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SUMMARY

This study developed a numerical methodology for the elastic
stress analysis of general prismatic beams. The objective was to
accurately determine stresses and displacements on a cross section
of a beam where the stress resultants are prescribed. Applied
loads may include axial force, bending moment, uniform (constant)
torsion, constant (transverse) shear, and the rates of change of
twisting moment, axial force, and shear. By assuming that the
stresses and strains in a beam vary as a quadratic function of the
longitudinal coordinate, the formulation expressed in terms of dis-
placement functions was reduced from a three-dimensional analysis
to a two-dimensional one. Numerical solutions were obtained using
the finite element method of analysis. Numerical results were
compared with exact and approximate solutions for selected cross
sections. Several representative beams having cross sections
commonly used in bridges were used to demonstrate the applicability
of the method.
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PROBLEM STATEMENT

In traditional bridge design, elementary beam theory has been
sufficient to predict both the deformations and the normal stress
distributions resulting frcm the bending moment carried by the gird-
er. Using this elementary thecry, it was appropriate to utilize the
basic assumption of beam theory; namely, that cross sections cf the
beam remain plane after bending.

In the design of contemporary bridge structures, however, ir-
regular cross sections and curved geometries are frequently encoun-
tered. In such cases, certain of the more traditional and approximate
methods of analysis may be incapable of accurately predicting the
stress distribution throughout the structure. In the presence of sig-
nificant shear stresses, caused either by torsion or by transverse
loading on the bridge, cross sections may not remain plane and the
basic assumption of beam theory may lead to results sericusly in error.
For certain geometries, such as those found in thin walled sections
utilized in many box gircder bridges, it is not unusual for longitu-
dinal restraint in the presence of nonuniform torsion to contribute
significantly to the normal stresses and corresponding deformation.

The problem of reliably predicting both normal and shearing
stresses 1n the cross section of bridge girders is not new. Extensive
research has been conducted in the past decade, with emphasis on the
determination of stress resultants such as bending moments, shearing
forces, and torques at particular cross sections of the bridge girder,
as well as the determination of detailed stress distributions through-
out the cross section once these overall stress resultants have heen
determined. (1,2) Shearing stresses and the acccmpanying change in
normal stress distribution due to restrained warping have been
studied extensively for the case of torsional loads, and both approxi-
mate and more exact techniques for calculating such stresses have been
developed. (3,4)



However, the complexity of the problem has made it impossible
to completely determine the effects of all parameters. In particu-
lar, the effect of ncnuniform shear on normal stresses and corres-
ponding cross-sectional deformation cannot, at the present time, be
reliably predicted. Nonuniform shear can occur either when the
loading varies along the axis of the beam or when the warping of
the cross section, caused by the shear at that location, is con-
strained by the end conditions or mechanical devices. Current
practice calls for these effects to simply be neglected; however,
preliminary consideration has indicated that, in certain cases of
cross-sectional geometry, these effects may be significant.

There is, then, a need to study the effects of previously
neglected parameters such as nonuniform shear on the deformation
and stresses in beams whose geometries are such that these effects
may produce significant changes in the usual bending stresses. The
results from such a study would provide a more accurate procedure
for the stress analysis of thin walled cross sections and, more
importantly, would identify for bridge designers the relative im-
portance of these parameters.

OBJECTIVES

The broad objective of this study was to develop a theoretical
background, based on an exact elasticity formulation, and a subse-
quent numerical procedure for the general elastic stress analysis
of straight beams of arbitrary cross section. Existing approxima-
tions permit the stress analysis of beams under certain loading .
conditions such as constant shear, uniform torsion, and nonuniform
or restrained torsion.(2,3,%5,5,6) Although the formulaticn is suf-
ficiently general to include other types of loadings, the primary
concern was the effect of nonuniform shear on the normal stress
distribution over the cross section.

Specific objectives include the following:

1. To formulate, using elasticity theory, a theoretical
basis for subsequent numerical approximations with
consideration given to all loading parameters, i.e.,
constant shear, uniform and nonuniform torsion, etc.,
but with primary emphasis given to the effects of
nonuniform shear.
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2. To develop a general numerical method for the stress
analysis of beams of arbitrary cross section that
would include consideration of nonuniform shear and
restrained warping, with emphasis given only to a
finite element procedure to arrive at numerical ap-
proximations.

3. To demonstrate this method by calculating the normal
and shearing stresses for beams having certain repre-
sentative cross sections such as rectangular, circular,
angle, channel, and box sections.

4. To compare the stress results for certain cross sections
with either the exact solutions or previously determined
approximate sclutions. The exact solution for nonuniform
shear may be obtained for the rectangular and circular
sections.

5. To evaluate the effects of nonuniform shear on stresses
and the stress distributions over the cross sections.

SCOPE

In the study, consideration was limited to prismatic beams
having straight axes and subjected to arbitrary loadings. The mate-
rial of the beam was assumed to be homogeneous, although the method
can be extended to consider composite action. Numerical results
were limited to typical cross-sectional geometries such as open or
closed box members currently used in the design of girder highway
bridges. The feasibility of extending the procedure developed for
the straight beam analysis to include curved beams was determined.

DEVELOPMENT OF THEORY

In the development of the theoretical background for the elastic
stress analysis, it was assumed that the bending moment, shearing
force, torque, bimoment, or other appropriate stress resultants at
any specified location along the axis of the beam are known.

Consider a beam of arbitrery cross secticn, loacded uniformly
along its axis with either body forces c¢r surface tractions. The
forces which determine the magnitude of the uniform load may be of
any distribution either on the periphery or in the cross section
cf the beam. TFigure 1 depicts the coordinate system used with the
x and y axes 1in the plane of the cross secticn of the beam and with
the origin at the centroid. Figure 2 depicts the forces or surface
Ttractions which mey be asscociated with the unifcrmly lcaded beam.
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Figure 1. Coordinate system,
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T surface traction normal to boundary
T = surface traction tangent to boundary
s
T = surface traction along longitudinal
Z axis z

Figure 2. Forces on the uniformly loaded beam.
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The following assumptions are made:

1. The material is isotropic, linear, homogenecus,
and continuous.

2. The z axis is the centroidal axis, but the x and
Y axes are not necessarily principal axes.

3. The beam is prismatic and the distribution of the
uniform load over the cross section may be arbitrary.
This work covers the cases of a uniform distribution
of twisting couple and longitudinal force. Any re-
sultant force cr couple at any end of the beam is
also considered.

4. The stresses and strains may be expressed as a
quadratic function of the longitudinal coordinate z.

Assumption (4) reduces the problem from a three-dimensional
one to a two-dimensional or cross-sectional analysis and allows
the stresses and strains to depend only upcn the internal forces,
couples, and other appropriate stress resultants at that cross
section.

Consistent with assumption (4), the stresses are assumed to
be of the form:

0 = oi 2t + oD xy)z + o) (x,y) (1a)

Oy = O}(Iz)(x,y)z2 + O}(,l)(x,y)z + O’}(IO)(X,}') (1b)

o, =0l (x,y)22 + ol (x, )z + (") (x,y) (lc)
- (2 2 1 0

Txy Txy)(x,y)z + Téy)(x,y)z + réy)(x,y) (1d)
— 2 2 1 ~ (0

Ty = Téz)(x,y)z + Téz)(x,y)z + Léz)(x,y) (le)

= 2 2 1 0)
T Téz)(x,y)z + Téz)(X,Y)Z + Téz (x,y). (1£)



Similarly, the strains are assumed to be given by

€, = e}gz)(x,y)z2 + sél)(x,y)z + e§°)(x,y) (2a)
ey, = ezt + e (D G,y)z + el (x,y) (2b)
e, = el xyzt + ez + ) (x,y) (2¢)
Yxy = Y}(qj.) (x,y)z? + Y}(c}l,)(x,y)z + Y}({;)(X:}’) (2d)
Yoz = Yéé)(x,y)zz + yéé)(x,y)z + Yé;)(x,y) (2e)
Tyg = ij.;)(x,y)zz + Y}(,;)(X,Y)Z + Y}(,OZ)(X,Y)- (2£)

In the equilibrium and compatibility equations, the boundary
conditions, and the stress-strain laws, the terms of the second,
first, and zero degrees in z may be considered separately.

The first step is to substitute eqg. la-2f into the appropriate
equilibrium and compatibility equations. Enforcing the boundary
conditions, and taking terms that contain only z?, the following
relations are derived:

(2) = 5 (2) = (2) = (2) =
Oy Gy Txy ny 0 (3a)
e () = ¢ (@) o e (2) - y(ce, +ax+Dby) (3D)
X y z = 2 2
e,(*) e, - a,x - b,y (3c)
oz(z) = Eez(z) (3d)
v () =6y ) =60,GL -y (3e)
Ty () = Gy, ) = G (G5 + %), (35)
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where ¢(x,y) is St. Venant's torsion function, and 6o, €9, ap, and
b are constants with

7% (x,y) =0 in R (3g)
39 _ -
=5 = Y - xm on C (3h)

In a similar fashion, if those terms containing only z are
collected, the following expressions are derived:

= 2) = (2) = (2) = (2) 2
@2 = sz( ) sz sz TYZ €2
= (1) = (1) = (1) = 1) =
Oy Oy Txy Txy( 0 (4a)
ez(l)= €1 - ai1X - b1y (4Db)
€X(1)= ey(l) = _ugz(l) = -u(gl - a;x - bIY) (H»C)
0,1 = Ee, V) = E(er - arx - bay) (4d)
() =5, + %) + 2a [3ﬁl + uxy]
Tyz 3y 23y 7
+ ?_bz[gl}‘jz + -2—u(y2- x2) ] (4e)
v, = e @R -y 22,38+ S - v
+ 2b, giz + uxy] (45)
1) = (1)
Tyz( ) Gsz (4g)
() =gy () (sn)

(e8]



where ¢(x,y) is the torsion function, Yi1(x,y) and wz(x,y) are
the warping functions in the x-z and y-z pfanes, respectively,
due to shearing deformation, €1, @, by, and 6, are constants,
and with

V¢ (x,¥y) =0 (41)

72y, (x,y) = 2x (43)

VY, (x,y) = 2y (4k)

and

%% = 2y - mx (41)
Iy

g%l = —Q%p(xz - y%) - muxy (4m)

3

%%3 = -2UXy - m%u(yz - x%). (4n)

Finally, by selecting terms independent of z, the following
expressions are derived:

(o)

Y 90(9§ + x) + al[-g—?iL + uxy]

vz
Bug
+‘“1[ +2’(}7"X )1 (5a)
0

YXZ(0) = go(§§ -y) + al[%gl + %—u(x2 - y3)]1

+ by (322 + uxy] (5b)
e, ) = g marx -boy + 019(x,y) + 2ass (x,v)

+ 2bsta(x,y) (5e)

l ” [ (7
g1 = -_X[Q:Tzds + jfadxdy] (5d)
5. () = O+ 26)e )+ e+ ae () (5e)
gy(°’ = (0 + 2@)g§°)+ el ae () (55)
- 0) = 5
T (v) = Gy 0 (on)
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and

Xy
e (o) = 3u’
X P
0
e (o) - Iv
y 3y
v (o) = du  av?
'Xy oy X
oz(°) = hsé°)+ u(oé°)+ oéob
Vi =0
VZT/l = 2xX
2 1 =
Vli, = 2y - Sy Ee: + 2)

3¢ _

o - MY - omx

30 1 ,

3n1 = -Jlju(x2 - y°) - muxy
SRV 1

o(x,y) = o(x,y)

Ti(x,y) = v1(x,y),

where 6o, €4, @0, and by are constants.

If there is nc distributed longitudinal force,

U (x,y) = Yo (x,9).

(51)
(55)
(5k)
(51)
(5m)
(5n)
(50)

(5p)

(59D

(57)

(5t)

(5u)

(5v)



Using eqq. la-1f, 2a-2f, 3a-3f, 4a-4h, and 5a-5m, the final
complete expressions for stresses and strains are as follows:

e, =ulla1z + a2z*)x + (b1z + byz?)y] - perz + ex(°)

X
(6a)
ey =ul(aiz + a,z*)x + (bi1z + b2z2)y]l - ue1z + Ey(O)
(6b)
e, = € + €12 - (ap +a1z + a,z%)x - (by + b1z + b,z¥)y
+ 610(x,y) + 2a:¥,(x,y) + 2br¥a(X,y) (6c)
su’ 5v°
= + 9V .
Yxy = 5y % (6d)
Yoy = Rl(a1 + 2::122)%(x2 - y?) + (b1 + 2b2z)xy]
~ 00 RS AW
+ z[‘«’l('é‘}_( - y) + 2a; X + 2b, 3N ]
96 _ BWr . 3
+ 80 (5% - ¥) + aig— + bazy (6e)
sz = ul(a; + 2azz)xy + (b, + 2bzz)%(y2 - x2)]
200, (22 30 32
+ Q[Pl(ay + x) + 2aé§§ + 2b28y ]
30 391 4,802 | |
+€'°(ay + x) + alay + b, v (6f)
Ty " Gny (6g)
Ty = GYyy (8h)
Ty = Gsz (61)
= (o) (o) . (o) s
s (n + 2G)€x + Aey )+ e, (67)
= ~ (o) (o) (0) 1
oy (n + 2G)cy + dey + Xe, (6%)
o, = Ee, + u(cx + oy (61)
. (o) 2 3ul
£y = (6m)
c =3V0
£y 3y (6n)
=, () = e0 - ax-biy + 016k, y) + 2800, (x,)
+2b,vs(x,v), (80)
where ¢, =1, a¢, a, a», bo, b1, be, 2o, and &; are constants.
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The evaluation of the constants in terms of applied loading
and boundary conditions, and the interpretation of these constants,
are derived elsewhere. (7)

DEVELOPMENT OF THE FINITE ELEMENT METHODOLOGY

Finite Element Theory

In this section, a procedure using the finite element method
for approximately solving the equations developed in the previous
section is presented.

The unknown functions to be determined using the finite ele-
ment method are the warping functions ¢(x,y), wl(x,y) Yo (x,y), and
Y3(x,v) and the dispWacemenl functicns u¥(x, y) and v (x,y ) An
a¢+ernate way of representing the equations and boundary conditiong
governing these ‘unct;onﬁ is to ;;pd their ecquivalent variational
foerms which, when minimized with respect to the unknown functions,
will yield the gcverning differential equations and boundary condi-
ticns. These functionals, which are derived in reference (7), are
designated Ig, Iyy, Iyg, Iys, and Ig.

The finite element solution is obtained by varying the nodal
values of the unknown variables so as to minimize the equivalent
variational functional. Thus, setting the partial derivatives of
the functional with respect to each of the unknown nodal variables
equal to zero produces a set of algebraic equations. These equations
can then be solved for the nodal values of the variables.

For the uniformly loaded beam, the cross section is approxi-
mated by a system of arbitrarily shaped triangular elements. The
unknown variables are assumed to vary linearly within each element
Figure 3 depicts a typical finite element idealization of a beam
cross secticn and Figure U4 represents a typical mth element with
its nodes numbered as shown in its local numbering system.

By letting y(x,y) represent any one of the unknown variables,
0 (x,y), V1(x,¥), Yo(x,y), ¥g(x,y), u O(x,y), or vO(x,y), the values
of the unknown functwon at the nodes 1, 2, and 3 are denoted re-
spectively by Yl , Y2 , and ng

The unknown variable may be expressed as a linear function
within element m as
m m m m
¥ x,y) = €] + Chx + CRy (7)

12



Figure 3.

Finite e2lement idealization
of the beam cross section.
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Figure 4.

Typical triangular element.
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m m m . . .
where the constants C,, C,, and C, can be determined in terms of
the values of y at th& node points. These can be written in a

simplified form using the summation convention as

¢t = T0.4T j=1,2,3, (8)

where a repeated subscript implies summation. In eq. (8),

X,¥3 - X3Y» X3¥1 = X1 ¥3 1Y, T XY,
o, = L v, - - -
ij - ZAm J2 Yg Y3 yl yl yz
X3 - Xz Xl - X3 Xz - Xl
S -

and Am = the area of element m.

Using eq. (8) and utilizing the summation convention, eq. (7)
can be written in terms of the values of the unknown variliable at
the nodes of the element as

ym(x,y) = C?Xi = T?jY?Xi ji=1,2,3, (10)
where
X, = [1 x yl. (1)

1

The derivatives of yv(x,y) with respect to x and y mayv also be
expressed in terms of the values of the unknown variable at the
nodes of the element as :

-4
1

)

1Y
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f\/m <
by _(%,¥) . = " j=1,2,3 (12)

90X 3773

3 m(x ) m._m

2 V) = 7 TNE i =1,2,3. (13)
oy 3] ]

For area integrations of a triangular element, let

=11 xyx* v r=1,2,3,4,5 (14)
m _ r( x = <3 3 =
Irs ))Am rXsdx dy <Xr XS> T, 1,2,3,4,5
(15)
m m m— m m
A A Ay Iyy Ixx
A% I m m <x3> <xy2>
yy Xy
m  _ m— m m 2 3
Irs = Ay IXy | Ixx <yx©> <y’> (16)
I x> <x?vy> <x*> <x?y?>
yy -
Ixr}g <y2x> <y3> <y2x2> <y“>
e -t
and for line integrations, let
Lij = émxixj ds i, 3 =1,2,3, (17)

where Xi or Xj are given by'eq. (11).



Warping Function Formulations

Warping Function ¢(x,y)

The energy functional to be minimized is

_ 1 3¢ 2 39 2 (18)
I¢ - sz[(§§ -yt (5§ + x) " ldxdy.
Using the notation as given by eqq, (10)-(13),
eq. (18) may be expressed by
I, = g 1 (10T, T o - y)2 + (1.7 ¢T + x)21dxdy
¢ w1 2 in 25 %5 77 33 %] ’
(19)

where M = the total number of elements in the cross section.

Following the usual Ritz procedure, the minimization of the
functional with respect to the unknown warping function ¢, leads
to the following system of equations.

g sl g c n=1,2,3...L
n=1 k' k m=1 B {(2Ca)
- k=1,2,3,
where
L M oM o0 pl
By = Iyq [TouTon ™ T3 T3yl (20b)
_ m m .m
m m . .
T, =T.,., j =1,2, or 3, the node number in
in ij

element m which corresponds to

node n. (z0d)

=
=1



Q is the number of elements which surround node n, L is the
total number of node points defining the shape of the cross
section, and I?j is given by eq. (186).

Eq. (20a) can be solved for the values of the warping func-
tion ¢ at the node points.

This formulation for the torsional warping function ¢(x,y)
is identical to that given previously by Herrman 6) and by Pilkey.(8)

Warping Function y;(x,y)

The energy functional tc be minimized is

_ Llerr 03U L2 - L2yq2 A5 NI 2
I’i)l 2‘}) L[BX + ZU(X y )] + [5}7 + ,_1X}7]
£ 6(1+u) x: (x,y) i dxdy. (21)

Using the notation as given by eqq. (10)-(13), eq. (21) may
be expressed by '

1 1
le = I fo{[Tz? wl? + ZU(XZ - y3)1°?
m=1 Al
+ {1‘321 ’1"';1? + uxy]? + 4(1 + u)XZXiTi?wl?}dxdy,

(22)

where M = the tctal number of elements in the cross section.

Minimizing the energy of the system with respect
J S 1%

warping function y;_ yields:

ot

© the unknown

o0
s

Cae

13



where

- m . m m, My M
snj [sz Typ + T3j T3n111j (23b)
_ 1 m m m m m
Ry = ~7u(Ipp - I33T,, - wlyg T3y
- m o m (23
2(1 + u)Izi Tin c)
m m .
.. =T.., j=1,2, or 3, the node number in
in 1]

element m which corresponds to

node n, (234)

Q is the number of elements which surround node n, L is the total
number of node points, and Ii? is given by eq. (16).

Eq. (23a) may be solved for the values of the warping function
¥, atthe node points.

Warping Function ¥, (x,y)

The energy functional to be minimized is given by

I, = /UG8 +uxy)? + 502 + qu(y? - x*)]°

+ 4(1 + w)yy,(x,y) dxdy, (24)

which may be alternately expressed as

M

I m m » m _ m
I = [Th. .. + 1 + [T.. v _.
L 7{£n[ 25 Va3 A T35 Vo
1 v oy oM M

+ TU(yZ - x%3)1?% + &(1 + u)‘\-.?)XiLij *szj}dxdy,



where M = the total number of elements in the cross section.

Again, minimizing the energy of the system leads to the follow-
ing set of linear equations.

g [ g R 1,2,3
. . = n = ...L
-1 nj 23 -, n PEa (26a)
ml m=l - 1,2,3,
where
= _ m ., m m m m .
Spy = (T2 Ton + Tg5 Tan 1157 (26Db)
- _ m . m 1 m My~ M
Rp = 7HIpy Topn - gu(Izz - 159073,
m m
- 2(1 + wIg; T, (26¢)
D =7T.7, j=1,2 3, the nod ber i
in = ij’ ] = , &, O s e node numbper 1n

element m which corresponds to node n,
(264)

Q is the number of elements which surround node n, L is the
tctal number of node points, and Ii? is given by eq. (16)

Egq. (26a) may be sclved for the values of the warping function
Yo at the node points.

Warping Function y3(x,y)

The energy functicnal to be minimized is given by

1 35 2 31 1 2
T, = JUGE + wbuxyl® + (552 + qu(y? - x)by?

F 4L+ Wbyl (x,y) - 5(Eer + DYy (x,y) dxdy

T
- S 55 s (x,v)ds, 27)
C

[N}
o
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which may be written as

M
LtmBT ¢ byl + im0+ bt - kD1
m = .

K -
. =1 “y

m, m 2 = m, m

ML T
Z x.T.™ y,%ds, (28)

- ¥ £ X.
1 G "i71] 3

where M = the total number of elements in the crcss secticn and
M1 = the total number cf elements forming the boundary of the
cross section.

Minimizing the energy of the system leads tc the following

set of linear equations.

Q .. . Q. 1,2,3,...L
; LR J=1,2,3 (29a)

o]
]

where

_ m m m m m m m
ni~ [To3 Ton * T3y T3pllyy - wbilpy Tyy

wme

- %ub1(13§ - Ty Tan (29b)

N
i
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5 = .9 m m 1._ 2 m -, m
Rn 4(l+u)b113l Tln + G(Eel + Z)Ill lin
T
z m .
+ & Llj TiN (29¢).
m m . .
. =T.., j=1,2, or 3, the node number in
in ij

element m which corresponds to

node n, (294d)

Q i1s the number of elements which surround node n, L is the total
number of node points, Ii? is given by eq. (16), and L;s: is given
by eg. (17). Only when ndde n lies on the boundary and T, is
specified as a nontrivial value will the last integral in eq. (2%c
contribute to eq. (29a).

Displacemert Functions u“(x,y) and vg(x,y)

The energy functional tc be minimized is given by

I = ({300, () + e (D 47 e ()2 + 26(e ()
+ EV(O)Z) + Gny(O)Z] - (sz(l) + Xu’
1 FY 0 ) _ 0 0
- (Tyz( ) + ¥)v®rdxdy fC(Txu + Tyv )ds,
(30)
where
e (o) - 3u’ (31a)
- 3% la)
0
e, (0 = g—; (31b)
oy _ ou’ 3v?
ny( ) 5y + = (31le)

22
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Using eqq. (3la)-(31lc), the notation as given by eqq. (10)-
(13), and dropping the superscript 0 on ul(x,y) and v%(x,y), eq.
(30) may be expressed by

M
1 m  m m m
I, = (A (T2 uy + T 0 v, + ¢ (0))2
’ milefmZMZJ Bt Tay Vit e D)

+ T ™ By2 4o ™My 4 lpppemeom L pmoomy
GU(T, 5 uy) (Tyy v 71 + 250755 vy 23 V3]

- (1) T < m m (1) = m _m
(T4p + X)XiTij u; (ty, + Y)XiTij vj}dxdy
-M% ST XTT e + T T, vd
el gmoxivii 3 T tytitig T3less (32)

where M = the total number of elements in the cross section and

M1 = the total number of elements forming the boundary of the cross
section.

By minimizing the energy of the system with respect to the un-
known displacement functions upy and vp, the following set of linear
equations are derived for u and v, respectively.

2n ]

_ Q
- (..M + DXT.M dxdy -z s T XT.Mds =0
Z 1 1in
m=1 gl
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Q
% AT, B u® + T, ; My e (o)yr M
m=1 iﬁ (Ta5 ¥ j z T

an
+ 26 T4Y TV § o+ G(T,3 uJ + TZJ vm)T2n

- (t z(l) + ?)XiTiﬂ}dxdy - g fT X. T, n ds = 0.
J m=1 'm 171
S (33b)

Performing the above element integrations and using eqq. (16)
and (17), eqg. (33a)-(33b) yield the fcllowing system of 2L linear
simultaneous equaticns.

Q ) Q
: KI™MA® = 3 o(p™® n=12,3...L
m=1 =1 j=1,2,3, (34a)
where
d@
(a)™ = % i =1,2,3, (34Db)
v
h|
m
{P}m - Pl (3L4’C)
m
Py
m .m
ki1 ko .
km km 11
21 22
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where

m m

kKlp = v+ 26)T)0 T, + G(T5 Typ) (34e)
K, = AT Top + 6 T3 Tap (3409
K5, = ATqp TZIJI.‘ +G Ty T3‘Jf‘ (34g)
KD, = (0 + 2(;)1"3?1 T_QE + G TZIJ?I Too (34h)
PT = -ATy, ff €, (o )dxdv + Tin ffm TXZ(I)X dxdy
+ X T+ T TD L. (3ui)
P? = —XT33 fimez(°)dxdy
+ 7,0 [,{m T, (X dxdy + Yll’f T.o + TyTirlfl1 Li;
(343)
in = Ti?, j =1, 2, or 3, the node number in
element m which corresponds to node n, (34k)

Q is the number of elements which surround node n, L is the total

number of node points, I.® is given by eq. (16), and L:;: is given
1] iy

by eq. (17).

Boundary Conditions

The stiffness matrices for the warping functicns and displace-
ment functions given by eqq. (20a), (23a), (26a), (2%a), and (3ia)
are singular and the corresponding equations cannot be solved
uniquelj To overcome this difficulty, certain boundary conaition
must be applied by selecting an arbitrary node and specifying the
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values of ¢(x,y), y1(x,y), vo2(x,y), and ¥3(x,y) at that node.
Since the stresses from these functions will not be affected by
the specified values of the warping functions, the values of
¢(x,y) = ¥1(x,y) = ¥o(x,y) = Y3(x,y) = 0 at the selected node are
acceptable.

For the displacement functions uo(x,y) and vo(x,y), it is
necessary to zero three displacements to prevent rigid body motion.
Since the cross section, theoretically, is in equilibrium under the
forces given by eq. (34c), the stresses derived from the displacement
functions will not be affected by the constraints chosen.

The displacement functions u0(x,y) anéd v9(x,y) will provide a
mapping of the cross-sectional distortion created by the applied
forces on the cross section. Therefore, in order to obtain a sketch
of the cross-sectiocnal distortion, it is convenient to constrain an
interior element near the shear center so the boundary cof the cross
section is the least affected. If the shear center 1s outside the
cross section, an interior element near the centrcid may be con-
strained.

APPLICATIONS AND NUMERICAL EXAMPLES

The stresses considered in this study include those due to
constant torsion, direct shear, bending moment, axial force, non-
uniform torsion, and nonuniform shear. The stresses due to non-
uniform torsion and shear require the determination of warping
functions which are determined approximately using a finite element
analysis.

A finite element computer program has been prepared to deter-
mine these warping functions. Input loading parameters include the
magnitudes of the axial force, btending moment, twisting moment, anq
the rates of change of twisting moment and shear. Rates of change
of Lwistlng moment or shear may be input either as body forces or
as surface tractions in which case the surface traction connectivity
on the outer boundary of the cross section must be specified.

In this section, several examples are presented to demonstrat
the applicability of this methodclogy. Comparisons of the finite
element solutions with the exact or approximate sclutions for certain
cross sections will alsc be given to demonstrate the accuracy of the
former. Emphasis is given to those stresses resulting from nonuni-
form shear.

This computer program was developed as a research tool and is
nct suitable for general use at this time. Those interested in the
details of the program may contact the authors.

(3]
o



Rectangular Section

Consider a homogeneous beam of a rectangular solid cross
section in which the material has a mcdulus of elasticity of
189,950 MPa (29,000,000 psi) and a Poisson's ratio of 0.27.

The beam is subjected to a uniform load of 17.5 kN/m (100 1b./in.)
unifermly distributed on the upper surface of the beam as a sur-
face traction of 68.95 kPa (10 psi). The dimensions and the
finite element model of the beam cross section, including the
loading, are depicted in Figure 5. The resultant shearing force
on the cross section to be analyzed is 4,448 N (1,000 1b.) in the
positive y direction.

An approximate generalized plane stress solution to this problem
has been presented by Love(9) in which the average of the normal
stress in the x direction is taken to be zero. Comparisons of stresses
from the generalized plane stress solution and the finite element model
are given in Table 1. For a constant value of y, the average of the
stresses in a row of elements is tabulated as the finite element
solution. These stresses are graphically depicted in Figures 6-8,
with small triangles denoting the approximate average finite element
solutions. The comparisons of stresses as depicted in the table and
graphs show good agreement for both the shearing stress and the
normal stresses.

To determine the u and v displacements, boundary conditions
must be imposed as discussed earlier. In this example, the centroid
was fixed against displacement and rotation. Figure 9 depicts the
cross-sectional distortion of the beam cross section due to three
loading conditions. The values of the nodal displacements may be
found from formulae derived by several authors(9,10,11,12) and have
the magnitudes of ¥88.68 x 10-% mm (¥3.49138 x 10-6in.) and
£66.51 x 10-6mm (% 2.61853 x 10-6 in.) for u and v, respectively.
Displacements from the finite element formulation give correspcnding
values of 86,89 x 10-6mm (£3.42099 x 10-6 in.) and *66.09 x 10~ °mm
(£ 2.60178 x 10-6 in.), which differ by only 2.0% and 0.6% from the
exact solutions. Thus, it may be concluded that this methodclogy
quite accurately predicts the cross-sectional distortion of the
rectangular section under pure bending.

27
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A Finite element solutions in psi
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1 in. = 25.4 mm
1 psi = 6.89 kPa

Figure 6. Shear stress (ty,) distribution in a

rectangular section.
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Next, consider a homogeneous beam with a

Circular Section

solid circular cross

secticon in which the material has a mecdulus of elasticity of

199,850 MPa (29,000,000 psi) and a Poisson's ratio of 0.27. Figure

10 depicts the finite element idealization with the circular boundg yy
of the cross section modeled as a series of straight lines.

The beam is loaded by a shearing force in the x direction of 3

44yu,82 N (100 1b.) and a body force of 0.273 x 10-3

in the x direction. The exact solution for this problem is given by

N/mm3 (1 1b./in.

Love(®) and comparisons of exact and finite element stresses for a

quarter of the cross section are presented in Tables 2 and 3.

These

tables i1illustrate that the normal stresses from the finite element
model compare reasonably well with the exact solutions while the
finite element shearing stresses compare very well with the exact

ones.

To obtain displacements, nodes 26 and 44 were restrained in the

x direction while node 235 was restrained in the y direction.

.
The

resulting distortion of the cross secticn is shown in Figure 11.

7
66 " | 58
65 /”/ T~ 69
58 51 5952 60 53 6154 62 5 63 64
56
49 / 5045 536 52 4 5348 5449 5 %% 57
//27 38 39 40 41 42 u3 44\\\
40 41 42 43 44 45 46 |87 48
29 30 31 32 33 34 135 36 \
31 32 13 3% 35 36 37 |38 39
\ 21 22 23| 24 25 26 27 28 /
22 23 24 25 26 27 28 129 30
\\&3 14 15 16 17 18 119 20
13 |14 15 16 17 18 19 o [f21
7
10 8 8 9 9 10 1oll 116 32 12
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l\i\—-——""z 5
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(1 in. = 25.% mm)
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Figure 11.

The cross-sectional distortion of a scolid
ircular section due to.anx body force of
1 1b./in.”°

1 *P/in3 = 0.273 % 10 N mm3



Zee Section

- To demonstrate that the numerical procedure described in
this study is equivalent tc previous studies which consider only
nonuniform torsicn, a zee section, depicted in Figure 12, was
analyzed. This section is identical to the one studied by Perroney
and Pilkey.(13) The beam has a modulus of elasticity of 199,950 MPa
(29,000,000 psi) and a Poisson's ratic of 0.27 and is subjected to
a bimoment cf -686.04 N-m? (-239,055 1b.-in.2).

Since input into the present finite element formulaticn con-
siders only the rate of change of twisting moment, some modificatiq
must be made to consider bimoments due to restrained torsion. It
may be shown{7) that

By = E[ o', (35)
where
= log (36)

Since the term of interest is a'', eq. (35) may be solved for
o'' in terms of the bimoment and substituted in eq. (36) to give
the rate of change of twisting moment or the twisting moment per unit
length about the shear center in terms of the bimcment.

JB¢
Q - = m_)'_{:;‘ . (37)

It should be emphasized that eq. (37) gives the twisting moment
er unit length about the shear center, while the finite element
crmulation considers onlv twisting moments about the centroid. L=

he shear center and centrcid do nct coincide, then the twisting
moment per unilt length given by eg. (37) must be computed abcut the
centroid by statics.
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= 68.7244 PSI

EEEEEE

1l psi = 6.89 kPa

Figure 12. Surface tractions on a zee section
corresponding to a bimoment force,
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Using the wvalues élven by Perrone and Pllkex of J = 327.35 x
103 mm*(78.64583 x 10~ “) and 9= 41.32 x 10° mm® (153.8617 in.8),
eq. (37) gives a value of Q@ = 2140 N-m/m. (481.07 in.—lb./in.).

Table 4 gives the values of the normal stress due to restrained

torsion on the upper flange of the zee section, which are identical

to the results obtained by Perrone and Pilkey. These normal stresgys
do not contain the contribution due to the plane strain solution.

To obtain the plane strain solution, it is necessary to induce sur-
face tractions on the cross section that will produce a twisting

moment per unit length about the centroid corresponding to . The
manner in which these surface tractions are applied is completely
arbitrary and, in this case, a surface traction of 473.84 kPa

(68.7244 psi) in the y direction distributed uniformly as depicted

in Figure 12 will give a twisting moment per unit length of 2140 n. M/m
(481.07 in.-1b./in.) about the centroid of the section.

' Table 5 gives the additicnal normal stresses on the upper flange
due to the plane strain problem These additional stresses are si
nificantly smaller in comparison to those due tc restrained torsion
and may be neglected. However, the plane strain solution will give
the cross-sectional distortion of the crcss section as depicted in
Figure 13. For the plane strain solution, node 25 was pinned and
node 32 was restrained in the y directicn.

This example demonstrates that the finite element method will
give equivalent results to other formulations for restrained torsion.
TABLE &4

Normal Stresses on a Zee Section
Due to Restrained Torsion

Element (psi)
Number (,é

-1.48896E+04
-1.19764E+04
~9.06325E+03
.15006E+03
-3.23688E+03
-3.23688E+02
2.58950E+03
5.43795E+03

(00] ~ (o) w £~ w N -
1
(o)}




TABLE 5

The Additional Normal Stress
on a Zee Section Due to
the Plane Strain Solution

Element g (psi)
Number z

-10.45

13.24,

11.13

12.18

16.83

-11.05

176.90

IO B Ml WL] N

-165.80

1 psi = 5.89 kPa

=
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Figure 13. The cross-sectional distortion
of a zee section.
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Box Section

Consider a homogeneous beam of a thin walled box crocss
section that has a modulus of elasticity of 139,950 MPa
(29,000,000 psi) and a Poisson's ratio of 0.27. Figure 14
depicts the dimensions and the finite element idealization of the
cross section. Loading on the box section consists of a rate of
change of shear in the y direction of 17,512.7 N/m (100 1lb./in.)
uniformly distributed on the upper surface of the section as a
surface traction of 68.95 kPa. Since the surface tractions are
symmetrical with respect to the centroid of the section, there
are no induced stresses due to nonuniform torsion.

A plot of the normal stress induced by the nonuniform shear
is shown in Figure 15,which shows that the upper corners of the
box are more highly stressed than the remainder of the cross
section.

The plane strain solution can again be used to obtain the
cross-sectional distortion of the cross section to within a rigid
body mode. A plot of the cross-sectional distortion for the case
where node 5 is pinned and node 14 restrained in the x direction is
depicted in Figure 16. The choice of the boundary condition in de-
termining the u and v displacements has no effect on the derived
Stresses.

o
21)9 PrRY T 43 be R I

15 16 £,y in.
d
—p. g
20 27H . e ¢ Hio
1
13 ¢ 1
IDJZl 25 16
11 i2
19120 7 [“21
g 10
X
Y o lat 12 13 e 1S 1617 i hs o
T2l 3t s e T -
i 15 in. |
i 1
Figure 14. Dimensicns and the finite element representation

cf a rectangular box section.
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Channel Section

Consider a homogeneous beam consisting of a thin walled channel
section which has a modulus of elasticity of 199,950 MPa (29,000,000
psi) and a Poisson's ratio of 0.27. Figure 17 depicts the dimensions
and the finite element idealization of the cross section. Loading*"
on the channel section consists of a rate of change of shear in the
y direction of 17,512.7 N/m (100 1b./in.) uniformly distributed on
the upper flange of the channel as a surface traction of 172.37 kPa
(25 psi). Since the surface tractions are not symmetrical with
respect to the centroid, there will be a rate of change of twisting
moment about the centroid of -363.27 N-m/m (-81.667 in.-1b./in.)
that will induce nonuniform torsional stresses.

Figure 18 is a plot of the longitudinal normal stresses induced
cn the channel section by the system of forces just described. It
1s interesting to note that the normal stresses through the flanges
vary in a nearly linear fashion. The dashes in the plot near the
ends of *the flanges indicate no available data at those end points
and that extrapolation was used.

To cbtain the cross-sectional distortion of the cross section,
node 40 in Figure 17 was pinned and the vertical displacement of ncde
25 was restrained. The resulting distortion of the channel sectior™
is shown by Figure 19.
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Figure 17. Dimensions and the finite element representation

of a channel secticn.

47

L



[P i

y
& Tt

o

' -8054 psi
o7
5250 psi
5250 psi
C. S. C.
N 7988 psi
-2365 psi psi = 6.39 kPa
-5365 psi
Figure 18. The normal stress (¢,) distribution in a channel
torsion

secticn due to nonuniform shear and

48



i
-

Figure 19. The cross-sectional distortion
of a channel section.
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DISCUSSION OF RESULTS

The finite element stresses compared extremely well with the
generalized plane stress solution for the rectangular section.
Considering that the boundary of the solid circular section was
approximated by a series of straight-line segments, these finite
element stresses also compared very favorably with the exact ones.
The zee section problem demonstrated that this methodology yields
equlvalent results to other formulations whenever nonuniform torsion
is considered.

The box section problem demonstrated that the plane strain
solution yields the cross-sectional distortion within a rigid body
mode. Both the box and the channel section problems indicate the
applicaticn of the present formulation to common bridge cross
sections.

SUMMARY AND CONCLUSIONS
Summarsy

The theoretical background, formulatiocn, and methodology were
developed for the elastic stress analysis of general prismatic beams.
The aDpllec forces included axial force, bending moment, uniform
torsion, ccnstant shear, and the rates of change of twisting moment,
axial force, and shear. By making certain assumptions, the formula-
tion expressed in terms of displacement functions was reduced from a
three-dimensional analysis to a two-dimensional one. Numerical so-
lutions were obtained using the finite element method, and the results
were compared with either the exact or approximate solutions for
beams having certain cross-sectional shapes. The solutions to sev-
eral problems having commonly used bridge cross-sectional shapes
were given to demonstrate the applicability of this methodology.

Conclusions

The comparisons between the numerical solutions obtained by the
finite element analysis and the exact solutions for beams of certain
cross sections agreed favorably and tended to validate the relia-
bility of the solution technique used. The ability to analyze beaﬁ;
having commonly used bridge shapes demonstrated the applicability of
this methed.

Whenever the stress resultants are known, the formulations
derived in this study would enable a designer to determine more ac-
curately than conventional methcds of analyses the stresses on a
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particular cross section of a bridge. Since designers draw shear,
moment, torque, thrust, and loading dvagrams for a bridge, the
particular stress resultants empha81zed in this study — +the rates
of change of torque, shear, and axial force — may be determined
81mply by taking the slopes of the these diagrams at a particular
section along the bridge.

It 1s difficult to determine under what conditions the normal
stresses resultlng from nonuniform shear or torsion may be significant
in comparison to bending stresses. This difficulty may be attributed
to the fact that the normal stresses due to bending are functions of
only the moments while the stresses obtained frcm nonuniform shear
and torsicn are functions of entirely different functions (rates of
change of shear and torsion).

In addition to obtaining stresses, the method developed in this
study predicts the cross-sectional distortion of a beam to within a
rigid body mode. The in-plane displacements ob ained from the finite
element analysis for a solid rectangular section under pure bending
compared faverably with exact solutions.

Results from this study should provide designers with valuable

information regardlng additional normal stresses imposed by non-
uniform loading and the deformed shape of beam cross sections.
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