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ABSTRACT

EVALUATION OF TEMPERATURE EFFECTS ON
BITUMINOUS PAVEMENT DEFLECTIONS IN VIRGINIA

by

N. K. Vaswani
Senior Research Scientist

Eight satellite projects with asphaltic layer thicknesses varying from 3.5 inches
(88 mm) to 13.5 inches (338 mm) were tested for dynaflect deflections during the four
seasons of 1974-75, The projects were located throughout Virginia. The evaluation
of the deflection data showed the maximum deflection, the area of the deflected basin,
and the spreadability and modulus of elasticity of the deflected basin to be functions of

the log of the temperature,

The asphaltic concrete thicknesses are divided into three groups of 2 to 4 inches
(50 to 100 mm), 4 to 10 inches (100 to 250 mm), and 10 to 15 inches (250 to 375 mm)
for a correlation of the mean pavement temperature with temperature adjustment
factors. Correlation equations and graphs are developed.
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EVALUATION OF TEMPERATURE EFFECTS ON
BITUMINOUS PAVEMENT DEFLECTIONS IN VIRGINIA

by

N. K. Vaswani
Senior Research Scientist

INTRODUCTION

Flexible pavement evaluations and rehabilitative techniques in Virginia are based
on pavement rebound deflections taken only during the spring season. Because of the
impracticability of such a seasonal restriction, procedures are needed that would allow
the pavement evaluation crew to perform their work during any season. An obstacle
heretofore faced in year-round testing has been the seasonal variations in temperature
and other pavement conditions that change the deflection test results.

PURPOSE

The objective of this study, therefore, was to correlate the deflection data taken
in any season to the deflection data taken in the spring, and one of the most important
variables that affects the deflection data is the temperature of the asphaltic concrete
layers of the pavement. Consequently, this investigation sought to provide corrections
for temperature such that the deflection data taken in any season could be reduced to
the corresponding deflection data for spring. Corrections were developed in the form
of mathematical and graphical correlations between the mean temperature of the asphaltic
concrete layers of the pavement and the results of the deflection tests.

SCOPE

To achieve the above objective, this study was divided as follows:
1. Selection of the variables,

2, selection of satellite projects and collection of data,

3. evaluation and correlations between the variables, and

4. method of application for temperature corrections.

THE VARIABLES

The most important independent variables that affect pavement deflection test results
are the following:
A. The temperature of the asphaltic concrete layer,
B. the thickness of the asphaltic concrete layer,
C. the hydrothermal changes in the subgrade and the pavement underlying the
asphaltic concrete layer,
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the thermal properties of the aggregate and asphalt in the asphaltic concrete
mix,

the age of the asphaltic concrete mix,

the oxidation of the asphalt, and

the compaction of the pavement by traffic.

Omm o

Variables Considered

In this study, an examination was made of the effect of two of the variables listed
above; namely, the temperature and the thickness of the asphaltic concrete layer. These
variables were correlated with the dependent variables obtained from the deflection data,
which are classified as follows for pavement evaluations in Virginia:

The maximum deflection, d, in inches,

. the spreadability of the deflected basin, S,

. the area of the deflected basin, A, in in.2, and
. the pavement modulus, E, in psi.

B> W DN

A correlation study carried out by Hughes has shown that the deflection under a
9,000 1b. (4,080 kg) wheel load and 70 psi (0.48 MN/mz) tire pressure is equal to 28,6
times the dynaflect deflection. (1) Hence d is equal to 28.6 times the maximum dynaflect
deflection shown in Figure 1.
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Figure 1. Deflection basin produced by the dynaflect machine.
Basic conversion unit: 1'" = 25 mm.

S, the spreadability, is the average deflection expressed as a percentage of the
maximum deflection, and is obtained by the equation
d +d, +d, +d,; +d '
max 1 2 "3 4 x 100
5d
m

S=
ax
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A is the area enclosed by half the deflected basin bounded by the pavement surface
on top, the deflected basin curve at the bottom, and dq and dy3x as shown in Figure 1.
The deflected area is determined as discussed below.

Using the correlation developed by Hughes, (1) and dyyax, d1, d2, d3, and dq as the
deflections under the dynaflect load, the estimated deflected area under the 9,000 Ib,
(4,080 kg) wheel load "

.2
+2d,+2d +d,) in. (1)

2

A=28.6x6(d + 2d
max 1

= 171.6 (dmax + 2d1 + 2d2 + 2d3 + d4) in.

The pavement modulus, E, is determined from a set of charts based on d and A,
The method of evaluating E is described in a separate report. (2)

The moisture change in the subgrade is another important variable affecting pave-
ment deflections. If this variable is considered separately, the moisture content of
the subgrade must be determined each time deflection data are taken. The measurement
of subgrade moisture is a very difficult, time-consuming and expensive job, and cannot
be recommended for each pavement evaluation. In this investigation, therefore, no
separate evaluation was made of this variable; rather any changes in subgrade moisture
were considered an integral part of the variation in deflections due to temperature and
the thickness of the asphaltic concrete layer.

SELECTION OF SATELLITE PROJECTS AND COLLECTION OF DATA

Nine satellite projects having varying thicknesses of asphaltic concrete and distributed
over Virginia were selected for study. Of these nine, eight projects were utilized for
evaluation in this study. As can be seen from the listing of these eight projects in Appendix
1, projects 1 and 2 have asphaltic concrete thicknesses of 13.5 in. and 1¢.5 in. (338 mm
and 263 mm) respectively; projects 3 through 6 have thicknesses between 10 in. and 4 in.
(250 mm and 100 mm); and projects 7 and 8 have thicknesses below 4 inches (100 mm).,

The data for the ninth project, which is not listed, were obtained in tests interrupted
at midday by clouds and strong winds. The relationships between temperature and
deflection data collected on this project were incompatible with the relationships for the
other eight projects.

Pavement temperature studies by various investigators have shown that pavement
temperatures vary with the duration and intensity of periods of shade and clouds. Hence
any correlations between asphaltic concrete pavement temperatures and air or pavement
surface temperatures cannot be correctly carried out on cloudy days or on shaded pave-
ments., However, recommendations have been made in this report for evaluating pave-
ments under such conditions.
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Since the deflection is affected by the pavement temperature, the latter must be
measured at frequent intervals during a deflection survey. In this investigation, the
air and pavement surface temperatures were measured at the beginning and at the end
of the forenoon tests and also at the beginning and end of the afternoon tests. The
mean of the forenoon temperatures was correlated with the mean of the forenoon deflec-
tion data for each project site, and the mean of the afternoon temperatures with the
mean of the afternoon deflections. Pavement surface temperatures were measured at
a depth of 1 inch (25 mm) using a suitable short stem mercury thermometer. . A star
drill and hammer were used to make a 1-inch deep hole, which was filled with glycerine
before the thermometer was inserted. A percussion type masonry drill 0,25 inch
(6 mm) in diameter could he used. The air temperature was recorded in open air ,
under the sun but protected from wind effects, at about 4 feet (1.2 m) above ground.

Southgate and Deen(g) have shown that the average of the maximum and minimum
air temperatures for the five days preceeding the day of testing will give a significantly
good measure of the air temperature history which affects the temperature throughout
the depth of the asphaltic concrete laver at the time of the deflection tests. The sum
of this average temperature, and the pavement surface temperature shows a good
relationship with the temperature ar anv depth of the asphaltic concrete layer. Appendix
1 lists the weather stations from which data were obtained to calculate the five day
averages.

For the collection of pavement data, each site was divided into three 1, 000 feet
(300 m) sections spaced about 5,000 feet (1,500 m) apart. Deflection data were
taken at 100 foot (30 m} intervals with the dynaflect apparatus, which records five
deflections in the deflection basin as shown in Figure 1. To get a valid correlation
between temperature and deflection, testing was conducted during all four seasons of
the year.

Trial measurements were made of the pavement surface temperatures with the
mercury thermometer as described above and three metallic thermometers. There was
a variance of 5°F to L0°F between the two thermometers when the pavement surface
was smooth. On rough pavement surfaces the variance was greater because of the wind
effects on the metallic surface thermometers. The application of a coating of vaseline
on the surface thermometer did not significantly reduce the error, so the use of ithis
type thermometer was discontinued.

At the request of the FHWA, core samples were taken from two satellite projects
to determine certain properties of the subgrade, untreated aggregate base, and
bituminous materials. The subgrade and base materials were tested for dry density
and percentage moisture, and the results are shown in Appendix 2. The 4 inch (100 mm)
diameter concrete core from one project consisted of the top surface layer (S-5) and
the base layer (B-=3); that from another project consisted of the surface layer (S~5), the
intermediate layer (I-2), and the base layer (B-3). The depth of each core tested was
8 inch (200 mm). The cores were tested for creep and dynamic modulus in MTS (Materials
Testing Systems) equipment under a direct compression of 20 psi. The duration of the
load was 0,1 second with a rest period of U.9 second. The inverse values of the 1, 000-
second creep compliance at 0.03 second and the dynamic modulus values at 200 repititions
are given in Appendix 2.
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EVALUATIONS AND CORRELATIONS OF THE VARIABLES

Temperature Evaluations and Correlations

Since pavement deflection is a function of not only the pavement surface temperature
but also the temperature throughout the depth of the asphaltic concrete layer, more
accurate correlations may be obtained by correlating the deflection data with the mean
temperature for the layer rather than with the surface temperature. The most conven-
ient method for determining the mean temperature of the asphaltic concrete pavement that
could be applied in Virginia was behe\&ied to be the method based on research of Southgate
and Deen at College Park, Maryland.

The reasoning was the College Park has a longitude of 76.93°, while Chincoteague,
on the eastern boundary of Virginia, has longitude of 75.23°, and Jonesville, near the
western houndary of Virginia, has a longitude of 83, 06°, with the mean for the two Virginia
localities being 79.14C%., From these values, the difference between the longitude for
College Park and the average for Virginia is found to be equal to 2. 229, which is equal
to the GMT {Greenwich mean time) difference of about nine minutes.

In this investigation, as during the Research Council's pavement evaluation program,
temperatures are recorded at the beginning and end of the forencon and afternoon surveys
each of which takes about three hours. Congidering these three hour spans between
temperature determinations, a time difference of nipe minutes during the forenoon or
afternoon would not change the accuracy of the temperature evaluation based on the College
Park methodology.

The equations given by Southgate and Deen tor determining the mean pavement
temperature, i.e., the temperature at the middle of the asphaltic concrete layers for mid=-
morning and mid-afternoon, are given in Appendix 3. Given the pavement surface
temperatures taken at the beginning and end of the forenoon or afternoon deflection tests
and the average of the maximum and minimum temperatures for the five preceding days,
these equations could be used to determine the mean pavement temperatures.

Thus given the thickness of the asphaltic concrete as 12 in. (300 mm), forenoon pave-
ment surface temperature readings of 459 and 52°F (7 and 119C), and the mean of minimum
and maximum temperatures the previous five days as 39°F (3.9°C). The mean temper-
ature of the asphaltic goncrefe pavement, i.e,, the temperature at the 6-in. (150 mm)
depth is

Y==-1.6 +0.525X

~1.6 +0.525 200 439 2)

il

14°F

)]
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Correlation Between Air Temperature, Pavement Surface Temperature,
and Mean Pavement Temperature

The air and pavement surface temperature data were collected for each of the satellite
projects and are given in Appendix 4. The temperature of the middle of the asphaltic
concrete layer, hereinafter termed the mean pavement temperature, was calculated from
the surface temperature by means of the equations given in Appendix 3. The mean pavement
temperature so determined from each surface temperature reading is given as the pavement
temperature in Appendix 4.

Correlations were carried out as follows:

1. Air temperature versus pavement surface temperature for mid-forenoon and
mid-afternoon;

2. forenoon mean pavement temperature versus forenoon surface temperature
for asphaltic concrete layer below 4 inches (100 mm) thickness and for 4 1nches
(100 mm) and above 4 inches (100 mm) thickness;

3. afternoon mean pavement temperature versus afternoon surface temperature
for asphaltic conerete layer below 4 inches (100 mm) thickness and for 4 inches
(100 mm) and above 4 inches (100 mm) thickness.

The correlating equations along with their correlation coefficients are given in Appendix
5. The graphs for the same correlations are given in Figures 2, 3, and 4, respectively.
As can be seen from Appendix 5, the six correlations have correlation coefficients
varying from 0.86 to 0.996, with four of them having values of 0.97 and above. These
are therefore excellent correlations, and hence could be used to obtain the pavement
surface temperature from the air temperature or the mean pavement temperature from
the pavement surface temperature with little sacrifice in the accuracy.

Deflection Data Evaluation and Correlations with Temperatures

As stated before, pavement deflections in Virginia are taken by means of a dynaflect
which measures deflections in a basin. For many years the state's pavement and sub-
grade failures and serviceability and rehabilitationprograms have been determined from
the maximum deflection, the spreadability of the basin, the area of the deflected basin,
and the subgrade and pavement moduli obtained with the dynaflect apparatus. In evaluating
the effects of temperature in the present study, this same approach was utilized. The
maximum deflection, spreadability, area of the deflected basin, and pavement modulus
data are summarized in Appendix 4.

To adjust the deflection data determined in different seasons for changes due to
temperature, which was the objective of the investigation, a reference temperature had
to be d termlned The Asphalt Institute has adopted a reference temperature of 700F
(21°¢), 4) Southgate and Deen used 600F (15.5°C), and Norman et al. used 63°F (20°C).
Appendlx 4 gives the average forenoon and afternoon pavement temperatures on the
satellite projects in this investigation. The average of the spring season* forenoon pave-
ment temperatures in this appendix is 70°F, and the average of the forenoon and afternoon

* Historically, in Virginia deflections have been taken from about the middle of March
to about the firsi of June. :
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temperatures is 30°F. 1t was decided to assume the forenoon spring temperature of
700F (210C) as the reference temperature for adjusting the deflection data,

In correlating the pavement temperatures with the deflection data the following
three model equations were tried:

= pQT
DT =P {3)
DT= P+QLnT 4)
-p+Q
Dp=P+-x (5

where
DT = maximum deflection, or area of the detlected basin, oxr spreadability
of the deflected basin,

T = mean pavement temperature in deg, F at the time of taking the deflection
data, and

P and Q = constants.
Based on the coxrrelation coetficient values and the values of the sitandard error of

estimate obtained by the use of these three equations, model equation {(4) was adopted
for general application. Thus the following equations were used:

d“t =P, -I-Ql InT {6)
AT =P2r:~ Qz LnT (M)
ST =P, +Q, InT 8)
ET=P4» -&-Q4 LT (9)

where
d, = Maximum deflection in inches for 9,600 Ib, (40,300 kgms) wheel load at
temperature T, deg. F,

A'I“ = Area of the deflected basin in in@hesz at temperature T, deg. F,

ST = Spreadability of the deflected basin at temperature T, deg. F,

ET = Modulus of the pavement in psi at temperature T, deg. F,

Pl’ P25 P3, 1?49 le Q;.)..’ Q33 and Q4= constants, and

T = Mean pavement temperature in deg. F at the time of taking the deflection data.

For each project given in Appendix 4 the mean pavement temperature was separately
correlated with (1) the maximum deflection by equation (6), (2) the area of the deflected

basin by equation {7), (3) the spreadability of the deflected basin by equation (8), and (4)
the modulus of the pavement by equation {(9). The correlation equations for each of the

10
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projects were thus determined. As an examplé, the following equationé were obtained
for the project designated Serial No. 5 in Appendix 4.

d, =-0.00123 + 0.00365 LnT (10)
A= 0.43857 - 0,01376 LnT 11
S, =111.0 - 12,518 LnT (12)
E.= 592,000 - 108,680 LT (13)

By means of these four equations the values of d¢, AT, ST, and Ep for any given mean
pavement temperature for this project could be determined.

The adjustment factor (AF) ford , A, S, and E_, can be obtained from the
. . t ™ T T
following equations:

d
70
AF for dt = a—;—- (14)

AT for A,T =3 (15)

AF for §_ = -2 (16)

T Ag

AF for B, = —2 (17)
T E
T

. Appendix 6 is an example of the determinatiogiof tge adé)ustmgnt factors f8r dg, AT,
ST,Oand ET for mean pavement temperatures of 30", 50, 70", 90, 110, 136", and
150"F. The data used are those for the project designated Serial No. 5 in Appendix 4.
The values of di, A, ST, and ET were calculated by equations (10), (11), (12), and (13);
the adjustment factors by equations (14), (15), (16), and (17). The adjustment factors
were similarly calculated for the other projects. Graphs of the mean pavement temper-
atures versus the adjustment factors were drawn and are shown in Figures 5, 6, 7, and 8.

o >

For the purpose of temperature corrections, the data in Appendix 4 were divided
into three groups as follows:

1. Two pavements with asphaltic concrete thicknesses of 2 inches (50 mm)

to 4 inches (100 mm).
2. Four pavements with asphaltic concrete thicknesses of 4 inches (100 mm)

to 10 inches (250 mm).
3. Two pavements with asphaltic concrete thicknesses of 10 inches (250 mm)

to 15 inches (375 mm).

11
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For each group the calculations illustrated in Appendix 6 were performed. Graphs
of the correlation between the mean pavement temperatures and the adjustment factors
for these three sets of thicknesses are shown in Figures 9. 10, 11, and 12.

PROCEDURE FOR APPLICATION

1. Selection of deflection sites — All deflection sites on each project should be so
selected as to remain in direct sunlight. Selection on this basis will enable the
correct application of the equation for determing the mean pavement temper-
ature (at mid-depth) from the pavement surface temperature recorded in the field.
If such selection is not possible, temperatures should be recorded at the pavement
surface and at about mid-depth. The method of recording the pavement temper-
ature is given in item 3 below.

2. Weather condition — All tests should be carried out on sunny days. If this is
not possible, pavement temperatures should be recorded at the surface and at
about mid-depth as explained in item 3 below.

3. Temperature recording — Determine air temperature at 4 feet (1.2 m) above
the pavement under the sun, but with thermometer protected from the wind.
Also determine pavement surface temperature by drilling a hole in the pavement
to about a 1 inch (25 mm) depth, filling it with glycerine, and immersing a mercury
thermometer in the glycerine. Both temperatures should be taken before and at
the end of the forenoon and afternoon work periods. Determine the means of the
morning and afternoon pavement surface temperatures. If there is shade on the
pavement surface or cloud cover, drill another hole to about the mid—-depth of the
asphaltic concrete layer, fill it with glycerine, determine the temperature at the
top and bottom of the glycerine, and assume the mean of these two temperatures
to be the temperature at the mid-depth of the hole.

4. Determination of air temperature history — Determine the average of the minimum
and maximum temperatures for the five previous days as recorded at the nearest
weather station. These data are published monthly by U. S. Department of
Commerce.

5. Evaluation of the mean pavement temperature — Add the pavement surface temper-
atures (item 3 above) to the average temperature of the five pervious days (item 4
above) and, by means of the equation in Appendix 2, determine the mean pavement
temperature at mid-depth. :

If the field data have been collected under shade or cloud cover, then use the

surface temperature and the temperature at the mid-depth of the hole to calculate

the temperature at the mid-depth of the asphaltic concrete layer. For example,
assume that the depth of the asphaltic concrete layer is 12 inches (300 mm), the
surface temperature is 900F (32.2°C) and the mean of the top and bottom temper-
atures in the 5 inch (125 mm) deep hole filled with glycerine is 85°9F (29.4°C):

then, assuming a straight line temperature gradient in the asphaltic concrete pave-
ment, the temperature of 850F (29.4°C) at mid-depth of the 5-inch hole is the temper-
ature of the pavement at 5 = 2.5 inch (6.25 mm) from the top of the pavement as
shown in Figure 13. 2

16
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,/—1" hole filled with glycerine
90°F —»e— 0"

12”

/ 66 °F sk 12" S

Figure 13. Evaluation of mean pavement temperatures.
(1" = 25 mm; Deg. C = (F-32) - 2)

(o] (o]

90" -85

This calculation gives a temperature gradient of ( ) = 2° F(-16. 7°C)

for every 1 inch (25 mm) depth of the pavement. Hence, the temperature at
the mid-depth of the pavement = 90 - (6 x2) = 789F (25.6°C).

In case the previous 5 days' temperature data are not available or pavement
surface temperatures have not been recorded, the graphs in Figures 2, 3, and
4 could be used to determine the mean pavement temperature,

Evaluation of the adjustment factor and determination of the deflection at the
mean pavement temperature of 70°F (21°C) — with the mean pavement temper-
ature obtained from item 5 above, determine the adjustment factor for the
deflection data needed from Figures 9, 10, 11, and 12, Multiply the adjustment
factor by the deflection data obtained from the field. The resulting value is the
value that would be obtained if the mean temperature at mid-depth of the pave-
ment was 700F,

CONCLUSION AND RECOMME NDA TION

A method has been developed for estimating the deflection data for a standard

pavement temperature of 70°F (21°C). This method is based on the deflection data
obtained during any season of the year, irrespective of the pavement temperature at
the time of test. The method is, therefore, recommended for use by the Virginia
Department of Highways and Transportation.
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APPENDIX 3

TEMPERATURE DISTRIBUTION IN ASPHALTIC CONCRETE
PAVEMENT AS A FUNCTION OF DAYTIME EXPOSURE TO SOLAR RADIATION
(From Reference 3)
Y = A +BX
where: Y =temperature at depth

X = surface temperature plus 5 day average air temperature history

A & B = constants as given below in the equation' column

Depth below Corr. Std. Error

Time surface, in. Equation Coelf. of Lstimate
Mid~forenoon 2 Y= -2.0 +0.,521 X 0,985 3.1
4 Y= -1.6 +0.518 X 0.983 3.3
6 Y= -1.6 +0.525 X 0. 982 3.5
8 Y= -0.9 +0.531 X 0.984 3.4
Mid-afternoon 2 Y= -3.4 +0.595 X 0.784 4.7
4 Y= -1.4 +0.540 X 0. 986 4.1
6 Y= 0.4 +0.497 X 0.982 4.2
8 Y= 2.6-0.460 X 0.975 4.6
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RELATIONSHIPS BETWEEN AIR TEMPERATURES, PAVEMENT SURFACE
TEMPERATURES AND PAVEMENT TEMPERATURES AT MID-DEPTH FOR

APPENDIX 5

VARYING PAVEMENT THICKNESSES,

2421

Project
'Serial Corr.
Number Relationship Time Equation Coeff.
1 All thicknesses of asphaltic
concrete
Y= Air temp. , and Mid F.N. | y=25.13 ¢¥-0125X 0.90
X=Pav. Surf. Temp. Mid A.N. | Y=30.2 +¢0-00945X | g6
2 Below 4-inch thickness of
asphaltic concrete
Y=Pav. temp. mid-depth Mid F.N. | y=29.356¢" 1123X 0.99
X=Pav. Sur. Temp. Mid A.N. | v=36.66e - 00923% 0.996
3 4-inch and above thicknesses
of asphaltic concrete
=g =
Y=Pav. Temp. at mid-depth Mid F. N. v=36.659¢° 015X 0.97
X=Pav. Sur. Temp. Mid A.N. | y=25,24¢%- 01183 X 0.97
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