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SUMMARY

An evaluation of the stress ranges in two typical highway bridge spans under
service loadings was made in a cooperative study by the Virginia Highway Research
Council and the Federal Highway Administration. The strains at selected points
on the superstructure elements of the spans were recorded continuously for periods
of four and five days under normal traffic conditions by means of an automatic com-
puter controlled data acquisition system, and converted to stress on the basis of
assumed moduli of elasticity. The weights, axle spacings, and lateral positions
by lane of trucks crossing the instrumented spans during the test periods were
also recorded, to the degree possible.

The study proved the feasibility of utilizing the data acquisition system,
which was developed for the FHWA, to obtain an indication of the service life to be
expected of the test structures under today's truck traffic. The magnitudes of the
stress ranges measured in the two simply supported test spans, a 76 foot steel
beam composite span and a 60 foot prestressed concrete beam span, were considered
acceptable, and it was concluded that both structures could safely accommodate an
increase in traffic volume under current load limitations. The stress ranges re-
corded in the prestressed concrete beam span were low, indicating that fatigue
considerations may not be critical in the case of such relatively massive spans of
moderate length. However, since fatigue life is a function of the number of loadings,
which will increase, as well as the magnitude of the stress ranges, the experimental
results were not interpreted as justifying an increase in allowable weight limits,
particularly in the case of the steel beam span.

A theoretical correlation between the recorded truck characteristics and the
measured bridge response is also presented. While refinement of the analytical
methodology is necessary to improve the correlation, the analysis, which is based
on accepted theory, did serve to verify the magnitude of the experimentally obtained
stress ranges.
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INTRODUCTION

The life expectancy of highway bridges is of increasing interest to bridge
engineers throughout the United States. Bridges are being subjected to loading by
an ever increasing number of heavy trucks whose allowable axle and gross weights
are periodically being increased. A significant increase in the frequency and
magnitude of the loadings to which a bridge is subjected could cause fatigue prob-
lems that shorten the service life of medium and short span structures.

Many field tests of bridges, employing loading by a variety of test vehicles,
have been conducted over the past several years, but the need to evaluate the stresses
produced by normal truck traffic remained, largely because of difficulties involved in
obtaining the data with existing strain measuring equipment. A contract for an instru-
mentation system which provides a practical means of assessing the structural
behavior of bridges under service loadings was awarded by the Structures and Applied
Mechanics Division, Office of Research and Development of the Federal Highway Ad-
ministration (FHWA) to the Scientific Data Systems Corporation of Santa Monica,
California, in 1965, (1) After delivery of the system in 1966, a nationwide program
of cooperative studies guided by committees of the American Society of Civil Engi-
neers and the Highway Research Board was inaugurated by the FHWA. Such a
study, reported herein, was begun in Virginia in July 1968,

PURPOSE AND SCOPE

The primary purpose of the subject study was to determine experimentally
the stresses produced by service loadings at selected points on the superstructures
of typical highway bridges in Virginia. Two structures, a steel beam composite
span bridge on Interstate Route 95 and a prestressed concrete beam span bridge on
Interstate Route 81, were selected for testing. One span on each bridge was instru-
mented, and data were collected during periods of roughly four to five consecutive
days at each structure. No attempt was made to determine the effect of forces due
to temperature differentials or to evaluate the effect of seasonal variations in traf-
fic volume. A theoretical study was conducted to verify the magnitude of the strains
measured during the experimental phase of the study.
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EXPERIMENTAL PROCEDURE

The two structures included in the study, a steel beam composite span
bridge carrying the northbound lane of Route 95 over Quantico Creek and Route
629 near Dumfries, Virginia, and a prestressed concrete beam bridge carrying
the northbound lane of Route 81 over Cedar Creek near Middletown, were chosen
because of their proximity to permanent weighing stations which were in operation
24 hours per day. In general, the experimental procedure included monitoring
strains at selected points on the superstructures and noting the type and lateral
position by lane of all trucks crossing the bridge. Separate records of axle weights
and spacings were kept at the nearby weighing stations for subsequent correlation
with the vehicle data taken at the bridge. The trucks were classified by the axle
types shown in Figure 1 in conjunction with a body type description such as van,
flatbed, tank, or car carrier and an identification of the operating company. Data
collection was continuous over a period of 105 hours at the Route 95 site and 84
hours at the Route 81 site. Data collection instrumentation and procedures are
described in more detail in the following sections.

Strain Monitoring Instrumentation

The automated, computer controlled data acquisition system developed by
Scientific Data Systems for the FHWA has been described in detail in other publi-
cations, and only a summary of its functions will be given here. (1) Essentially,
the equipment, which is housed in a test trailer, takes the output from a maximum
of ten resistance type strain gages in the form of analog voltages, digitizes the
voltages, and stores and tabulates strain ranges for printing out at specified inter-
vals. The equipment produces no visual record of a strain trace, nor does it relate
individual strain ranges to specific trucks.

The system, which operated continuously during testing, was programmed
to record strains for periods of one hour and type out the results. Four minutes
of each hour were consumed in printing the stored data, and since strains were not
monitored, vehicles crossing the structure during this period were stricken from
the truck records. The output, Figure 2, consisted of an array showing the number
of occurrences at each of nine strain ranges — listed in the left-hand column -
for each of the ten gages, represented by channels 1-10 in the top row. Thus, in
the printout at 1401 hours, shown in Figure 2, the circled figure indicates that
five strain ranges between predetermined levels 5 and 6 were recorded during the
preceding hour for gage number 2. No higher strain ranges were recorded, as
indicated by the zeroes above the circled number.

The event recorded as a strain range during the Virginia tests is shown in
Figure 3. The minimum test level shown in Figure 3 is a preselected level below
which no strain ranges were recorded in order to eliminate the effect of automobiles
crossing the span. A strain range is measured from peak to valley; the computer
seeks a peak strain when the signal exceeds the minimum test level and it seeks a
valley when the signal drops to or below the zero level. An event is counted each
time the signal passes the minimum test level and returns to zero. It is, therefore,
possible, and not uncommon, for a single vehicle to produce more than one recorded
strain range; the ensuing events are referred to as secondary strain ranges.
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Figure 1. Axle type designations.
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Truck Data Acquisition

As mentioned previously, an observer at the bridge attempted to catalog
each truck as it crossed the instrumented span, identifying the operating company
and noting the axle and body type of the vehicle and its lane of travel. Records of
axle weights and spacings along with similar identifying characteristics were
compiled at the weighing station for correlation with the site data.

The number of trucks crossing the bridge is compared with the number for
which weighing station data were completed in Figures 4 and 5. As shown in these
figures, a greater number of vehicles were recorded at the bridge than at the weigh-
ing station. There are several causes for the discrepancy, which was not serious.
There was an exit between the bridge and the weighing station in each case, which
allowed local vehicles and some overloaded vehicles to leave the highway. Some
vehicles were eliminated because of insufficient identification, and, finally, data
of dubious accuracy occurred during periods of heavy traffic or inclement weather.
Overall, however, weighing station records were completed on slightly more than
85% of the trucks.
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in length and one span 76 feet in length, which was chosen for testing.

ROUTE 95 BRIDGE TEST

General Description

2297

The bridge carrying the northbound lane of Route 95 over Quantico Creek
and Route 629, located in a generally urban environment 30 miles south of Washing-
ton, contains a series of three simply supported steel beam composite spans 69 feet

The bridge

is located at the low point of a 1, 000 foot vertical curve, and it lies on a slight

horizontal curve.

on figures published by the Virginia Depariment of Highways, are shown in Table I
which also presents the percentage of trucks and buses. (3)
not required to stop at the weighing station, constitute only 1% of the total average

The spans are skewed at 30 46°,

Average daily traffic volumes at the site during the years 1968-1970, based

daily traffic.

&

Truck

TABLE I

AVERAGE DAILY TRAFFIC VOLUMES

Rte. 95 (NBL) from Rte. 619 W. of
Triangle to Rte. 234 N, of Dumfries
(From reference 3)

The buses, which were

1968+ 1969 1970

No. % No. % No. %

A.D.T. — all vehicles 15,060 | 100 16,160 (100 18,185 | 100
oD (4-6 tires) 620 [ 4.1 | 1,000 | 6,2|1,120]| 6.2
3 (6=10 tires) 30 0.2 35 0.2 65 0.3
28-1, 28-2, and 3S-2 (combined) | 2,000 13,3 2,100 13.0 | 2,150 11.8
L Total Trucks 2,650 [ 17.6 | 3,135 | 19.4| 3,335 | 18.3
Buses 160 1.1 175 1.1 150 0.8

*Year of Test
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Details of Test

Test Span

The instrumented span, detailed in Figure 6, measures 74'6'" center to
center of bearings. The supporting elements are six 36" wide flange beams with
partial length cover plates over the central portion of the span. Welded stud shear
connectors ensure composite action between the beams and the 8" concrete deck.
For the purposes of this study the beams were numbered 1 through 6 from the east
side of the structure. The 42'-0" clear roadway is divided into three traffic lanes,
numbered from the east side of the bridge such that lane 1 is the right-hand lane.

Gage Locations

The locations of the ten strain gages on the instrumented span are shown in
Figure 7. Gages 1-5, which were positioned as shown in Figure 7, will be referred
to as midspan gages. Gage number 9 was placed on a transverse reinforcing bar in
the lower level of the deck steel, 49" from the west side of beam 2 and 14" south of
the center of the diaphragm, near the point of maximum positive moment in the slab.
Gage number 10 was placed on the bottom flange of the diaphragm, midway between
beams 2 and 3. All gages were type SR~4 wire gages.

Results
Traffic Data

The test ran continuously at the Route 95 site from 10:00 a.m. on Friday,
September 6, 1968 to 11:29 p.m. on Tuesday, September 10, a period of 105 hours.
Approximately 6,906 trucks crossed the bridge during 98 sampling periods, and
complete records were obtained at the weighing station for 5,916 of these vehicles,
approximately 85% of those reported at the structure.

Histograms showing the percentage of trucks in each of eight weight ranges
are presented in Figure 8 for each of the three traffic lanes and for the bridge as
a whole. As indicated by Figure 8, more than three-fourths of the trucks crossed
the structure in the right-hand traffic lane (lane 1), while less than 1% used the
left-hand passing lane. The majority of the trucks are more or less evenly dis-
tributed by weight between 20 and 70 kips, probably because of the large number of
local delivery vehicles in the urban setting.

It is obvious that some overloaded vehicles may have left the highway after
crossing the bridge in order to avoid the weighing station, but it is not believed that
there were many severely overloaded vehicles. The weight limitations in Virginia
are well enforced through both permanent weighing stations and mobile units, and
the percentage of overweight vehicles in the vehicles weighed by all units has been
one-half of one percent or less since 1956, (4)

- 10 -
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The Virginia Code limits the single axle weight of any vehicle or combination
to no more than 18,000 pounds and the tandem axle weight to no more than 32,000
pounds, with no one axle of the unit exceeding 18,000 pounds. The allowable gross
weight is limited by the distance between the extremes of all axles under the vehicle
or combination, and the maximum gross weight is 70, 000 pounds for a vehicle having
a length of 42 feet between the extremes of its axles. (5) Conventionally, though not
by law, a 5% tolerance is allowed. The weighing station data obtained during the
subject study reflect the requirements of the code; no vehicles larger than 75,000
pounds in gross weight were recorded.

Stress Data

The primary purpose of this experimental study was to determine the stress
ranges produced by service loadings at selected points on the instrumented span.
The strain ranges given in the printouts, Figure 2, from the data acquisition system
were combined and tabulated for each of the ten gages shown in Figure 7 and con-
verted to stress assuming 30 x 108 psi as the modulus of elasticity of steel. The
combined data are shown in Table I, and histograms showing the percent occurrence
of events in each strain range for each gage except number 6 follow in Figures 9-17.
The data for gage number 6, which behaved erratically throughout the tests, were
discarded. The minimum test level was set at a strain of 15 micro-inches per inch
(450 psi stress) for gages 1-7 and 40 micro-inches per inch (1,200 psi) for gages 8-10.

The strain ranges recorded in the beams were fairly low, but there is no
reason to doubt their accuracy. The data from the various gages are consistent, and
the mea(sll;red strains are similar to those obtained in an earlier pilot study by the
FHWA.

The highest stress ranges recorded at a midspan gage were in beam 4, repre-
sented by gage number 4, which experienced two occurrences of ranges between
3,150 and 3,600 psi. A single occurrence of a range between 3,600 and 4, 200 psi
was also recorded at gage number 8, which was located four inches beyond the end
of the lower flange cover plate on beam 3. The greatest number of stress ranges
between 1,350 and 2,700 psi occurred in beams 2 and 3, while beam 1 experienced
the greatest number of low stress ranges.

Beams 2 and 3 had the greatest number of relatively high stress ranges be-
cause, as indicated by the typical section in Figure 6, they are the supporting elements
beneath the right-hand lane, in whichmost of the trucks crossed the structure. As
shown in Figure 6, beam 1 is under the curb at the edge of the roadway. Similarly
beams 3 and 4 are the supporting elements for the center lane, which carries fewer
trucks, and beams 5 and 6 are primarily loaded by frucks in the seldom used left-
hand lane. Although beams 4 and 5 experienced more stress ranges above 2,700
psi, the much greater number of loadings between 1,350 and 2,700 psi in beams 2
and 3 would have more influence on the service life of the structure.

- 14 =



J

.

230

8IT‘V | 6€8°F| 918°C TVIOL 6T ‘0T 126°c | 869°8| 983 ‘6| T8%‘6| ¥80°01 TVIOL

002 ‘1 0¥ 0S¥ ST 6
920°2 | €81°T| 050°T 309°¢e 82,2 | 685°%| 089°2| g€6°C| 18T ‘¥

008°tT 09 g 006 0¢ 8
98T ‘T | 32% ‘1| €0L pL8°e g €L0°T | L9T°S|716°C |699°C | 9%9°¥

0%z | 08 & 0s€‘T v L
€08 | 691°T| SS €66 ‘T m 90T | PIL |$50°C [S86°T | <06

000‘s | oot 88 0081 09 9
06 81 L Z%9 m.w 1€ .22 |8%S | 608 8¢

009°€ 021 Ro 0522 SL g
o1 91e |1 2% w ST 65 |28 18 1

002 ‘¥ ovT m 002 06 2
(4 19 0 (4 =3 8 o1 ) (4 0

008°‘% 091 @ 0s1‘e S0T €
1 31 (] 0 am 0 4 0 0 0

00%°‘S 081 009°¢ 021 4
0 € 0 0 0 0 0 0 0

000°‘9 002 080°‘% SeT T
0 ¥ 0 , 0 0 0 0 0 0

0

(1) 6 8 tsd jcur/cur ‘o | ) 9 g ¥ € 4 I 1sd | cur/curd| [eAeT
— ToqENN 936D |‘ssomg | uUrens Toquiny 03eD ‘ssomg| ‘uremg | urems

(*2 2an8rg ur umoys ST sagen Jo uonIsod :9I0N)
AOHAYL ¢6 ALNOY ‘TAAAT NIVULS HOVH LV STONIHINOO0 40 YAGWAN TVIOL

I 3TdVvL

-15 -



% OF TOTAL OCCURRENCES

% OF TOTAL OCCURRENCES

80, LoVU't

704

38.7

31.0

20.9

104 8.5

85 0.02

O 450 900 1350 BOO 2250 2700 3150 3600
STRESS LEVEL (PS.L)

Figure Y. Stress mstogram, gage #1, midspan beam 1.
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Figure 10. Stress histogram, gage #2, midspan beam 2.
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Figure 11. Stress histogram, gage #3, midspan beam 3.
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Figure 12. Stress histogram, gage #4, midspan beam 4.
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Figure 13. Stress histogram, gage #5, midspan beam 5.
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Figure 15. Stress histogram, gage #8, end of cover plate,
beam 3.
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Figure 17. Stress histogram, gage #10, center of diaphragm.

Fortunately, the service life of the beams is not critical. The vast majority
of the stress ranges to which the girders were subjected under loading by the approxi-
mately 6,906 trucks crossing the structure during the tests were below 2,250 psi.
Very few stress ranges greater than approximately 3,000 psi were recorded, and it
is believed that the girders can serve adequately under an increased volume of truck
traffic under the current weight limitations.

It is interesting to note that several occurrences of stress ranges above
3,000 psi were recorded at gage number 10 on the diaphragm between beams 2 and
3. Relatively little is known about the loadings to which diaphragms are subjected,
but it is apparent that the stress in these members is comparable to, and in some
instances greater than, the stress in the girders. The highest stress ranges en-
countered in this study occurred in the transverse deck reinforcing bar, gage number 9.
It is possible that fatigue considerations are important in such a case.
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The data from the Route 95 tests indicate that secondary strain ranges of
measurable magnitude were excited in the relatively flexible steel beam composite
span. The total number of strain range occurrences, shown on the bottom line of
Table II, indicate that the 6,909 trucks crossing the structure caused an average
of approximately 1.3 strain events above 450 psi per vehicle in beams 2 and 3 and
nearly 1.5 per vehicle in beam 1. The data acquisition system, as utilized in the
Virginia tests, did not allow a determination of the magnitude of the secondary
strain ranges, but additional research of this nature would be worthwhile. The
effect of secondary strain ranges on service life must be considered if a theoretical
approach, such as that described in the following section, is attempted.

Theoretical Correlation Study

The objective of this phase of the study was to provide a theoretical basis for
predicting the stresses in a highway bridge under service loadings. This was de-
sirable, first, to provide verification of the stresses based on the experimentally
determined strain ranges and, second,to provide a method which would allow an
engineer with a knowledge of the truck traffic characteristics on a given route to
evaluate the loading history and life expectancy of a structure without the use of
costly strain monitoring equipment. Such a procedure would be of significant value
in the design and maintenance of highway bridges, and it is a major objective of the
nationwide program of loading history studies.

Unfortunately, the development of a theoretical correlation is not without
difficulties. The determination of a proper impact factor - which varies widely
with the roughness of the approach surface, vehicle suspension characteristics,
and the state of oscillation of the vehicle and the span — is difficult, as is an
accurate assessment of the effect of the secondary stress ranges associated with
dynamic loading. Field conditions also present practical limitations on the accuracy
of the basic data, and a perfect correlation is not to be expected. The theoretical
phase of this study is based on an accepted method of analysis, which is as simple
as conditions permit. Further refinement is necessary, but the methodology, which
will be described only briefly, is considered a sound approach by the authors.

In the analytical approach, beam theory was used to develop an algorithm
for the magnitude of the maximum moment at midspan, which occurs in a simple
span when the middle axle of a three axle truck is over the center of the span. Only
one strain event per vehicle was assumed, and the effect of impact due to dynamic
loading was not considered. The individual truck data obtained at the weighing station
plus the lane in which the vehicle crossed the structure composed the loading input.
The maximum moments caused by all trucks were distributed to the beams on the
basis of factors computed for a representative vehicle, a three axle truck with axle
spacings of 10 and 30 feet and weights of 10 kips on the front axle and 30 kips on the
middle and rear axles, at the position of maximum moment in the right-hand and
center lanes., The very few trucks in the left-hand lane were ignored.
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Classical finite difference theory was used to determine the distribution
factors. The deflection of the deck under any loading condition was expressed
in terms of a symmetrical array of 42 points equally spaced at seven points along
each of the six beams. The 42 linear, independent, simultaneous equations thus
generated were solved by means of a standard library computer program.

The basis for the distribution factor analysis was an evaluation of the
transverse and longitudinal stiffnesses, assuming no torsional restraint at the 42
points. This assumption of pinned intersection points may be inaccurate in the
case of heavily skewed bridges, but it was considered acceptable in the case of the
slightly skewed Route 95 structure. A typical transverse beam was taken as a
rectangular section of concrete having a thickness equal to that of the deck and a
width equal to the distance between the intersection points; the stiffness of the W 14 x 30
diaphragms was ignored. A longitudinal section had the properties of the composite
section at the point under consideration. The beams were assumed to be hinged at
the points of intersection to allow both rotational and translational independence except
for continuity of vertical deflection. The conditions of compatability were identical to
those of a stiffened plate.

The theoretical midspan stress levels based on that portion of the individual
truck moments distributed to each of the beams are compared with the measured mid-
span stress levels for 10 selected hours in Figures 18-27, a series of histograms in
which the number of occurrences at each stress level is plotted for the five instrumented
beams. The theoretical results verify the accuracy of the experimental data, and, in
view of the limitations cited previously, the agreement between theory and experiment
is considered reasonable.

The comparison is made in a different form in Figures 28-37, in which the
total number of occurrences of midspan stress ranges above the minimum test level
of 450 psi is plotied for each of the six beams. It can be seen that the theoretical
analysis consistently predicts fewer stress occurrences above 450 psi than were
measured in the field, which indicates that refinements which would account for im-
pact and secondary stress ranges due to dynamic loading are desirable. The often
pronounced difference in the case of beam 1 is probably due to the assumption of too
large a moment of inertia for the exterior member. The shapes of the curves are
generally similar, however, and it is believed that the basic methodology — the use
of finite difference theory to develop distribution factors — is a sound approach to
attaining a correlation.
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Figure 29. Comparison of theoretical and measured number of occurrences of
midspan stress ranges over 450 psi, Rte. 95 bridge, 1645 hours,

9/8/68.
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Figure 30. Comparison of theoretical and measured number of occurrences of
midspan stress ranges over 450 psi, Rte. 95 bridge, 0854 hours,
9/9/68.
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Figure 31. Comparison of theoretical and measured number of occurrences of
midspan stress ranges over 450 psi, Rte. 95 bridge, 0958 hours,

9/9/68.
o 15Q
g
3
<
w MEASURED
§ 10Q.
N
W
Q
é THEORETICAL
x
: 50_
g
TN
o
o
2 0
! ‘ I I I !
| .2 3 4 5

BEAM NUMBER

Figure 32. Comparison of theoretical and measured number of occurrences of
n;id/span stress ranges over 450 psi, Rte. 95 bridge, 1102 hours,
9/9/68.
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Figure 34. Comparison of theoretical and measured number of occurrences of

midspan stress ranges over 450 psi, Rte. 95 bridge, 1312 hours,
9/9/68.
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Figure 35. Comparison of theoretical and measured number of occurrences of
midspan stress ranges over 450 psi, Rte. 95 bridge, 1416 hours,
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Figure 36. Comparison of theoretical and measured nun;bé; of occurrences of
n;idspan stress ranges over 450 psi, Rte. 95 bridge, 1520 hours,
9/9/68.

- 37 -



2326

150,

100 \ ~MEASURED

THEORETICAL

NO.OF OCCURRENCES ABOVE 450 PS.I.

o)

T T
3 4 5

BEAM NUMBER

N

Figure 37. Comparison of theoretical and measured number of occurrences ot
midspan stress ranges over 450 psi, Rte. 95 bridge, 1625 hours,
9/9/68.
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ROUTE 81 BRIDGE TEST

General Description

The second structure tested, the bridge carrying the northbound lane of
Route 81 over Cedar Creek, presents contrasts to the Route 95 bridge both in
design type and traffic volume. The Route 81 bridge is composed of five 60 foot
prestressed concrete beam spans, one of which was instrumented, and one 85
foot prestressed concrete beam span. The structure is located on a slight
horizontal curve at the low point of a vertical curve. The instrumented span
is skewed at approximately 13°-33'. The structure is generally typical of many
prestressed concrete bridges throughout Virginia.

The average daily traffic volume and the percentage of trucks and buses,
as published by the Virginia Department of Highways for the years 1968-1970, are
shown in Table III. (3 The traffic volume at this relatively rural site is much less
than that at the Route 95 test location.

TABLE III

AVERAGE DAILY TRAFFIC VOLUMES RTE. 81

From Rte. 11 N. of Strasburg to Rte. 627 E. of Middletown
(From reference 3)

1968 1969% 1970

No. % No. % No.| %

A.D.T. all vehicles 3,255 [100 3,422 | 100 3,692 | 100
é 2D (4-6 tires) 335 | 10.3 355 | 10.4 400 | 10.8
; 3 | (6-10 tires) 12 0.4 8 0.2 75 2,0
E 28-1, 28-2, and 3S-2 (combined) 700 | 21.5 750 | 21.9 750 | 20.3
Total Trucks 1,047 | 32,2 | 1,113 | 32.5 | 1,225 | 33.1
Buses 8 0,2 10 0.3 18 0.5

*Year of Test
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Details of Test

Test Span

The instrumented span on the Route 81 bridge was a prestressed concrete
beam span, 58'-3" in length, center to center of bearings. As shown in Figure 38,
the 8 inch thick concrete deck is supported on five AASHO Type Il prestressed beams,
detailed in Figure 39. The beams are numbered 1-5 from the right side of the bridge
facing in the direction of traffic flow. Cast in place concrete diaphragms are located
on the skew angle at midspan and over the bearings. The 30 foot clear roadway is
divided into two traffic lanes, numbered from the right as before.

Gage Locations

Ten wire, resistance type strain gages were mounted on the surfaces of the
concrete beams at midspan, in the positions shown in Figure 38. Type A93 concrete
gages were used,

Results

Traffic Data

The Route 81 test ran continuously from 11:00 a.m. on Friday, September 5,
1969, to 11:00 p.m. on Monday, September 8, 1969, a period of 84 hours, but approxi-
mately 12 hours of sampling were lost due to equipment malfunction. Approximately
2,616 trucks crossed the bridge during 69 sampling periods, and weighing station
records were completed on 2,276, or 87% of the vehicles.

Figure 40 shows the percentage of the trucks in each of eight ranges for both
traffic lanes and the bridge as a whole. As in the case of the Route 95 bridge, the
majority of the trucks, almost 98% at this site, crossed the structure in the right-
hand laneé. The Route 81 traffic differs from that at the Route 95 site in that the
population distribution is skewed toward a higher percentage of heavy trucks.

Stress Data

The number of occurrences at each strain range are tabulated in Table IV and
shown graphically in Figures 41-50. The stresses shown are based on the use of a
modulus of elasticity of 4.34 x 10° psi for the prestressed concrete, obtained through

the A, C.I. formula(6).
E = wi® (33) —\/fé

where W is the weight of the concrete per cubic foot, assumed to be 150 1b.,
and,

fé is the compressive strength of the concrete, assumed to be 5,000 psi.

The minimum test level was set at 10.1 micro-inches per inch of strain, or 43.8 psi.

=40 =
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The data in Table IV indicate that beam 2, which is located directly beneath
the right-hand lane, is subject to the greatest number of occurrences of the higher
stress ranges, those above 130 psi. Likewise beams 4 and 5 under the left-hand
lane, seldom used by trucks, have significantly fewer occurrences of ranges above
130 psi. This sensitivity to the path of the vehicles was also evident in the case of
the Route 95 bridge. Beams 1 and 3 were more equitably loaded on the Route 81
bridge than on the Route 95 structure, possibly due to the action of the stiff cast-
in-place concrete diaphragms in distributing the load.

The gages located on the side surfaces of beams 2 and 3, gages 6 through 10,
show the expected decrease in stress as the gage position approaches the location of
the neutral axis. The data for gages 6-10 also tend to verify the values obtained at
the midspan lower flange gages.

The histograms in Figures 41-50 indicate that the bulk of the strain ranges
recorded at any of the instrumented points on the girders were below 130 psi, and
the highest ranges, 3 occurrences recorded in beams 1 and 2, were below 300 psi.
Fatigue is, therefore, unlikely to present any problems on this bridge under currently
allowable service loads.

Theoretical Correlation Study

The analytical approach utilized for the Route 95 bridge was also applied to the
Route 81 structure, with only slight modifications. As before, the maximum moment
due to the individual trucks was distributed to the girders by means of factors de-
veloped through the application of finite difference theory in conjunction with a
representative three axle truck loading. In the case of the prestressed structure,
however, it was necessary to include the stiffness contributions of the cast-in-place
concrete diaphragms.

The midspan lower flange stress levels predicted by the analytical method were
compared with stress ranges measured during three selected periods of two or three
hours each. The comparison is made in a series of histograms, Figures 51-53, show-
ing the number of occurrences in each of the stress levels. While the theoretical results
verify the magnitude of the measured stresses, the analytical approach consistently pre-
dicts a greater number of events in the higher stress ranges, those of 130 psi and
above,

Curves showing the total number of occurrences above the minimum test level
for each of the six beams are shown for the three sampling periods in Figures 54-56.
The total number of occurrences above the minimum test level is reasonably the same,
indicating that, as would be expected, the effects of impact and secondary stress ranges
due to dynamic loading are less pronounced in the case of the relatively massive con-
crete superstructure. This is verified by the total number of stress events, Table IV,
caused by the 2,616 trucks crossing the structure during testing. In some instances
the average is less than one event above 43.8 psi per vehicle.

- 50 =
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Figure 54. Comparison of theoretical and measured number of occurrences of
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The consistent difference in the predicted and measured events for beam 1
is again ascribed to the assumption of a high moment of inertia for the exterior
beam.

In summary, the number of higher stress ranges predicted by the analytical
method was consistently too high, which indicates an error, possibly in the selection
of the modulus of elasticity, which is difficult to ascertain. Comparison of theoret-
ical correlations for the Route 81 bridge with those of the Route 95 bridge, presented
earlier, indicated that the effect of impact and the occurrence of secondary stress
ranges in conjunction with the passage of a single vehicle are of greatest importance
in the case of relatively light, flexible spans.

CHARACTERISTICS OF TRUCK POPULATIONS

The weighing station data obtained in both the Route 95 and Route 81 bridge
tests were analyzed statistically through the use of an electronic digital computer
to determine average axle and gross weights and average axle spacings. Only the
gross weight data from the Route 95 test were considered valid, because of an
inconsistency in recording the data for the individual axles, but the average axle
weights and spacings obtained during the Route 81 test are considered representative.
The magnitudes of the truck populations differ slightly from those discussed earlier,
but the error is not considered to be serious.

= 55 =
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The average axle weights and spacings obtained for each truck type during
the Route 81 test are shown in Table V, which also shows the standard deviation
of the population of values in each case. Similar data for the gross weights re-
corded during the Route 95 test are shown in Table VI. Statistical comparisons
of gross weights recorded at each bridge based on the means and standard deviations
shown in Tables V and VI indicated that the populations of 2D, 2S-2, and 3S-2 trucks
and the combined values differed significantly at the 95 percent confidence level be-
tween the two sites. The comparisons were based on the assumption of a normal
distribution, although the magnitude of the standard deviation relative to that of the
mean indicates that the distributions may, in fact, be slightly skewed. The statistical
difference is probably due to the fact that the large populations defined the mean quite
accurately; the practical effect of differences between the two sets of data is considered
insignificant.

The data indicate the relative importance from a design viewpoint of the 35-2
truck, first, because it has significantly heavier axle and gross weights and, second,
because it is the most prominent combination, accounting for more than 50 percent
of the total truck population in each case. It can also be seen that the average axle
spacings of the 3S-2 truck are generally similar to those of the other three axle
combinations.,

TABLE V

AVERAGE AXLE AND GROSS WEIGHTS AND AVERAGE AXLE SPACINGS
(WITH STANDARD DEVIATIONS SHOWN IN PARENTHESES) FOR

Truck Type 2D 3 25-1 2s-2 | 3s-1 | 38-2 ‘All Types

Number of Trucks| 272 26 139 473 2 1,591 2,503

% of Population 10.9 1.0 5.6 18.9 0.1 63.6 100.0
Average Weights (kips)

Front Axle 4,70 7.16 7.15 | 8.07 6.55 8.66 8.01

(2.23)| (2.27)] (1.33)] (1.25)] (0.21)| (1.00) (1.77)

Mid Axle Group | 8.39 | 15,19 | 11.54 | 13,20 | 22,70 | 23.40 | 19,10
(3.90)| (8.25) | (7-39) | (3.50) | (0.71) | (6.69) | (8.38)

Rear Axle Group | — - 10.98 | 17.25 7.95 | 22.80 18. 37

(8.30) | (6.23) | (0.78)| (7.46)| (10.12)
Gross Weight 13.08 | 22.35 | 29.67 | 38,51 | 37.20 | 54.86 | 45.48

(5.51) | (9.99) | (15.93)| (9.86) | (0.28) | (13.96) | (18.95)

Axle Spacings (feet)

Front-Mid Axles |l14.0 | 14.0 |11.0 | 11.0 [ 14.0 |12.0 | 12.0

(4.46) | 3.05) | (1.30) | 3.64) | (1.41) | (2.83) | (3,24)
Mid-Rear Axles | — | — | 29.0 | 27.0 20.0 30.0 | 26.0
. | | (7.23) | (7.04) | (7.07) | (4.67) || (10.34)
Overall 14.0 | 14.0 | 40.0 |[39.0 | 34.0 |[42.0 38.0

(4.46) | (3.05) || (8.47)|| (5.55) | (8.49) | (7.36) | (11.15)
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Truck Type 2D 3 258-1 28-2 35-1 35-2 |All Types

Number of Trucks 542 82 432 1,725 7 3,029 5,817

% of Population 9.3 1.4 7.4 29,7 0.1 52,1 100.0

Gross Weight 14.63 27.54 27,92 41.14 35.76 53.37 43.86
(5.44) | (12.32) | (7.69) | (10.55) | (11.60) | (14.90) (17.59)

DISCUSSION OF RESULTS

The primary purpose of this study was to evaluate the stresses caused by

service loadings on two highway bridges in Virginia.

Such a study is now feasible

through the use of the data acquisition system developed for the Federal Highway Ad-

ministration.

The equipment functioned satisfactorily and provided an indication of

the service lives to be expected of the two instrumented structures under today's

truck traffic.

The stresses recorded in the beams of the instrumented spans are considered
acceptable, with respect to both the mangitude of a single loading and the effects of

repeated loadings.

The steel beam composite span on Route 95, in which the vast

majority of the measured stress ranges were below 2, 250 psi, can accommodate

It must
be remembered, however, that fatigue considerations include both the frequency

the expected increase in the volume of traffic under current load limits.

of the stress range and its magnitude.

Should allowable loadings be increased

significantly beyond the current maximum gross or axle weights, the fatigue life
The performance of the prestressed concrete beam span
on Route 81 appears to indicate that such structures are not as prone to fatigue

The current
state of knowledge in this new area of research is such that care should be exercised

could become critical.
limitations of service life as are the less massive steel beam bridges.

in extrapolating the results of this limited study to other bridges.

Continuous span

bridges can be expected to exhibit different service life characteristics, as may

simple span bridges designed under other philosophies in other states.

It should also be realized that while this study concentrated on the main
supporting elements, strain ranges of comparable magnitude were recorded in the
diaphragm and ranges of greater magnitude were measured in the deck reinforcement
The effect of stresses in these members on the service life
of a structure deserves consideration.

of the Route 95 bridge.

- 57 =




2346

An interesting aspect of this study was the sensitivity of the beams to the
pattern of service loads. It is, of course, expected that the beams under the load
are the most highly stressed, and this fact, coupled with the tendency of truck
drivers to remain in the right-band lane when traffic permits, results in more stress
occurrences in the beams under the right-hand lanes and many less occurrences in
the far beams. Future studies cculd concenirate on these critical beams, using more
gages at selected points on a single member.

The effect of secondary siresses produced by a single vehicle proved to be
more critical in the more flexible steel beam span on Rte. 95, at which an average
of approximately 1.5 occurrences per vehicle were recorded. A maximum of 1.1
events per vehicle was recorded at the prestressed concrete span on Rte. 81, and
less than one event above 43.8 psi per vehicle was recorded in the heavily loaded
beam. Data obtained in this study indicate that the influence of secondary stress
ranges on service life may be negligible in massive concrete structures, but the
effect must be considered in flexible structures.

The sampling periods for both structures included in this study were in
September, chosen for the practical reason that manpower was available at that time,
and no attempt was made to determine the effect of monthly or seasonal traffic vari-
ations on either bridge. However, the sampling periods for both structures included
Sunday night, a period of peak northbound truck traffic, and it is believed that an
evaluation of monthly or seasonal variations in the volume of trucks would not have
affected the significance of the results of the study. The average weights and axle
spacings presented earlier are believed to be representative of heavy vehicles on
Virginia's highways.

While certain refinements are in order, the analytical methodology utilized
in this study does appear to present a valid approach to correlating truck character-
istics and bridge response. The theorv, which employvs realistic and acecepted
methodologyv, did verify the magnitude of the strain ranges recorded in the field.

It is possible that a refined analvtical approach of this tvpe, using an appropriate
traffic loading input, could be applied to a structure which could then be checked
experimentally if the computations indicated the existence of high stress ranges.

CONCLUSIONS
Several conclusions are warranted by the results of this study.

1.  The steel beam composite span instrumented in this study is
adequately designed for the magnitude and frequency of the
truck traffic o which it is subjected. The stress ranges
measured on the structure are such that an increase in traffic
under current load limits can be satelyv accommodated. How-
ever, since fatigue life 1s a function of the number of loadings,
which will increase, as well as the magnitude of the stress
range, the resulis of this studv should not be interpreted as
a justification to raise allowable weight limits,
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The low stress ranges measured in the prestressed concrete
beam span instrumented in the Route 81 tests indicate that
fatigue may not be a problem in massive prestressed concrete
bridges of moderate span.

The analytical method utilized in this study verified the accuracy
of the strains recorded by the data acquisition system used in the
field. The equipment performed satisfactorily.

The effect of the secondary stress ranges produced by a single
vehicle is important in the case of a relatively light, flexible
structure such as a composite steel beam span. The effect may
be negligible in the case of more massive structures such as the
prestressed beam span tested in this study.

The sensitivity of a typical bridge structure to the position of an
applied load, coupled with the tendency of truck drivers to remain

in the right-hand lanes whenever possible, would allow the critical
beam in a structure to be determined in many cases. Future studies
could concentrate gages on this structural element.
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