი. მ ე | 2.9 | ξ.(| 2.9 | 6.0 | 0.9 | 9.9 | 0.9 | 0.9 | 0.9 | 0.9 | | AVERAGE PERCENT FOT | 1 | STAKT OPERATION | BY SOURCE | «CE | | | | | | | | | 12.0 | 0 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 | | AVERAGE PERCENT CCLD | | START CPERATICA | - | JRCE | | | | | - | | !!! | | 5.91 | 16.5 | 16.5 | 16.5 | 16.5 | 16.9 | 16.9 | 16.5 | -16.9 | 16.9 | 16.9 | 16.9 | | RAFFIC VOLUPE, | FEAVY CUTY | GAS TRUCK | , OIESE | L TRUCK, | L16H1 1 | IRLCK, HC | CI START | , ANG | COLD START | FACTORS | EY SCURCE | |) B B ') | | 0 | 99866 | | 0.8800 | 0.8800 | 0.8800 | 0.8800 | 0.6800 | 0.6800 | 0.8800 | | 1.0300 | 1 | 1.0000 | 0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | 1,0000 | 0000 | 7 | 2000 | - 1 | 0000 | 0000-1 | מטפטיו | 1.0000 | 1.0000 | 1.0000 | 1.0000 | | | | | | | 2 | , | | ,,,,,, | | | | | | | | | | · UZ | |--|---|--|--|--
---| | 20000000 | 00000 | 00000
00000
00000
00000
00000
00000 | 000000000 | 00000 | 0000
0000
0000
0000
0000
0000
0000
0000 | | 1.0000 1
1.0000 1
1.0000 1
1.0000 1
1.0000 1
1.0000 1 | 1.0000 1
1.0000 1
1.0000 1
1.0000 1
1.0000 1
1.0000 1 | 1.0000 1
1.0000 1
1.0000 1
1.0000 1
1.0000 1
1.0000 1
1.0000 1
1.0000 1 | 1.0000 1
1.0000 1
1.0000 1
1.0000 1
1.0000 1
1.0000 1
1.0000 1 | 1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000 | 1.0000 1
1.0000 1
1.0000 1
1.0000 1
1.0000 1
1.0000 1
1.0000 1 | | 1.00
1.00
1.00
0 1.00
0 1.00
0 0.95
0 0.95 | 0 1.0000
0 1.0000
0 1.0000
0 1.0000
0 1.0000
0 1.0000
0 1.0000 | | | | | | 0001 000
0001 000
0001 000
0001 000
0001 000
0001 000
0001 000 | 60 1.000
00 1.000
00 1.000
00 1.000
00 1.000 | 1.000
1.000
1.000
1.000
1.000
1.000
1.000 | 000 1.0
000 1.0
000 1.0
000 1.0 | 1.000 | | | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000 1.000
0000 1.000
0000 1.000
0000 1.000
0000 1.000 | 1.00
1.00
1.00
1.00
1.00
1.00
1.00 | 000000000000000000000000000000000000000 | 00 1 00
00 00 | | | 0000 11.
0000 11.
0000 11.
0000 11.
0000 11. | | 0.10000
0.10000
0.10000
0.10000
0.10000
0.10000
0.10000 | 1000 1.000 1 | | 0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 | | | 1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000 | 0000 | 00000
00000
00000
00000
00000 | 000000000000000 | 1.0000 1
1.0000 1
1.0000 1
1.0000 1
0.9900 0
1.0000 1
1.0000 1 | | 1.000 | | | | | | |
1.000
1.000
1.000
0.1.000
0.1.000
0.1.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000 | 1.000
1.000
1.000
1.000
1.000
1.000
1.000 | 1.000 | | 00 1 1 00 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 | | | 0.000 1.000 0.000 | 0000 1:00000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:00000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:00000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:00000 1:0000 | | 0000 1:00000 1:00000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:00000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:00000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 1:0000 | | 000 1.000
000 1.000
000 1.00
000 1.00
000 1.00 | | | | | | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | MUNUNUM | MWWW44444W | | | | 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | à | 7 | fis t | 4 | | | | | | | - | | | | | | | | | | | | 1 | | - | | | | | | • | | | | 1 | | | | | į | | | | |---|----------------------------|-----------|---------|---------|---------|--------|--------|---------|---------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|--------|--------|--------|---------------|--------|-----------|----------|--------|------------|--------|--------
--------|--------|--------|----------|------------|--------|-------------| | 1 | EY SCURCE FOR | 0.8800 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0066*0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9800 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1,0000 | 1.0000 | 1.0200 | 1.0000 | 1.0000 | 1.0000 | 0000 | 1.500 | 1 0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | C.9800 | 1.0000 | 1.0000 | 1.0000 | 0000 | | | | FACTORS | C. EBC0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.065.0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9800 | 00001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0200 | 1.0000 | 1,0000 | 1.0000 | 1.0000 | 1 1500 | 1,000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.86.0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |)
)
; | | | COLD START | 0.8800 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0066.0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9800 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0200 | 1.0000 | 00001 | 00001 | 0000 | 0000-1 | 0000 | 1.0000 | I.0000 | 1.0000 | 1.0000 | 0086.0 | 1.0300 | 1.0000 | 1.0000 | 0000 |)
) | | | AND | 0.8400 | 1.0000 | 1.000C | 1.0000 | 1.0000 | 1.000C | 0.066.0 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9800 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.000C | 1.0000 | 1.0000 | 1.0000 | 1.0200 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 2386.3 | 1.0000 | 1.0000 | 1.0000 | 0000 |)
)
) | | | FOT START, | 0.8800 | 1.0300 | 1.0000 | 1.0300 | 1.0000 | 1.0000 | 0066.0 | 1.0300 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 2385.0 | 1.0300 | 1.0300 | 1.0000 | 1.0000 | 1.0000 | 1.000C | 1.0300 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0200 | 1.0000 | 1.0000 | | - | 00001 | 2000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.5800 | 1.0300 | 1.0000 | 1.0000 | 0000 | 2 2 2 | | | TRUCK. | 0.8300 | 1.0000 | 1.0000 | 1.0000 | - | 7 | ၁ | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.6.300 | 0.9860 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0300 | - | 7 | | - | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0000.1 | 0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9800 | - | ~ | | 00000 | 2000 | | | K, LIGHT | C .8 800 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0 | 1.0000 | 1.0000 | 1.0000 | - | 1.0000 | 0.9600 | 1.0000 | 1.0000 | - | 1.0000 | 1.0000 | 1.0000 | 7 | - | 1.0000 | - | _ | - | 1 | - | - | | | 0061-1 | - | Ϊ | - | 1.0000 | 0 | F | - | 0.1 | 2000 | 2000 | | | SEL TRLCK | CABACC | 1.0000 | _ | - | 1.0060 | 1.0000 | 0366.3 | 1.00000 | 1.0000 | 1.0000 | _ | - | 0 | 1.0000 | _ | T | 1.0000 | 1.0000 | 1.0000 | 7 | 1.0000 | 7 | - | - | 1.0200 | _ | 7 | | - | | 0000 | | - | | | | | → | - ' | 1.0000 | - | | | UCK, DIESEL |)) BR. J | 1.0000 | 1.0000 | 1.0000 | - | - | ပ် | 1.0000 | 1.0000 | 1.0000 | - | - | 0.5800 | 1.0000 | 1.0000 | | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0200 | _ | _ | 1.0000 | 1.0000 | . | 7 | 0000 | 1.000 | 1.0000 | 1.0000 | 0.9800 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 7777 | | | GAS IF | C BRCC | 00 | - | - | | 1.0000 | • | | ۰, | - | _ | | | 1.0000 | _ | - | ~ | - | | 1.0000 | 1.0030 | | _ | 1.0000 | 1.0200 | _ | 7 | | 1 | | 7 | - - | - | . – | - | ن | - | -: | - | 1.0000 | : | | : | -EAVY DLI | 0000 J | 2000 | - | - | | - | ن | 1.0 | 1.0 | | - | - | Ö | - | - | | _ | - | - | - | - | - | 1.0 | - | _ | - | - | - | - | . | - | → - | - | - | | | - | - | | - | 0000*1 | | | VULUPE, 1 | 7700 0 | 2000- | 0000-1 | 1.000 | 00001 | 000 | 0966*) | 1.0000 | 1.0000 | 0.00 | 00001 | 1.0000 | 0086.0 | 1.000 | 0000 | 1.000 | 1,0000 | 1.0000 | 1.000 | 1.0000 | 1.0000 | 1.0000 | 1.000 | 1.0000 | 1.020 | 1.0000 | 1.0000 | 1.000 | 1.0000 | 1.0000 | 1.1500 | 1.0000 | | 1000 | 000 | 2 | 0 | 1.030 | 1.000 | 1.000 | 1.000 | | | TRAFFIC VOLUPE, FEANY DUTY | | X . | 5 6 | 11 | · · | 2) | | 19 | - 1 | . I | - VI | 200 | 2 > | 61 | | 11 | · VI | 5.5 | ? - | 67 | 10 | 1-1 | . S | CS | ? > | 61 | 10 | 11 | HS | cs | ^1 | 19 | - 2 | - V | 200 | 2 2 | 19 | or
or | 1.1 | HS | CS | | | TOTAL | | - UAX-+ | 1 A C C | × × × × | - X | 0 4 4 | 0 AY 2 | 2 4 4 1 | 1 0 | 1 | - | 2 7 4 7 | 7 × × | 0 V V | י מי | , (- | . A Q | S AVO | 4 × × × | DAY 4 | | PAY 4 | - | DAY 4 | DAY 5 | DAY 5 | | DAY 5 | DAY 5 | | DAY 6 | | CAN | 2 X X | 1 | | DAY 7 | DAY 7 | DAY 7 | DAY 7 | DAY 1 | | | | ٠٠ | • | | | | | | | | | | , | | |) | ٠ | | , | | | . ` | | | | | | $\overline{}$ | | | _ | | ` | تمس | | `- | - | | | | | - | | GAS TRUCK, CIESEL TRLCK, LIGHT TRLCK, HOT START, AND COLD START FACTCRS EY SCURCE FOR | C.360C C.27CC C.27CC 0.27C0 0.36C0 0.36C0 0.360C 0.2700 C.27C0 (.2700 | C.070C 0.1400 C.1400 C.140 | 0.1000 0.1000 0.1000 0.100 | C.1700 0.2200 0.2200 0.220 | C.32CC C.32GO C.32CO 0.32G | 1.4400 "1.4400 "" 1.4400 "" 1.440 | C.2200 0.1100 0.1100 0.110 | 0.0700 "0.0700 "0.0700 "0.070 | 0.0 0.1300 0.1000 0.1000 | 0.10.C 0.07.00 C. C7.C0 C.07.0 | 0.5200 0.5200 0.5200 C.520 | 1.3000 1.3000 1.3000 1.300 | 0.1500 0.1100 0.1100 0.110 | 0.0 0.0 0.0700 0.0700 0.070 | |---|---|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------------|----------------------------|-------------------------------|--------------------------|--------------------------------|----------------------------|----------------------------|----------------------------|-----------------------------| | HOT START, | 0.3600 | 0.0700 | 0.1000 | 0.1766 | 0.3200 | 1.4400 | C.2200 | 0070.0 | 0.0 | 0.1000 | 0.5200 | 1.3000 | 0.1500 | 0.0 | | TRLCK, 1 | 0.3600 | 0.0700 | 0.1000 | 0.1760 | 0.3200 | 1.4400 | 0.2260 | 0070.0 | 0.0 | 0.1000 | 0.5200 | 1.3000 | 0.1500 | 0.0 | | , L16H1 | 0.2700 | 0.1400 | 0.1000 | 0022.3 | 0.3200 | 1.4400 | 0.1100 | 0.070.0 | C.10C0 | 0.0700 | 0.5200 | 1.3000 | 0.1100 | 0070.3 | | EL TRLCK | C.27CC | 0.1400 | 0.1000 | C.22CC | 0.3260 | 1.4400 | 0.1100 | 0070.0 | 0.1000 | 0.0700 | 0.5200 | 1.3006 | 0.1100 | 0.0766 | | CK, CIES | 0.2766 | 0.1400 | 0.1000 | 0.2200 | 0.3200 | 1.4400 | 0.1160 | 0.0700 | 0.1000 | 0.1700 | 0.5200 | 1.3000 | 0.1100 | 1076 | | CAS TRU | 0.3600 | 0.0700 | C.1000 | 0.1700 | 0.3200 | 1.4400 | 0.2200 | _0010.J | 0.0 | 0.001.3 | 0.5200 | 1.3000 | 0.1500 | 0.0 | | AVY CUTY | ċ.3600 | 0.0700 | 0.1000 | 0.1700 | 0.3200 | 1.4400 | 0.2200 | 00700 | 0.0 | 0.1000 | 0.5200 | 1:3000 | C.150C | 0.0 | | TOTAL TRAFFIC VOLUPE, HEAVY CUTY | 0.36.0 | 0070.0 | 0.1000 | 0.1700 | 0.3200 | 1.4400 | 0.2200 | 0.070 | 0.0 | 0.1000 | 0.5200 | 1.3000 | 0.1500 | 0.0 | | TRAFFIC | 1 1 | 19 1 | ı cı | 17 1 | 1 HS | 1 (5 | 2 17 | 2.61 | 2 CI | 2 LT | 2 HS | 2 (5 | ≥1 € | 1 CT | | TOTAL | HOUR | 1 | | 1 | | HOLIR | HOUR | HOUR | HOUR | HOUR | | 1 | | 1 | | : | The second secon | | nisides trapicalismental e united stimmete er skalebartummaka un mass . | | | | The state of s | | | | түүрт ондондардардан үчүн тараардардардардардардардардардардардарда | | | . It is not been exceeded as a section of the second name. | | | and the state of t | | | | | | | • | | | | | | | The state of s | The second secon | | · · · · · · · · · · · · · · · · · · · | A CONTRACTOR OF THE | | | | | | | | - met die | | 2 | 3 | |----------------|--|-----|---|-------|--------|------
--|---------------------------------------|----------|--------------|---|--------|--------|--|-------------|--------|--|------------|--------|--------|----------|--------|------------|--------------|------------------|--------|------------|---------|--------|----------------|--|--|----------|---------------------------------------
--|--------|------------------|--------|--------|------------|--------|--------|--------------|---------|--------|------------------| | 1.2400 | | 9 | 020 | 7.0 | 0060.0 | 0.00 | 10. | 09 | 18
46 | C.2200 | 67 | 0069.0 | .20 | 6 | 3
5
5 | 23 | 86 | 806 | 3 | 02 | 53 | 9 6 | 2.3800 | 96 | - ا | 23 | 8 /
8 / | 9 | 5 3 | 8 8
8 8 | 79 | 36 | 3.0 | 1.8300 | 78 | 38 | 39 | 99 | 3.3 | 5.0 | 24 | 30 | 62
21 | 9 | 38 | 1.8800
2.1100 | | 1.2400 | | . 0 | .020 | 240 | • • | Ç | 5 | 09* | 10
46 | . 22 | 61. | 0.6900 | 07. | - | つへ | | 9 | သာဇ | · - | 20 | 230 | 2 5 | 380 | 90 | | .230 | 786 | 009 | 06 | 30
80
80 | 36 | 98 | 30 | 30 | 80 | 90 | 90 | 6.0 | 10 | 7 6 | 3 | 00 | 202 | 9 | 90 | 1.8800 | | 1.2400 | | • • | 020 | 240 | 90 | • | 070. | • | 0.81.1 | | • 1 | 0.6900 | | • | • • | | • [| 2.7900 | • • | • | | • 1 | 2.3800 | • | | • | • • | | • | 1.8300 | | 3600 | 1.7300 | 1.8300 | 0.7800 | 1.3800 | 2.3900
2.0200 | 1.6600 | 1.3100 | 1.5000 | 2.2400 | 2.3000 | 1.6200 | 0.7600 | 1.3800 | 1.8800 | | 1.2400 | 2 | . 0 | .020 | 200 | 10 | 90 | .050 | .600 | | 0 | - | ? | . 2 | 5 | | | 8 | ၁့ ဇ | 9 | 9 | 7 - | - 0 | 1.1500 | * | . 6 | 2 | 1.2500 | ٦, | . ~ | 2.1200 | 0061.0 | 1.3100 | 2.5400 | 2.2500 | _ | 9 | 2.5300 | | w : | . 5 | ٠, | S | 1.9500 | . ~ | ٠. | 2.390¢
1.4600 | | 1.2400 | 5 | • • | 020 | 200 | 10. | 00 | .050 | 0 (9. | 0.1860 | 0 | 2. | 00/0.0 | 20 | .53 | 5 C | 2.8 | .86 | B G | .67 | .63 | 3. | 9 | 1.1500 | 94. | 8 | .23 | 25 | 16 | .73 | ~ 3 | .79 | 31 | 5.4 | 2.2506 | 7.8 | • 64 | 53 | | 31 | | 46 | .54 | 5 5 | .76 | | 2.390C
1.4600 | | 1.2460 | ;
; | • • | 020 | 240 | | 00 | .050 | 009. | 1.1800 | P | 10 | • • | .20 | .53 | 01
65 | 28 | 8 | • | | • | • | • ; | | , • | - : • | | | • ; • | • • ; | 2.1200 | , • | • • | • • | 2.2500 | | • | 2.5300 | | 1.3100 | • | , 4 | 43 | 5 (1) | | | 2.3900 | | 1.2400 | ֓֞֞֜֜֜֜֝֝֜֜֜֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ |)) | , i | • • | 0050.0 | ೦ ಇ | 0.0700 | 0.6000 | 1.1800 | 0.2200 | 0.1500 | 0.3600 | - | ~ 1 | | - | 0 | - - | | ~ | - | حا بە | → | C 1 C | " — | - | - | 4 P | (2) | 1.8300 | | ۳, | . 7 | 1.8300 | | ۳, | S C | 9 | ا ٿ | . 5 | , 2 | £, | 9 6 | | ا ق | 1.8800 | | 1.2400 | 2 0 | | 220: | | | .076 | 6 | 09. | . 1 E | 22 | .19 | 0096.0 | | • | 1.6360 | | ~ | ٠, | | ~ | | ٦,٢ | 2.3800 | | | | | . | | 83C
380 | 796 | .360 | 7367. | 1.8366 | 787 | .386 | m c | .660 | .316 | ۶. م | 240 | .300 | 9 ′ | 760 | .38C | 1.886¢
2.1100 | | 1.2400 | 7 : C | | .320 | 2000 | | 0.00 | 370 | 909. | 1.180C | 225 | .190 | 9 | 200 | 2 | 1.6300 | 30 | 20 | 080 | 310 | 20 | 30 | 001 | Ų | 056. | | .230 | 780 | 600 | 490 | 30
80 | 251. | 360 | 30 | 1.8300 | 780 | .380 | 200 | 660 | .310 | 200 | 240 | 300 | .620 | 760 | 380 | 1.8800 | | 1.2400 | ⊃਼ | 0.0 | P. | g r | | | 5 | 60 | 1.1800 | • : • | • | 0.0700 | • • | • ! | • | • • | • | • | • : • | | | • 1 | | | • 1 | | | • • | • | | 750 | 310 | . 540 | 2.2500 | 780 | .640 | 530 | 730 | .310 | 5.750 | 460 | .540 | .950 | 760 | 07 | . 460 | | 1.2400 | 3 | | .02 | 3 | | 2.0 | 050 | 600 | 1.1600 | . 0 | 0.1000 | 0.0700 | 1.2000 | 0.5300 | 1.0100 | 1.2800 | 0.8666 | 1.0800 | 2.4700 | 2.6300 | 1.4000 | 1.1600 | 1.1500 | 2.4600 | 3.4000
1.8300 | 1.2300 | 0.7800 | 22,7600 | 2.1300 | 2.1200 | 0.7500 | 1.3100 | 2.5400 | 2.2500 | 0.7600 | 1.6400 | 2.5300 | 1.7300 | 1.3100 | 1.5100 | 2.4600 | 2.5466 | 1.5500 | C. 7600 | 1,3300 | 2.3500
1.4600 | | . د د | | | .320 | 30.00 | 0.1000 | | • ! : | 909. | 9 4 | 10 | : ∹ | • | . ~ | 3 | ے ہ | 2 | 37 | 9 | | | 14. | ٦,۲ | ′ – | 3 | 4 1 | | ,, | • | | ~ ". | 1 | ١, | - | 100 | | • | 410 | | (4.1) | • " | , | 111 | 2, 0 | | 1.3300 | | | 57 | 10 | | 11 | HS | S 2 | 19 | | HS | 53 | 19 | .1 | 17 | | 1 | 10 | 1 | HS | CS
TR | 19 | 13 | 1.1 | hS | 2 ≥ | 19 | | FS. | SS 2. | 19 | 10 | 11 | \$3 | ١٧ | <u>.</u> | <u></u> | (5 | 2 | 15 | | FS | S 2 | 61 | 1.3 | _ v | CS | ^_ | 6T
01 | | n m .
≤ ∞ (| | * * | 1. | l | | × 0 | | | Ì | | - | o ∢ | | | × 0 | - | | | | | ١. | - | | | | | - | - - | • - | | • | | | 11 8 | • | - | | 4 | | - - | ٦, | - | - | • | ۱ | α α
• • • | | HOUR | HOUR | | + | HOH | HOUR | HOUR | HOUN | S S S S S S S S S S S S S S S S S S S | HOUR | AUCH
AUCH | HOUR | • | HOUR | | HOUR | HOH | HOUR | HUUR | ADDE: | HOUR | HOUR | HOUR | HOCK | HOUR | OH I | HUUR | 1 | X OH | HOUR | HOUR | HOUS. | SE S | HOUR | HOUR | HCUR | HOLK | HOUR | HOU | HOUR | HOUR | HOUR | HOUR | HOUR | HOE | HCU | HOUR | | 1024 | | | | | |---
--|--|---|--| | 2.0800
0.7300
0.7300
1.2300
1.6600
1.9300
1.3400
1.3400
1.3400
1.5400
1.5400 | 1.8100
(.5800
(.8700
(.7700
(.9700
(.9700
(.11100
(.5800
1.2300 | 80 0 W 4 L V 8 L W W | 0.6300
1.2600
1.2600
1.2600
1.2600
1.0400
1.0400
1.2200
1.2200
1.2300
1.2300
1.2300 | | | 2.0800
0.7300
0.7300
1.2300
1.6600
1.4400
1.5400
1.2400
1.2400
1.2400 | | | 1.2600
1.2600
1.2600
1.2600
1.2600
1.2600
1.2900
1.0400
1.0400
1.2200
1.2200
1.2200
1.2200
1.2200
1.2200 | | | 257404646464 | | | 0.5300
0.2900
0.2900
0.2900
0.2900
0.2900
0.5600
0.5600
0.2500 | | | | | E11/1/1/10/2011 | 0.8500
0.8100
0.8100
0.1400
0.7200
0.7200 | | | 2.0utc
1.3800
6.7300
1.54cc
1.7300
1.560c
2.3100
1.2400
(1.85cc
2.0100
1.370c
2.0200 | 1.8100
0.9800
0.6800
1.2006
0.9400
0.9700
0.9700
0.2006
1.2600 | 1.5900
0.2900
0.2900
0.7700
1.0800
1.2260
0.2000 | 0.5360
0.1400
0.1400
0.1400
0.1400
0.1400
0.1400
0.1400
0.1400
0.1400
0.1400
0.1400
0.1400
0.1400 |
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00.00
00 | | 2.00000
1.3800
0.7300
1.5400
1.7300
1.5600
2.3100
2.01500
2.01500
1.3700
2.0200 | 1.8166
0.9400
2.2400
0.5170
0.6800
1.2000
0.9800
0.9700
0.2200
0.8000 | 0.840
0.2900
0.2900
0.7700
1.2600
0.8300
0.2200 | 0.5300
0.8100
0.1400
0.1400
0.1400
0.1400
0.1400
0.1400
0.1400
0.3400
0.3400 | 0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0.1900
0. | | 3 2 2 3 4 5 4 5 4 5 6 7 | 8218-422-565 | B 0 4 4 5 7 B 5 W W | 0.6200
0.6200
0.6200
0.6200
0.6200
0.6200
0.6200
0.8600
1.0400
0.8600
0.8600
0.8600
0.8600
0.8600
0.8600
0.8600
0.8600
0.8600 | | | | # 10 -1 M 1-1 - 10 10 10 10 10 10 10 10 10 10 10 10 10 | B G W 4 L N B L W W | 1.2600
1.2600
0.620
0.620
0.2900
0.4800
0.4800
0.4800
0.2900
0.2900
0.2900 | | | 2.280C
C.730C
C.730C
C.730C
I.660C
I.660C
I.3650
I.3650
I.360C
I.360C
I.360C
I.560C | 1.8100
0.9800
0.7450
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
0.9800
1.1100
0.5800 | 0.8400
0.9200
0.9200
0.7200
1.2600
0.7800
0.3600
0.3600 |
0.520
0.520
0.520
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250
0.250 | 0.2500
0.2500
0.2500
0.4300
0.1500
0.1500
0.1500
0.1500
0.1500
0.1500
0.1500
0.1500
0.1500
0.1500
0.1500
0.1500
0.1500
0.1500 | | | 2240
2240
2250
2250
2250
2250
2500
2500 | 250
250
250
250
250
250
250 | | 150
150
160
160
160
100
100
100
100
100 | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 170
170
170
170
170
170
170
170
170
170 | • • • • • • • • • • • • • • | 1150
000
000
000
000
000
000
000
000
000 | | | | 2 2 2 2 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0.5360
0.8100
0.8100
0.1400
0.1400
0.1400
0.1400
0.1400
0.1400
0.1400
0.1400
0.1400 | | | | H H S H S H S H S H S H S H S H S H S H | 35555555 | E | | | HOUR HOUR HOUR HOUR HOUR HOUR HOUR HOUR | HOUR HOUR THOUSE THE THOUSE THE THOUSE THE THOUSE THE THOUSE THOU | | HDUR 2
HDUR 2 | | | 0.02519 0.3342 0.2352 0.2352 0.23719 0.3547 0.3552 0.3551 | 0.1392 C.2264 0.12527 C.2751 0.2711 0.347 C.139G C.2056 0.1360 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361 0.1362 0. | |
0.2341
0.2341
0.36202
0.36202
0.36202
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3862
0.3 | C.2927
0.3252
0.3522
0.9156
0.9156
0.15228
0.3571
0.3572
0.3572
0.3573
0.4528
0.5523
0.5523
0.5523
0.5523
0.5528
0.5523
0.5523
0.5523
0.5523
0.5523
0.5523
0.5523 | 2745
2731
3278
8155
4664
4664
3301
3301
3301
4311
10
4311 | 25.25.39.45.45.45.45.45.45.45.45.45.45.45.45.45. | 241479
141479
141479
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149
14149 | 23.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20.00
20 |
5642116
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
5642176
564 | 0.368
0.405
0.491
0.696
0.696
0.592
0.573
0.573
0.655
0.655
0.655 | 66954
66954
66954
66954
66954
66954
66954
66954 | 7112 | | |--|---|--
---	--	--
--	---	---
32.18 57.3.7 57.3.7 40.0.6 40.0.6 40.0.6 30.0.6	20044 618044 61806 6	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
3000 3000	0.00	2017 2017 2017 2017 2017 2017 2017 2017
0.696 0.696 0.696 0.696 0.693 0.693 0.653 0.655 0.655 0.655	644910 644910 644910 644910 644910	2011 2011 2011 2011 2011 2011 2011
66694 66694	252 252 252 252 252 252 252 253 253 253	
7.17. 7.17.		5834 507 507 507 507 507 507 507 507
0.4910 0.	0.3720 0.2862 0.3517 (.3026 0.3372 0.4543 0.4593 0.4591 0.5917 0.3720 0.	
TIME \$\frac{1}{2} Time 0.44137 0.4636 0.4643 0.4644 0.4643 0.4644 0.4643 0.4644 0.46		7.3122 0.3642 0.4683 0.4683 7.4642 7.4623 0.34423 0.34423 0.34423
0.6556 0.6556		00.5203 0.4169 0.46647 0.44643 0.3902 0.3902
0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0.		2003042 0.4683 0.4683 0.34623 0.34623 0.34623
0.6974 0.6	0.5511 0.4163 0.5202 0.4371 0.4371 0.5515 0.6244 0.6556 C.6556 C.6556 C.759 0.5150 C.4423 0.5528 0.4644 0.4644 0.4564 0.6634 0.6646 0.6046 0.50175 0.3902 0.4618 0.4098 0.5171 0.5954 0.5654 0.6146 0.6146 0.6779 EAVLIGHT SAVING TIME 5 1C	, , , , , , , , ,
--	--	--
---	--	--
--	--	--
--	---	--
(4) 1 (
--	-------------------------	-----------------
.11. x .1E. 30.0 6 29.0 .11. x .1E. 33.0 6 31.0 .11. x .1E. 33.0 6 33.0 .11. x .1E. 33.0 6 33.0 .11. x .1E. 33.0 6 34.0 .11. x .1E. 35.0 2 35.0 .11. x .1E. 35.0 2 35.0 .11. x .1E. 35.0 2 35.0 .11. x .1E. 35.0 6 44.0 .11. x .1E. 45.0 1 44.0 .11. x .1E. 45.0 0 44.0 .11. x .1E. 45.0 0 47.0 50.0 0	. Ll. X . Lt. 23.	10
--	--	--
121, 121, 121, 121, 121, 121, 12	T. CODE. CORER. COURS.	00000
82,F88,F94,F100,F106,F112723#0.0/	_	\sim
--	--	--
+411.6 +41	9432E-7, 0000 3641E-8, 0000 746E-8, 0000 1446E-8, 0000 976E-8, 0001 976E-8, 0001 0398E-8, 0001 046,0.031, 0001 0.002,0.031, 0001 0.010,0.609, 0001 0.010,0.609, 0001 0.010,0.609, 0001 0.010,0.609, 0001 0.010,0.609, 0001 0.010,0.609, 0001 0.002,0.050, 0001 0.002,0.050, 0001	C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81
TFDT/0.102.0.178.0.128.0.124.0.006.C.004.0.063.0.002.002.0.002.0.002.0.002.0.002.0.002.0.002.0.002.0.002.0.002.0.002.002.0.002.0.002.0.002.0.002.002.0.002.002.002.002.002.002.002.002.	1497E-8, C001 039E-8, C001 046,0.031, C001 046,0.031, C001 05010,0.031, C001 057,0.049, 0001 057,0.044, C001 057,0.050, C001 0601 0601	02/17/81 02/17/81 02/17/81 02/17/81 02/17/81 02/17/81 02/17/81 02/17/81
-0.031,0.023,0.015,0.018,0.016,0.016,0.014,0.012,0.012,0.011,0.CC5 -0.031,0.023,0.015,0.018,0.016,0.016,0.016,0.012,0.011,0.CC5 -0.031,0.023,0.015,0.018,0.016,0.016,0.016,0.016,0.012,0.011,0.CC5 -0.031,0.023,0.015,0.018,0.018,0.016,0.012,0.012,0.011,0.CC5 -0.031,0.023,0.015,0.018,0.018,0.016,0.012,0.011,0.CC5 -0.031,0.023,0.015,0.018,0.018,0.016,0.012,0.011,0.CC5 -0.031,0.023,0.015,0.018,0.018,0.016,0.012,0.011,0.CC5 -0.031,0.023,0.015,0.018,0.016,0.016,0.012,0.011,0.CC5 -0.031,0.023,0.015,0.018,0.016,0.016,0.012,0.011,0.CC7 -0.031,0.023,0.015,0.018,0.016,0.016,0.018,0.016,0.002,	0.002,0.031, 0.001 0.010,0.009, 0.001 0.010,0.009, 0.001 0.008,0.009, 0.001 0.002,0.050, 0.001 0.002,0.050, 0.001 0.002,0.0001 0.002,0.0001	C2/11/81 C2/17/81 02/17/81 C2/17/81 C2/17/81
C2/17/81		
0.071778 0.071778	DATA TFPC/0.106,0.142,0.133,0.123,0.1C8,0.C92,C.C77, +0.035,0.023,0.016,0.010,C.007,0.004,0.003,0.002,0.002, A,B,C,D REAL SCALARS CALCULATED. AHT REAL ARRAY DIMENSION 13 INPUT. THE ANNUAL AVENAGE TRAFFIC VCLUME IN VEHICLE INDEXED BY SOURCE. ALPHA REAL SCALAR CALCULATED/INPUT. THE WIND DIRECTION MEASURED CCA FRCM EAST IN ALPHA 15 THE DIRECTION HE WIND 15 COMING FE ANNUAL AVERAGE PERCENT COLD STARTS INDEXED IN AVENA	064 9 0 0 5 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C
AVERAGE PERCENT HOT STARTS INDEXED BY SCURCE. 00G1390 0271 APP T REAL ARRAY DIMENSION 13 INPUT. 00G1340 0271 ANNUAL AVERAGE PERCENT HOT STARTS INDEXED BY SCURCE. 00G1400 0271 ANNUAL AVERAGE PERCENT LIGHT TRUCKS INDEXED BY SCURCE. 00G1400 0271 ANNUAL AVERAGE PERCENT LIGHT TRUCKS INDEXED BY SCURCE. 00G1449 0271	THE ANNUAL AVERAGE TRAFFIC VCLUME IN VEHICLE INDEXED BY SOURCE. ALPHA REAL SCALAR — CALCULATED/INPUT. THE WIND DIRECTION MEASURED CCK FROM EAST IN ALPHA IS THE DIRECTION THE WIND IS COMING FE ALPHA IS THE DIRECTION THE WIND IS COMING FE ANNUAL AVERAGE PERCENT COLD STARTS INDEXED IN ANNUAL AVERAGE PERCENT COLD STARTS INDEXED	1000
--	--	--
--	--	----------------------
TO CCC155C THE LASCAR ESTITANTE OF THE ENPECTED ANNIAL-PAXIPUP CD CCC155C TO CCC155C THE CARCULATED. CCCC155C THE CARCULATED. CCC155C THE CARCULATED. CCC165C TO CCCCENTRATION IN PPP. CACCULATED. CCC165C TO CCCCCN THE CASCALR CACCULATED. CCC165C TO CCCCCN THE CASCALR CACCULATED. CCC165C TO CCCCCN THE CASCALR CACCULATED. CCC177C THE CASCALR CACCULATED. CCC177C THE CASCALR CACCULATED. CCC177C THE CASCALR CACCULATED. CCC177C THE CASCALR CACCULATED. CCC177C THE DIESEL TRUCK THE DAVICATION THAT THE ONLY COCCUTS THE CASCALR CACCULATED. CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC177C TO CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC177C TO CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC177C TO CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC177C TO CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC177C TO CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC177C TO CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC177C TO CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC177C TO CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC177C TO CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC177C TO CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC197C TO CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC197C TO CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC197C TO CCC177C TO CCC177C THE DIESEL TRUCK ENISTIN FACTOR AT 19.5 HPH TH CCC197C TO CCC177C CCC17	,	<u>۲</u>
0001610 00	THE LANSER ESTIVATE OF THE EXPECTED ANUAL—SECGND— 0001590 00161	THE LANSAR ESTITÁTE OF THE EXPECTED ANUAL—SECGNO— 0001590 0001500 0001510 00
C001800 C27 C001701 C001800 C27 C001701 C27 C001701 C001800 C27 C	NEGRAL SCALAR CALCULATED. COURSED	NEGRA SCALAR CALCULATED. COURT
077 077	INTEGER SCALAR CALCULATED. THE DAY OF WEK. THE FIRST MONTH OF DAYLIGHT SAVING TIPE. THE LAST WONTH DIESEL TRUCK VOLUME ON SCURCE J IN VEHICLES/FCUR. THE DIESEL TRUCK VOLUME ON SCURCE J IN VEHICLES/FCUR. THE DIESEL TRUCK EMISSION FACTOR AT 19.6 MPH TN THE TOTAL SCALAR CALCULATED. THE TEXAL SCALAR CALCULATED. THE TEXAL SCALAR CALCULATED. THE TEXAL SCALAR CALCULATED. THE HENYY DUTY GAS TRUCK EMISSION FACTOR AT 19.6 MPH TN THE HENYY DUTY GAS TRUCK EMISSION FACTOR AT 19.6 MPH TN THE HENYY CALCULATED. HENY THE TOTAL CALCULATED. THE THE TOTAL CALCULATED. THE THE TOTAL CALCULATED. CALCU	INTEGER SCALAR CALCULATED. THE DAY OF WEEK. THE FIRST MONTH OF DAYLIGHT SAVING TIPE. THE LAST MONTH OF DAYLIGHT SAVING TIPE. COURTED THE LAST MONTH OF DAYLIGHT SAVING TIPE. COURTED THE LAST MONTH OF DAYLIGHT SAVING TIPE. COURTED THE LAST MONTH OF DAYLIGHT SAVING TIPE. COURTED THE LAST MONTH OF DAYLIGHT SAVING TIPE. COURTED COURTE
GAS TRUCK EMISSION FACTOR AT 19.6 MPH IN CCC195C CC FRAL SCALAR CALCULATED. COC195C CC THE HEAVY DUTY GAS TRUCK EMISSION FACTOR AT 19.6 MPH IN CCC195C CC FRAL SCALAR CALCULATED. CCC195C CC THE HEAVY DUTY GAS TRUCK EMISSION FACTOR AT 19.6 MPH IN CCC195C CC THE HEAVY DUTY GAS TRUCK EMISSION FACTOR AT 19.6 MPH IN CCC195C CC THE HEAVY DUTY GAS TRUCK EMISSION FACTOR AT 19.6 MPH IN CCC195C CC THE ACCOLAR CALCULATED. CCC195C CC	HEAL SCALAR CALCULATED.	;
HEAVY DUTY GAS TRUCK EMISSIUN FACTUR AT 19.6 MPH IN GCC1950 GMICO1/MILE/VEHICLE. REAL SCALAR CALCULATED.	REAL SCALAR CALCULATED. THE HEAVY DUTY GAS TRUCK EMISSIUN FACTOR AT 19.6 MPH IN GCC194C GMICOL/MILE/VEHICLE. GREAL SCALAR CALCULATED.	REAL SCALAR CALCULATED. THE HEAVY DUTY GAS TRUCK EMISSIUN FACTUR AT 19.6 MPH IN GCC195G GMICO1/MILE/VEHICLE. REAL SCALAR CALCULATED.
AND HOUR. PHYSICITI IS THE AVERAGE HOURLY PRECENT HOT START FACKORS INDEXED BY SOURCE I. AND HOUR DE-DAY PRECENT HOT START FACKORS INDEXED BY SOURCE HOURLY PRECENT HOT START FACKORS INDEXED BY SOURCE I. AND HOUR DE-DAY PRECENT HOT START FACKORS INDEXED BY SOURCE HOURLY PRECENT HOT START FACKORS INDEXED BY SOURCE I. FREAL ARRAY DIMENSION 13,72 INPUT. FREAL ARRAY DIMENSION 13,72 INPUT. FREAL AND HOUR. FISHITI IS START FACKORS INDEXED HOURLY PAPOTITI IS THE AVERGE FIRST CO INDICATOR IN THE SIMILATED CONCASCUENCE. THE FIRST CO INDICATOR IN THE SIMILATED CONCASCUENCE. THE FIRST CO INDICATOR IN THE SIMILATED CONCASC		
SOURCE I. AND HOUR FREENTH HOI START FACTORS INDEKED BY ANGER HOURLY PERCENT HOI START FACTORS INDEKED BY ANGER HOURLY PERCENT HOI START FACTORS INDEKED BY ANGER HOURLY PERCENT HOI START FACTORS INDEKED BY ANGER HOURLY PERCENT HOI START FACTORS INDEKED BY AND HOUR FAREAT HOIS START FACTORS INDEKED BY HOUNG FREAL ANGENET HOI START FACTORS INDEKED BY AND HOUR FAREAT HOIS START FACTORS INDEKED BY HOUNG FREAL ANGENET HOI START FACTORS INDEXED AND HOUR FAREAT HOI START FACTORS INDEXE AND HOUR FAREAT HOIL	17	
TRUCKS FOR THIS TO THE T	AVERAGE HURLY PEECEN GAS TRUCKS FOR DAY-OF-WEEK D, HOWITH H, AND SQURCE I. REAL ARRAY — DIKENSION 13,25 — INPUT. HICUR-CG-ZAY PERCENT GAS TRUCKS FOR 100 EVOUCE AND HOURLY PERCENT GAS TRUCKS FOR 100 EVOUCE TO THE STRUCKS FOR 100 EVOUCE TO THE SEE NOTE UNDER FCST. SEE NOTE UNDER FCST. PREAL ARRAY — DIMENSION 13,12 — INPUT. PREAL ARRAY — DIMENSION 13,17 — INPUT. PREAL ARRAY — DIMENSION 13,17 — INPUT. AVERGE HOURLY PERCENT HOT START FACTORS INDEXED BY SOURCE I. HONTH H, AND SQURCE I. HONTH H, AND SQURCE I. HONTH PREACENT HOT START FACTORS INDEXED BY SQURCE I. SQURCE AND THOUR. — FHISTITIAN 3-FISHITIAN 3-PHSHITTH)	Ξ
SOURCE AND HOUR FOSH. IS THE AVERAGE HOURLY PERCENT HOI STARTS FOR HOUR-OF-DAY H, DAY-OF-KEEK D, PCATH P, AND SCURCE I. HOUR-OF-DAY H, DAY-OF-KEEK D, PCATH P, AND SCURCE I. HOUR-OF-DAY H, DAY-OF-KEEK D, PCATH P, AND SCURCE I. HOUR-OF-DAY H, DAY-OF-KEEK D, PCATH P, AND SCURCE I. HOUR-OF-DAY H, DAY-OF-KEEK D, PCATH P, AND SCURCE I. HOUR-OF-DAY H, DAY-OF-KEEK D, PCATH P, AND SCURCE I. HOUR-OF-DAY H, DAY-OF-KEEK D, PCATH P, AND SCURCE I. HOUR-OF-DAY H, DAY-OF-KEEK D, PCATH P, AND SCURCE I. HOUR-OF-DAY H, DAY-OF-KEEK D, PCATH P, TAKEN E A L SCALAR CALCULATED. SEE NOTE LINDICATOR IN THE SIPULATED CONC SEQUENCE. THE FIRST CO INDICATOR IN THE SIPULATED CONC SECUENCE.	- •	
CO INDICATOR IN THE SIRULATED CONCA SEQUENCE. THE FIRST CO INDICATOR IN THE SIRULATED CONCA SEQUENCE.	-	
027 0	REAL ARRAY DIMENSION 13,7 IMPUT. 0002310 027 DAY-OF-WEEK PERCENT HOI START FECRORS INDEXED BY 0002800 027 AURAGE HOURLY PERCENT HOI START FECRORS INDEXED BY 0002800 027 AURAGE HOURLY PERCENT HOI STARTS FOR DAY-CF-MEK C. 0002810 027 HONTH W; AND SOURCE I. 0002840 027 HORH-OF-DAY PERCENT HOI START FACTORS INDEXED BY 0002840 027 HORH-OF-DAY PERCENT HOI START FACTORS INDEXED BY 0002840 027 SOURCE HOURLY PERCENT HOI START FACTORS INDEXED BY 0002800 027 SOURCE HOURLY PERCENT HOI START FACTORS INDEXED BY SOURCE 0002800 027 SEE NOTE UNDER FCSH. FACTORS INDEXED BY SOURCE 0002900 027 SEE NOTE UNDER FCSH. FACTORS INDEXED BY SOURCE 0002900 027 FARL ARRAY DIMENSION 13,12 INPUT. 0002900 027 FARL SCALAR CALCULATED. 0002900 027 FRUE. IF THE END OF FILEB HAS BEEN REACHED. 0002900 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 0003000 027 THE FIRST CO INDICATOR IN THE STRULATED CONCASCUENCE. 00003000 027 THE FIRST	D REAL ARRAY —— DIMENSION 13,7 —— INPUT. DAY-UF-HEEK PENCENT HOI START FACRORS INDEXED BY SOURCE AND DAY. FHSCITAD)*FHSMIT; PIPAPHSITITS THE AVERAGE HOURLY PERCENT HOI STARTS FOR CAY-CF-HEEK C. HONTH M, AND SOURCE I. REAL ARRAY —— OTHENSION 13,25 —— INPOT. HOUN-OF-DAY PERCENT HOI START FACTORS INDEXED BY SCURCE AND HOUR. FHSHIT; H)*FHSDIT; D)*FHSMIT; M)*APHSIT) IS THE AVERAGE HOURLY PERCENT HOT STARTS FOR HOUR-OF-DAY M, DAY-OF-KEEK D, PCNTH P, AND SCURCE I. SE NOTE UNDER FCSH. MONTHLY PERCENT HOI START FACTORS INDEXED BY SOURCE AND HOUR-OF-DAY H, DAY-OF-KEEK D, PCNTH P, AND SCURCE I. FRAL ARRAY —— DIMENSION 13,12 —— INPUT. MONTHLY PERCENT HOI START FACTORS INDEXED BY SOURCE AND HOUR-OF-DAY H, DAY-OF-KEEK D, PCNTH P, AND SCURCE I. ISH LOGICAL SCALAR —— CALCULATED. ST REAL SCALAR —— CALCULATED. THE FIRST CO INDICATOR IN THE SIRULATED CONC SEQUENCE. THE FIRST CO INDICATOR IN THE SIRULATED CONCA SECUENCE. THE FIRST CO INDICATOR IN THE SIRULATED CONCA SECUENCE.
INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040 C227 THE FIRST CO INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040 C227 THE FIRST CO INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040 C227 THE FIRST CO INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040 C227 THE FIRST CO INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040 C227 THE FIRST CO INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040 C227 THE FIRST CO INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040 C227 THE FIRST CO INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040 C227 THE FIRST CO INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040 C227 THE FIRST CO INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040 C227 THE FIRST CO INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040 C227 THE FIRST CO INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040 C227 THE FIRST CO INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040 C227 THE FIRST CO INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040 C227 THE FIRST CO INDICATOR IN THE SIPULATED CONCA SEQUENCE. CC303040	H REAL ARRAY — OTHENSTUN 13,25 — INPUT. HOUR-OF-DAY PERCENT HOT START FACTORS INDEXED BY SCURCE AND HOUR. FHSHII; H) *FHSDII; D) *FHSMII; H) *APHSCII] IS THE AVERAGE HOURLY PERCENT HOT STARTS FOR HOUR-OF-DAY H, DAY-OF-NEEK D, PCNTH P, AND SCURCE I. SEE NOTE UNDER FCSH. MONTHLY PERCENT HOT START FACTORS INDEXED BY SOURCE AND HONTH. FHSMII; HIS THE AVERAGE HOURLY PERCENT HOT START FACTORS INDEXED BY SOURCE I. ISH LOGICAL SCALAR — CALCULATED. ST REAL SCALAR — CALCULATED. THE FIRST CO INDICATOR IN THE SIPULATED CONC SEQUENCE. THE FIRST CO INDICATOR IN THE SIPULATED CONCA SECUENCE.	: :
003020 10 003020 10 003020 10 003020 10 003020 10 003020 10 003020 10 003020 10 003020 10 003020 10 0030	IS THE AVERAGE HOURLY PERCENT HOT STARTS FOR HOUR-OF-DAY H; DAY-DF-KEEK D; PCNTH P; AND SCURCE I. SEE NOTE UNDER FCSH. W REAL ARRAY DIMENSION 13,12 TNPCT. MONTHLY PERCENT HOT START FACTORS INDEXED BY SOURCE AND MONTH. FHSMITH FACTORS INDEXED BY SOURCE I. PERCENT HOT STARTS FOR MONTH P AND SCURCE I. ISH LOGICAL SCALAR CALCULATED. ST REAL SCALAR CALCULATED. ST REAL SCALAR CALCULATED. STA REAL SCALAR CALCULATED. THE FIRST CO INDICATOR IN THE SIMULATED CONCA SEQUENCE. THE FIRST CO INDICATOR IN THE SIMULATED CONCA SEQUENCE.	
REAL SCALAR CALCULATED. THE FIRST CO INDICATOR IN THE STMULATED CONCA SEQUENCE. GGG3050 C271 C271 C271 C271 C271	STA REAL SCALAR CALCULATED. THE FIRST CO INDICATOR IN THE STPULATED CONCA SECUENCE. G0G30540 C271 C271 C271 C271	STA REAL SCALAR CALCULATED. THE FIRST CO INDICATOR IN THE SIMULATED CONCA SECUENCE.
DIMENSION 13,12 — INPUT. SCHOOL HOUR FOR HOUTH HY AND SCUNCE I IN VEHICLES/FOUR. 0003450 FILT REAL ARRAY — OILENSTON 13,12 — INPUT. SCHOOL HOUR FOR HOUTH HY AND SCUNCE I IN VEHICLES/FOUR. 0003450 FACTORS FOR THE VEHICLE TYPE MODEL YEAR CATEGORIES. 0003450 REAL SCALAR — CALCULATED. ROOTS SOURCE REAL SCALAR — CALCULATED. COUVERTED INTERALLY TO "COLOCK" ISTE FCSH I THE. CONVERTED OF ORDER OF THE SIPULATED CONC SEQUENCE. CONVERTED OF ORDER OF THE SIPULATED CONC SEQUENCE. CONSTAND CONVERTED OF THE SIGNAR OF THE SIPULATED CONC SEQUENCE. CONSTAND CONS		NEAL SCALAR — CALCULATED. AND REAL SCALAR — CALCULATED. A COOSTION OF DAY 11.24 HOUR CLOCKY. HOURS INPUTTED FROY THE COOSTION OCCUBATOD. COOSTION OF DAY 11.24 HOUR CLOCKY. STEE FCSH I TIME. CONVERTED INTERALLY IC "CLOCK* STEE FCSH I TIME. CONTAINS THE HISTICARA OF THE SIPULATED COCCUSTOR. CONTAINS THE HISTICARA OF THE SIPULATED COCCUSTOR. CONTAINS THE HISTICARA OF THE SIPULATED COCCUSTOR. COOSTION OCCUSTOR. OCC
INPUT. HOUR OF DAY (1, 24 HOUR CLOCK). HOURS INPUTTED FROW THE GGG3510 HOTEGRA SCALAR INPUT. HOUR OF DAY (1, 24 HOUR CLOCK). HOURS INPUTTED FROW THE GGG3520 GCG3550 GCG3550 GCG3550 GCG3550 GCG3550 INTEGER MRRAY CIMENSION 51 CALCULATED. GCG3550 GCG3550 INTEGER MRRAY CIMENSION 51 CALCULATED. GCG3550 GCG3550 INTEGER SCALAR CALCULATED. GCG3550 GCG350 GCG3550 GCG		REAL ARRAY DIMENSION 13,12 INPUT. HONTHLY TOTAL VEHICLE TRAFFIC VOLUME FACTORS INDEXED BY COC3390 SOURCE AND MONTH. FTVH(1,H)+AHT(1), IS THE AVERAGE HOURLY CCC34C0 IRAFFIC VOLUME FOR MONTH H AND SCURGE I IN VEHICLES/FCUR. 0003420 FILZ REAL SCALARS CALCULATED. REAL SCALAR LINPUT. HOUR DE DAY (1,24 HOUR CLOCK). HOURS INPUTTED FRCF THE 0003520 HOUR DE DAY (1,24 HOUR CLOCK). HOURS INPUTTED FRCF THE 0003520 CONVERTED INTERNALLY TC "CLOCK" (SFE FCSH) TIME. 0003550 CONVERTED INTERNALLY TC "CLOCK" (SFE FCSH) TIME. 0003550 CONVERTED TRICKARY CIMENSION SI CALCULATED. REGER ARRAY CHENSION SI CALCULATED. CONTAINS THE HISTGRAM OF THE SIPULATED CONC SEQUENCE. 0003590 INFEGER SCALAR CALCULATED.
"CLOCK" (SFE FCSH) TIME. 0003540 CONVERTED INTERNALLY TC "CLOCK" (SFE FCSH) TIME. 0003550 INTEGER ARRAY CIMENSION 51 CALCULATED. 0003560 CONTAINS THE HISTGGRAH OF THE SIPULATED CONC SEQUENCE. 0003580 INTEGER SCALAR CALCULATED. 0003590		CONVEKTED INTERNALLY TO "CLUCK" 1STE FORTY THE. 0003550 0003550 0003550 0003550 000356C CONTAINS THE HISTGGRAH OF THE SIPULATED CONC SEQUENCE. 0003580 1NTEGER SCALAR CALCULATED.
--		INTEGR SCALAR - CALCULATED. COURSE COUNTY
CALCULATED. INTEGER SCALANS CALCULATED. INTEGER SCALAR CALCULATED. INTEGER SCALAR INDEX. INTEGER SCALAR INDEX. INTEGER SCALAR CALCULATED.	0003750	62/17/81
IN THE STHULATED CONCA SECUENCE. THE LAST CO INDICATOR IN THE STHULATED CONCA SECUENCE. THE LAST CO INDICATOR IN THE STHULATED CONCA SECUENCE. THE LAST CO INDICATOR IN THE STHULATED CONCA SECUENCE. THE LAST CO INDICATOR IN THE STHULATED CONCA SECUENCE. THE LAST CO INDICATOR IN THE STHULATED CONCA SECUENCE. THE LAST CO INDICATOR IN THE STHULATED CONCA SECUENCE. THE LAST CO INDICATOR IN THE STHULATED CONCA SECUENCE. THE LAST CO INDICATOR IN THE STHULATED CONCA SECUENCE.	6003870	C2/17/81
CALCULATED. A REAL SCALAR —— CALCULATED. THE LAST CO INDICATOR IN THE SIMULATED CONC SEQUENCE. THE LAST CO INDICATOR IN THE STMULATED CONCA SEQUENCE. REAL SCALAR —— CALCULATED. THE REAL SCALAR —— CALCULATED. THE LENGTH IN METERS OF A ROADWAY. REAL SCALAR —— CALCULATED. THE LENGTH TRUCK VILUME ON SOURCE J. IN VEHICLES/HICUR.	0001000	02/17/81
--	--	---
02/17/81	and the second s	
CC0625C	C2717781	
--	--	
---	--------------------	----------
--	--	---
--	--	--
C2774/81 C2717781		CF THE RECEPTOR. 00CH03G 00CH05G 00CH06G 00CH06G 00CH06G 00CH06G 00CH06G 00CH10G 00CH10G 00CH10G 00CH10G 00CH10G 00CH10G 0CH110G 0CH11
0008270 000827	AVERAGE SPEED/VOLUME SLOPE. AVERAGE SPEED/VOLUME SLOPE. PIE/2. IND ANGLE, CCHPUTE AND	C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 O2/17/81 C2/17/81
CCC8350 CCC8360 CCC8360 CCC8380 CC8380 CC83	IND ANGLE, CCMPUTE AND	10/11/70
--		READ SADORS (HISTILLINS) READ SADORS (HISTILLINS) READ SADORS (HISTILLINS) RETTE (6.6521) J. (FESK (1.3); 1=1,NS) READ SADORS
NATTE(6,6530) J, (FCSO(1,J),1=1,NS) READ AND ECHO THE HOUR-OF-CAY FACTORS FOR EACH SOURCE. NATTE(6,6533) J, (FCSO(1,J),1=1,NS) READ(5,5003) (FTVH(1,J),1=1,NS) READ(5,5003) (FTVH(1,J),1=1,NS) READ(5,5003) (FCH(1,J),1=1,NS) (FCSH(1,J),1=1,NS)		
I=1,NS CCC	540 02/17/81	
--		FLYH(1,25)=FLTH(1,1) FHS+(1,25)=FHSH(1,1) FGSH(1,25)=FSH(1,1) CONTINUE READ AND ECHO THE GEOMETRIC STANDARD DEVIATIONS OF CO FOR EACH MONTH AND CONVERT TO STANGARD (FYIATION READ(1,6503) (SGCO(J),J=1,12) DO 223 J=1,12 SGCO(J)=ALOG(SGCO(J)) CONTINUE WRITE(4,6670) REAC AND ECHO THE GEOMETRIC MEANS OF PPM BACKGROUND HOUR AND MONTH AND CONVERT GECHETRIC MEANS TO THE WRITE(6,6800) DO 232 I=1,24 READ(5,5003) (MGCO(1,J),J=1,12) DO 232 I=1,24 READ(5,6801) I,(MGCO(1,J),J=1,12) DO 231 J=1,12 MRITE(6,6801) I,(MGCO(1,J),J=1,12) DO 231 J=1,12 MRITE(6,6801) I,(MGCO(1,J),J=1,12) DO 231 J=1,12 MRITE(6,6801) I,(MGCO(1,J),J=1,12) CONTINUE CONTINUE
0009660 0009680 0009680 0009720 0009720 0009770 0009770 0009770 0009770 0009770 0009770 0009770 0009770	C2/17/81 C2/17/81 02/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81 C2/17/81	
--	--	--
--	--	--
1011140=1111100 101140=1111100		00100
manues anno especialismes de s		
--	--	--
18/11/23	ANALANA KANDANA KANDANA MATANA MATANA ANALAN ANALAN MATANA MATANA MATANA MATANA MATANA MATANA MATANA MATANA MA	
--	-----------	--
1.0 - 01 1.0 - 01	1071770	
CO. LEVELS AS 0014150 DESCRIBED BY LARSEN IN EPA PUBLICATION AP-89. 0014150 NC=SUBTICULAL OF OUT OF THE OUT OF THE OUT OF THE OUT OF THE OUT OF THE OUT OF THE OUT OF THE	ASSUMING THAT THE LOGNORMAL MODEL IS APPRCPRIATE, WE CAN ESTIMATE OF DESCRIBED BY LARSEN IN EPA PUBLICATION AP-89. DESCRIBED BY LARSEN IN EPA PUBLICATION AP-89. COMAX=EXPLACE/XCUNI-MC*HC) SC=SQRISUMEZ/KOUNI-MC*HC) COMAX=EXPLACE/3.81*SC) COMAX=EXPLACE/3.81*SC) COMAX=EXPLACE/3.81*SC) COMAX=EXPLACE/3.81*SC) COMAX=EXPLACE/3.81*SC) COMAX=EXPLACE/3.81*SC) COMAX=EXPLACE/3.81*SC) WRITE(6.6004) COMAX,CUMAX2,MC,SC WRITE(6.6004) COMAX,CUMAX2,MC,SC THE PROBABILITY OF VIOLATING THE CO STANDARD AT THIS LOCATION. COUNTY=YEAR PROBE: 100.0.4V/20MHY VPRCB=PROB*(100.0.4V/20MHY SPROB=SQRI(VPROB) WE CAN ALSO ESTIMATE THE PROBABILITY OF VIOLATING THE CO STANDARD AT THIS LOCATION ASSUMING THAT THE PICKWAY FACILITY COUNTY—NAME AND AND THIS LOCATION ASSUMING ONLY THE BACKGROUND SOURCE. COUNTY—FIRST AND	02/17/81
SQRI(VPROB) WE CAN ALSO ESTIMATE THE PROBABILITY OF VIOLATING THE CO STANDARD AT THIS LOCATION ASSUMING THAT THE HICHWAY FACILITY DOES NOT GENERATE ANY CO DY EXAMINING DNLY THE BACKGROUND SOURCE. OC NIT=NITA FIRST=FIRSTA COOL LAST=LASTA	02/1//81	
--	--	
THE PARTY PAR		
THAT LEVELS EXCEUDING STANDE INTERVAL FROM RECORD(1)+1 TO RECORD(1)+7 INCLUSIVE ANE COUNTABLE BECAUSE OF THE SKIP-AHEAD-8 RULE. DUMHY-RECORD(1)+1 .GT. DUMHY) GO TO 54G CONTINUE RECORD(1+K) IS THE TIME CF THE NEXT COUNTABLE EIGHT HOW RECORD(1+K) IS THE TIME CF THE NEXT COUNTABLE EIGHT HOW CONTINUE TO GET HERE THERE WAS ONLY UNE COUNTABLE EIGHT HOW STANDB IN THE YEAR (11,12). THEREFORE THE YEAR (11,12) TO GET HERE THERE HUST BE AT LEAST TWO COUNTABLE EIGHT LEVELS .GT. STANDB IN THE YEAR (11,12). THEREFORE THE (11,12) TO THE YEAR (RECURC(1), RECORD(1)+8759) INCLUSIVE (11,12) TO THE YEAR (RECURC(1), RECORD(1)+8759) INCLUSIVE NUM-NUM-NUM+1+RECORD(1)-11 NUM-NUM+1+RECORD(1)+1 11=RECORD(1)+1 12=11+8759 GO TO 510	THERE TANDS	02/24/81
(11,12). THEREFURE THE YEAR (11,1) 11=11+1 12=12+1 GD TO 510 TO GET HERE THERE MUST BE AT LEAST TWO COUNTABLE EIGH (11,12) TO THE YEAR (11,12). THEREFORE TY (11,12) TO THE YEAR (RECORD(1))-RECORD(1))-REPROPERTY (11,12) TO THE YEAR (RECORD(1))-RECORD(1))-RESE TO THE YEAR (11,12) TO THE YEAR (THE)-RECORD(1))-RECORD(1)-TO THE YEAR (11,12). NUM=NUM+1+RECORD(1)-11 11=RECORD(1)+1 12=11+0759 GD TO 510 GD TO 510	EVEL SCIDISC	10/62/20
C2/17/81		KEAI
--	--	-----------
0016710 00167	REAL SCALAR CALCULATED. 001657	REAL SCALAR —— CALCULATED. # 01511R), IN METERS. # FAL SCALAR —— CALCULATED. # 10151L!, IN METERS. # REAL SCALAR —— CALCULATED. # 11F DERIVATIVE CF F AT R. REAL SCALAR —— CALCULATED. # 11F CALAR 11R. NI METERS. # 11R. SCALAR —— CALCULATED.
0217 02	FEAL SCALAR CALCULATED. FEAL SCALAR CALCULATED. A TEMPURARY STORAGE VARIABLE. REAL SCALAR CALCULATED. A TEMPURARY STORAGE VARIABLE. REAL SCALAR CALCULATED. I GGICAL SCALAR CALCULATED. THE APPROALPTE AREA UNDER FERN FROP R TO AN END POINT. LOGICAL SCALAR CALCULATED. FEAL SCALAR CALCULATED. REAL SCALAR CALCULATED. REAL SCALAR CALCULATED. FEAL FARAWÉTER/CGPPCN. FEAL SCALAR PARAWÉTER/CGPPCN. FEAL SCALAR PARAWÉTER/CGPPCN. FEAL SCALAR PARAWÉTER/CGPPCN. FEAL SCALAR PARAWÉTER/CGPPCN. FINE ROAD ANGLE PEASURED CCW IN RADIINS FROM FAST.	
0016930 0271 = FIRD). IN KETERS. 0016930 0271 = FIRD). IN KETERS. 0016930 0271 REAL SCALAR — CALCULATED. 0016930 0271 = FIRD). IN KETERS. 0016930 0271 REAL SCALAR — CALCULATED. 0017010 0271 REAL SCALAR — CALCULATED. 0017010 0271 REAL SCALAR — CALCULATED. 0017030 0271 REAL SCALAR — CALCULATED. 0017030 0271 REAL SCALAR — CALCULATED. 0017030 0271 REAL SCALAR — CALCULATED. 0017030 0271 REAL SCALAR — CALCULATED. 0017030 0271 REAL SCALAR — CALCULATED. 0017030 0271 REAL SCALAR — CALCULATED. 0017040 0271 REAL SCALAR — CALCULATED. 0017040 0271 REAL SCALAR — CALCULATED. 0017090 0271 REAL SCALAR — CALCULATED. 0017090 0271 REAL SCALAR — CALCULATED. 0017090 0271 REAL SCALAR — CALCULATED. 0017090 0271 REAL SCALAR — CALCULATED. 0017090 0271	= .PRUE. WHEN SLOPROGRAM IS TATECRATING CVER THE FIRST GOTG880 0271 RIAL OF THE INTERVAL (RI,RZ), TE OVER THE INTERVAL COLG890 0271 REAL SCALAR CALCULATED.	REAL SCALAR CALCULATED. FIND. IN METERS. REAL SCALAR CALCULATED. FIRE EXPONENT OF THE EXPONENTIAL PART OF FIR). REAL SCALAR CALCULATED. FIRE EXPONENT OF THE EXPONENTIAL PART OF FIR). REAL SCALAR CALCULATED. FIRE PARAMETER/CCMMCN. FIRE SCALAR PARAMETER/CCMMCN. FIRE SCALAR PARAMETER/CCMMCN. FIRE ROAD ANGLE MEASURED CCM IN RADIANS FROM FAST.
REAL SCALAR CALCULATED. 0016970 0271 027	REAL SCALAR CALCULATED. 0016970 0271 027	REAL SCALAR CALCULATED. = F(R1). IN WETERS. = F(R1). IN WETERS. = F(R2). IN WETERS. = FIRZ SCALAR CALCULATED. = THE ROAD ANGLE WEASURED CCW IN RADIANS FROM FAST.
PARAMETER/CGMMCN. = THE ROAD ANGLE MEASURED CCW IN RADIANS FROM FAST.	C2/11/181	
2717/81 2717/81 2717/81 2717/81 2217/81 2217/81 2217/81 2217/81 2217/81 2217/81 2217/81		270 286 296 310 310 340 350 340 340 340
--	--	
FROM 0017960 ARITHATION INTERVAL. 5 THE DISTANCE WEASURED ALONG THE ROADKAY IN HETERS FROM 0017960 ARITHATION OF THE RIGHT-HAND END POINT OF THE INTEGRATION 0018050 ARITHATION OF THE RIGHT-HAND END DOINT OF THE INTEGRATION 0018050 BEAL SCALAR CALCULATED. 5 THE HORIZONIAL CISPERSICN PARAPETER, IN PETERS. 5 THE HORIZONIAL CISPERSICN PARAPETER, IN PETERS. 5 THE HORIZONIAL CISPERSICN PARAPETER, IN PETERS. 5 THE HORIZONIAL CISPERSICN PARAPETER.		į
--	----------	
--	----------------	-----------
--	--	---
00211950 00219	.0+1.01) (10,CLASS) H1**2-1.01*(EHC/(DISTR+HC))+ (1015TR+VC)) 1*CAG (10,CLASS) H1**2-1.01*(EHC/(DISTR+HC))+ (10,CLASS) H1**2-1.01*(EHC/(DISTR+HC))+ (1015TR+VC)) 1*CAG (1015TR+VC)) 1*CAG (1015TR+VC) (1015T	001984c 0019850 001
0019990 001990 00190 00190 00190 00190 00190 00190 00190 0019		
0019910 001991		
0019920 0019920 0019920 0019920 0019920 0019920 0019920 001993		
02(1990) 02	PR=P(R2) DISTR=DIST(R2) DISTR=DIST(R2) DISTR=DIST(R2) DISTR=DIST(R2) DISTR=DIST(R2) DISTR=DIST(R2) DISTR=DIST(R2) DISTR=DIST(R2) DISTR=DISTR+DC1*BUTC SIGMAN=AHC+OFISTR+HC1**BUTC SIGMAN=AHC+OFISTR+HC1**BUTC SIGMAN=AHC+OFISTR+HC1**BUTC SIGMAN=AHC+OFISTR+HC1**BUTC SIGMAN=AHC+OFISTR+HC1**BUTC SIGMAN=AHC+OFISTR+HC1**BUTC SIGMAN=AHC+OFISTR+HC1**BUTC STARTING WITH THE ROADWAY END POINTS AND ROADWAY POINT CLOSEST THE RECEPTOR, USE THE BISECTION TECHNIQUE (THE BERTVATIVE OF F CHANGES SIGN ONLY AT RO1 TC LOCATE RC. THIS VALUE OF RO IS THE ROAD POINT CLOSSEST TO THE OBSERVER THIS VALUE OF RO IS THE ROAD POINT CLOSSEST TO THE OBSERVER THIS VALUE OF RA .OR. RO .GE. RB) RO=(RA+RB)/2.0 IRO IS A COUNTER. WE WITH PERFORM A MAXIPUM OF 20 DISECTIONS TO LOCATE RO.	0020120 0020130 0020130 0020120 0020020 0020020 0020020 0020020 002002
\text{Signation}{Sign	SIGNAH=AHC+(DISTR+HC)++BHC SIGNAH=AHC+(DISTR+HC)++BHC SIGNAV)++21.01+(IPR/SIGNAH)++2-1.01+(IPR/SIGNAH)+-2-1.01+(IPR/SIGNAH)++2-1.01+(IPR/SIGNAH)++2-1.01+(IPR/SIGNAH)+-2-1.01+(IPR/SIGNAH)++2-1.01+(IPR/SIGNAH)++2-1.01+(IPR/SIGNAH)++2-1.01+(IPR/SIGNAH)++2-1.01+(IPR/SIGNAH)++2-1.01+(IPR/SIGNAH)++2-1.01+(IPR/SIGNAH)++2-1.01+(IPR/SIGNAH)++2-1.01+(IPR/SIGNAH)+-2-1.01+(IP	6020010 6020020 6020020 6020060 6020060 6020060 6020060 6020060 6020060 602010 6020110
C271 COADING C271 COADING C271 COADING C271 CAADING C271 COADING C271 COADING C271 CAADING C271 CAADING C271 COADING C271 CAADING	AUE OF RO IS THE ROAD POINT CLOSSEST TO THE OBSERVER RYI-OY)-SA*(RXI-OX) LE. RA .OR. RO .GE. RB RO=(RA+RB)/2.0 A COUNTER. WE WILL PERFORM A MAXIMUM OF 20 DISECTIONS RO.	0020130
A	,	
02/17/81 02/17/81		DESTRUCTOR DES
INDEX(HIN1(101.0,(01STR+VC)/130.0+1.0)) S1GAAH=AHC+(01STR+HC)++BH/C S1GAAH=AHC+(01STR+HC)++BH/C S1GAAH=AHC+(01STR+HC)++BH/C FR = C.	C2/17/81 C2/17/81	
02/17/81 02/17/81 02/17/81 02/17/81 02/17/81 02/17/81 02/17/81 02/17/81 02/17/81 02/17/81		COMPUTE F AT THE NEW VALUE OF RI. FR=FR DISTR=DIST(RI) DISTR=DIST(RI) C021190 C021190 C021190 C021190 C02120 SIGNAH=ANCE(DISTR=PUC)**EW(ID,CLASS) SIGNAH=ANCE(DISTR=PUC)**EW(ID,CLASS) SIGNAH=ANCE(DISTR=PUC)**EW(ID,CLASS) SIGNAH=ANCE(DISTR=PUC)**EW(ID,CLASS) FRI=EXP(-0.5*(IP(IT)SIGNAH)**2**CDSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
CC213C IR=C IR=C IR=C IR=IR*I CC213C CC213C CC213C IR=IR*I CC213C IR=IR*I CC213C CC213C IR=IR*I CC213C CC213C IR=IR*I CC213C CC213C IR=IR*I CC213C CC213C IR=IR*I CC213C CC213C CC213C IR=IR*I CC213C CC213C IR=IR*I CC213C CC213C IR=IR*I CC213C CC	(ID, CLASS)	62/17/81
--	--	
CG22055 CG22C9C CG21CC CG22C9C CG2CPC CG2CPC CG2CPC CG2CPC CG2CPC CG2CPC CG2CPC CG2CPC CG2CPC CGC2CPC CGC2CPC CGC2CPC CGC2CPC CGC2CPC CGC2CPC CGCCCPC CGCCCPC CGCCCPC CGCCCC CGCCCCC CGCCCCC CGCCCCCC CGCCCCC CGCCCCC CGCCCCCC		C GERRAL GUES INTEGRATICA UNTIL DESIRGE ACCHACY. 022206 027178 C GERRAL RELEAST COTES INTEGRATICA UNTIL DESIRGE ACCHACY. 022206 027178 DUMPY-VI 19
0022160 0022190 0022190 00222190 00222190 0022210 0022210 0022240 0022250 0022250 0022260 0022260 0022260 0022290 0022310 002240		NEAR 18 18 18 18 18 18 18 1
INTGRX=ZR*[Z(I)*[Y(I)*(Y(I)+Y(Z))+Z(Z)*[Y(Z))+Y(G))+Z(Z)*[Y(Z))*[Y(Z)]*[ANDS 0022350 0271 C022340 0271 ANDS 0022340 C271 002240 C271 C02240 C271 C02245 C271 C02246 C271 C02246 C271 C02246 C271 C02246 C271 C02246 C271 C02246 C271	
--	--	
MOBILEI: MOBILE SUURCE EHISSIONS MODEL DESIGNED AND MRITTEN BY LEWIS E. GUITHMAN JANUARY, 1978 ALL COMMENT REFERENCES TO TABLES AND APPFINDICES ARE FOUND IN THE EPA'S "MODILE SOURCE EMISSION FACTORS" FINAL DOCUMENT, JANUARY 1978. ALL PROBLEMS WITH THE PROGRAM SHOULD DE REFERRED TO VIRGINIA DEPARTMENT OF HIGHWAYS AND TRANS. VIRGINIA DEPARTMENT OF HIGHWAYS AND TRANS. TELEPHONE: 804-786-7265 N: PAIN ROUTINE FOR CALCULATING MOBILE SOURCE EMISSION FACTORS	02/12 02/12 02/12 02/12 02/12 02/12 02/12 02/12 02/12 02/12 02/12 02/12	
---	--	
CCC23470 CCC23770 CCC2470 CCCC2470 CCCC2470		Continue
0.0094400 0.		
--		
khi như (như vệ no a spinishi như mặc nam ar vivanimamana như như màn như như như như n A niệ được khappinhiện khi như (như vệ như a spinishi như		AND THE PARTY OF T
--	---	--
110 110	DO 10 12=1,20 MYM (12,11) = MYMDUM (12,11)*1CCOC DO 100 1M=1,5 CUMMIL(1,1M)=MYM(1,1P)*FRAC(2 SUR=0. SUR=1,11 SUR=SUR+PYM(1,1P)*FRAC(2,1M) T=SUR+PYM(1,1P)*FRAC(4,1M) T=SUR+PYM(1,1P)*FRAC(4,1M) T=T1*FRAC(1,1M)	CGO2637C CGO2638O CGC2639O CGC2639O CGC2641O CGC2643C CGC2643C
2.4415;29147;.014296;31378E-03;.5978E-05;28244E-07; 00026800 2.4780;31913;.0165318;47233E-03;.6970E-05;31497E-07; 00026800 2.7780;31913;.016294;46757E-03;.67191E-05;37440E-07; 00026800 2.7074;33131;.017618;53858E-03;.87168E-05;37490E-07; 00026820	DATA AIN2/	00026740
	HEE 1-1: 11-1A.	111111111111111111111111111111111111111
	A REAL PROPERTY OF THE THE THE PERTY OF	