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ABSTRACT 

 

This research work focused on evaluating both the technical and design elements 

necessary to perform augmented reality (AR) assisted bridge inspections. The inspection 

prototype developed by this project aims to demonstrate the potential benefits and limitations of 

incorporating head-worn displays into the inspection workflow. By virtue of switching to an 

electronic data collection method, many common quality assurance issues can be mitigated. 

Furthermore, AR has an additional advantage over tablet-based solutions in its hands-free 

operation, which can allow for increased safety and flexibility. Furthermore, data collected in an 

AR system is georeferenced locally to the bridge and shown to be adequately accurate to allow 

navigation to previously documented defects during the inspection. Finally, and most 

importantly, AR serves as a central platform within which many up-and-coming digital tools 

(such as artificial intelligence) can be integrated. To better understand this potential, the work 

also considered the use of AI for a specific use case (concrete crack measurements). 

 

A prototype application was developed using the Microsoft HoloLens 2 headset, but the 

principles employed could be translated to other similar mixed reality platforms. The prototype 

targeted efficient integration into the entire field inspection workflow. Three key functionalities 

were identified and addressed as main challenges to this holistic inspection approach: 1) a 

structured data entry interface, 2) georeferenced annotations for visualizing historical data, and 

3) computer vision for automated defect labeling. A unique research focus was how to address 

these challenges in imperfect, real-world field scenarios involving both novice and professional 

bridge inspectors. To this end, the research team explored a range of AR interaction techniques 

of various degrees of automation, drawing on human-computer interaction principles. The 

study's evaluation metrics focused on measurement accuracy, time on task, as well as the tool's 

impact on perceived workload and usability. 

 

Overall, the research found that performing virtual measurements within the AR 

environment resulted in similar usability as traditional measurements (i.e. tape measure and 

crack ruler), while significantly reducing the cognitive workload. Results were mixed in terms of 

time on task and accuracy. In general, more automated measurement processes significantly 

reduced time on task, but tended to decrease accuracy. One key finding was that the best 

combination of metrics was found using hybrid automation approaches, where the inspector was 

able to refine automated defect labels. In terms of added value, less cognitive load could mean 

less errors in documentation process, saving time at the office. This would be added to the time 

saving in report generation due to the virtue of digital data collection. The platform also provides 

the ability to collect much more granular data, which could help improve overall data quality. 

 

The research team was encouraged by the reactions of a small set of VDOT bridge 

inspectors during the field validation of the final prototype. These inspectors were impressed by 

the technology's capabilities and intuitive workflow, voicing support for the future potential for 

bridge inspection. While the performed work supports the functionality of the platform over the 

entire field inspection workflow, the current prototype still requires additional development to be 

fully implementation ready. 

 

Supplemental files can be found at https://library.vdot.virginia.gov/vtrc/supplements 

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Flibrary.vdot.virginia.gov%2Fvtrc%2Fsupplements&data=05%7C02%7Cbill.kelsh%40vdot.virginia.gov%7Ca064ca8828424053da3708dd2d15ed8d%7C620ae5a94ec14fa086415d9f386c7309%7C1%7C0%7C638716294381213659%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=bCxZ4On70clvTo2SI3Owat9ftyRFRu%2BlyiEMwpl6ioM%3D&reserved=0
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INTRODUCTION 

 

As bridge infrastructure continues to age and deteriorate, inspection practices have evolved 

to better assess their condition. This includes the adoption of element-level condition ratings and 

the digitization of data through the National Bridge Inventory (Federal Aid Highway Act, 1968). 

This shift towards digital data management enhances the quality of the data collected; however, it 

has introduced a gap between the traditional physical pen-and-paper field workflows and the new 

digital data requirements in the office. This gap often results in transcription errors, as highlighted 

in (Smith et al., 2022). Additionally, manual measurements in bridge inspections have been shown 

to be inherently subjective, often with over 100% variation in area measurements (Washer et al., 

2020). Thus, there is growing interest in also digitizing the field workflow, both to improve 

consistency in measurements and to facilitate the conversion to office reporting requirements. 

 

Various DOTs across the country have been working to incorporate modern technologies 

into their inspection workflows. We can divide current research efforts into five rough categories: 

Decision Support Systems, Augmented Reality (AR), Data Mining, Data Entry Systems, and 

Computer Vision. 

 

Decision Support Systems are defined in this context to contain research which yields a 

tool that the inspector could query in the field or office to receive suggestions or additional 

information from references such as the American Association of State Highway and 

Transportation Officials (AASHTO) Manual for Bridge Element Inspection. Indiana and Illinois 

have both reported artificial intelligence systems for inspectors to reference inspection 

regulations and examples more easily, with Illinois being noteworthy due to its integration of 

Chat GPT3.5 and ability to produce example inspection photos such as "a CS2 crack on 

reinforced concrete" (Topcu, 2023, Xu et al., 2019). 

 

  With regards to Augmented Reality based bridge inspection, New Mexico and 

Rhode Island demonstrated AR's potential as a measurement tool (Falter, 2020, Moreu et al., 

2019). Separately, Tennessee demonstrated AR as a data visualization tool by overlaying ground 

penetrating radar (GPR) results onto the scanned concrete surface to allow for a sort of X-Ray 

vision highlighting delaminations. This approach requires post processing of the GPR data and 

additional manual alignment (Hu et al, 2020). However, none of these systems have been aimed 

at assisting with the entire bridge inspection workflow, particularly regarding documentation and 

reporting. One particularly essential, yet overlooked, aspect of holistic bridge inspection via AR 

is world localization, the process of tracking and anchoring virtual objects in the correct physical 

location. If this localization is too coarse or often loses its knowledge of the current state and 

position of the world, virtual objects have a propensity to shift and drift over time from their 

original placement. This problem is further exacerbated as the processing power and sensor suite 

available to the headset to track itself is much less than the current state of the art, due to power 

and size limitations. 

 

   

Data mining research generally seeks to accomplish "Infrastructure Condition State 

Prediction". This is accomplished by feeding many inspection reports into a model and having it 
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predict future condition states based on previous reports. This could be utilized for more effective 

allocation of resources based on anticipated deterioration. Iowa, Utah, Illinois, and Ohio DOTs 

have undertaken research into this area (Jung et al., 2022, Abukhalil et al., 2022, Mohammadi et 

al., 2023, Goa and Elzarka, 2021). While potentially promising, data mining is sensitive to the 

quality of collected data, thus documentation consistency is critical to such efforts. 

   

Data entry methods include two main sets of software: Inspect X and Headlight. Both 

systems are tablet-based interfaces designed to replace the pen/paper data entry workflow of 

bridge inspection, digitizing the work immediately and potentially reducing transcription errors 

by connecting directly to the AASHTO Bridge Management system. Headlight was created as a 

collaboration between Washington DOT and the private company Pavia Systems, Inc. and has 

been pilot tested by inspectors in Washington, Minnesota, and Texas DOTs (Yamura et al., 

2018). InspectX was developed by AssetIntel, a Florida based company. InspectX has been or is 

in the progress of being adopted by Tennessee, Utah, North Dakota, Georgia, Kansas, Louisiana, 

Virginia, Arkansas, Vermont, and Los Angeles DOTs (InspectX, 2023). In many cases, however, 

tablet interfaces are not preferred by inspectors, due to issues with glare and portability (Smith et 

al., 2022). 

 

Computer vision (CV) algorithms have been identified as potential solutions to reduce 

measurement subjectivity and inspection times (Pathak, 2023). While numerous studies have 

validated the effectiveness of CV and machine learning for crack segmentation (Yang et al., 2018, 

Li et al., 2020, Munawar et al., 2022), the translation of these high accuracies to real-world 

conditions remains problematic, as demonstrated by (Bianchi and Hebdon, 2022). Even state-of-

the-art segmentation algorithms, after training on millions of images, only manage about 63% 

accuracy on average (Wang et al., 2023). These findings indicate that, despite significant progress, 

the current precision of CV algorithms is insufficient for fully autonomous use in safety critical 

applications. Furthermore, defect segmentation algorithms are not designed to output the precise 

pixels corresponding to the affected area; this would require meticulously labeled training data, 

which is not feasible at large scale. Instead, these algorithms output the approximate boundary of 

a defect. In the case of cracks, this introduces a challenge when attempting to accurately measure 

crack thicknesses. 

 

Of all these technologies, Augmented Reality (AR) stands out as a possible centralized 

platform within which the other technologies could be integrated. AR's hands-free interaction, 

combined with its spatial sensing capabilities, allow for virtual measurements and documentation 

directly on the structure instead of a tablet screen (Mascarenas et al., 2021). In addition, all defect 

information is georeferenced, meaning that its location on the bridge is automatically captured 

(Jakl et al., 2018). AR also can potentially offer access to historical data and predictive analytics 

(Data Mining). Finally, AR facilitates the deployment of computer vision (CV) algorithms directly 

in the field, enabling real-time collaboration between human inspectors and automated systems 

(Al-Sabbag et al., 2022). This collaboration is the key to leveraging the potential benefits of CV 

while ensuring dependable performance. 

 

For more information on these technologies, the reader is referred to the extended literature 

review included as supplementary material.   
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PURPOSE AND SCOPE 

 

This study's purpose was to design an Augmented Reality-based bridge inspection tool 

that facilitates the digitization of field documentation, while also improving its quality and 

consistency using assistive tools, like virtual measurements and Artificial Intelligence. A 

prototype application was developed using the Microsoft HoloLens 2 headset, a platform which 

projects virtual holograms onto the true physical environment. Nevertheless, many of the 

principles employed could be translated to other similar mixed reality platforms. The research 

team targeted efficient integration into the entire field inspection workflow as the primary goal, 

that is, the inspector should be able to use AR from start to finish in the field, while intuitively 

following a traditional inspection workflow. Within this context, this study sought to identify and 

address crucial research gaps regarding the deployment of AR tool in imperfect, real-world field 

scenarios involving both novice and professional bridge inspectors. The prototype development 

focuses on three key areas: 1) an inspector-centered AR interface design, 2) georeferenced 

annotations for visualizing historical data, and 3) computer vision for automated defect labeling. 

The study's evaluation metrics focused on measurement accuracy, time on task, as well as the 

tool's impact on perceived workload and usability. 

 

The scope of the AR interface design holistically considered menu structure, structured 

data entry, user interaction, and the information architecture best suited to the inspectors’ needs 

on site. The specific research objectives were to: 

 

1.1.Create an intuitive interface that mimics the traditional inspection workflow as closely as 

possible, 

 

1.2.Structure the data entry to match AASHTO component and element level reporting 

requirements, 

 

1.3.Facilitate the incorporation of automation tools (e.g. computer vision) while easily 

allowing manual fallback options in case of malfunction. 

 

The first phase of the interface design leveraged interviews of various Department of 

Transportation personnel across the country and used them to determine common issues with 

existing inspection procedures. The second phase of design was based on user experience 

experiments with multiple undergraduate students. The final phase involved a field test at a 

concrete T-beam bridge in Roanoke, Virginia with a team of three VDOT bridge inspectors. The 

final prototype version was created taking the feedback from the inspectors in the field test. The 

team limited the scope of the project to the field inspection process, so exporting report data was 

not included as a primary objective. However, the interface back-end data structure was 

intentionally designed to facilitate data export development in future phases of this project. 

 

The scope of the research into georeferencing was aimed at understanding how well 

annotations persist in space over an inspection procedure as well as over multiple inspections, 

particularly in challenging outdoor environments. As will be discussed, the accuracy of the 

georeferencing is critical for informing how current and historical data should be visualized. The 

specific research objectives were to: 
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2.1.Determine how precisely live annotations can be projected onto the bridge structure. For 

example, do annotated crack outlines align with the physical crack? 

 

2.2.Determine how well annotations persist over various bridge visits. That is, are defect 

annotations in the same place during a subsequent bridge visit? 

 

The research in this case was limited to the Microsoft HoloLens 2 platform, which was 

tested on a local bridge at various points in the year. The results are strongly dependent on the 

headset's sensing capabilities and the integrated software that handles spatial mapping. While the 

team did investigate the use of special-purpose libraries such as Microsoft’s World Locking Tools, 

the project did not attempt to create custom algorithms in this respect. Instead, future iterations of 

this technology could continue to improve in this regard. 

 

Finally, the scope of the defect automation labeling focused on the development of a 

computer vision (CV) system that would enable manual intervention from an inspector. In this 

work, we define CV as the comprehensive processing of images into actionable measurements, 

encompassing both machine learning (ML) and image processing as critical steps in this process. 

The specific research objective in this area were to:  

 

3.1.Develop a field-capable CV algorithm for obtaining crack measurements in real-time, 

 

3.2.Determine what types of combined AR and CV interactions create the best user experience, 

 

3.3.Quantify how these interactions impact inspection performance in a realistic inspection 

setting, compared to the traditional tape measure approach. 

 

Because the broader goal of this work was to demonstrate the potential of AR to integrate 

across the entire inspection workflow, some key scope reductions were made. First, the team did 

not focus on creating the best-performing CV algorithm possible, but rather something capable 

enough to enable the exploration of human-in-the-loop interaction. In other words, developing a 

functional manual fallback for automation malfunction was deemed more critical than maximizing 

the performance of the automation itself. It is also a much less studied area in the literature. Second, 

the team chose to focus on concrete cracking. This enabled in-depth development to demonstrate 

the full extent of a narrow workflow, rather than partial development of a broad workflow. 

Concrete cracking generally has the most stringent documentation requirements and so was 

deemed the most interesting candidate for research. 

 

METHODS 

 

Overview 

 

The tasks performed as part of this project are as follows: 

1. Augmented reality interface design 

2. World localization and world persistence 
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3. Computer vision technical development 

a. Field architecture development 

b. Projection of computer vision results 

c. Crack detection and documentation development 

4. User interaction experiment 

5. Qualitative field validation 

Augmented Reality Interface Design 

This task specifically addressed objectives 1.1, 1.2, and 1.3. In the preliminary stages, 

extensive research data was gathered to comprehend the operational domain thoroughly. 

Engagements with bridge division professionals across various hierarchical levels were 

conducted to delineate the user interactions with the proposed AR system. These interactions 

were diversified across personal interviews, surveys, and direct observation during bridge 

inspections. 

 

Data gathering encompassed 20 virtual discussions with Department of Transportation 

employees nationwide and the distribution of two distinct online surveys targeted at VDOT 

bridge inspectors and their supervising engineers. While the survey for engineers received only 

six responses, the inspectors' survey yielded 41 responses, highlighting diverse perspectives from 

relatively junior staff members. Additionally, the authors participated in inspection “shadowing” 

visits, observing the inspection processes of three bridges and a culvert firsthand. The insights 

from these engagements were instrumental in forming a cohesive model of the operational 

workflow, illustrating the interactions between different roles and their tasks within the system. 

Following this, a hierarchical task analysis was conducted, refining the collected data into an 

organized structure of task flows, which outlined the sequential steps inherent in the bridge 

inspection routine.  

World Localization and World Persistence 

This task specifically addressed objectives 2.1 and 2.2. To provide a consistent, 

repeatable, and savable 3D experience for bridge inspectors between different bridges, our AR 

application employs a world localization system and a world persistence system. These systems 

work together to provide the ability for the system to recognize a particular bridge location it has 

been before and then load the previously placed virtual objects (like virtual defect markers). 
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Figure 1. WLT with anchors visualized (green and blue dots on ground). 

 

 Microsoft, the manufacturer of the HoloLens 2 device, reports a ±10% error when using 

the standard HoloLens 2 tracking system, meaning that a user could walk 10 meters and the 

system could think they walked up to 11 meters or as little as 9 meters (fast-slow-still). 

Undoubtedly, this ±10% error is not acceptable to accurately track defects and other bridge 

information, especially since the virtual objects are tightly associated with a specific location, so 

if an object is not accurately located in the world, location as an information encoding modality 

is lost. We attempt to mitigate this “large” potential tracking loss by utilizing Microsoft’s World 

Locking Tools (WLT). The WLT software system (Microsoft, 2024), as shown in Figure 1, 

utilizes a mesh of automatically placed spatial anchors, which are virtual objects constantly 

tracking and anchoring themselves onto a specific physical world feature (like a corner of a 

concrete sidewalk) to stabilize the entire application. World Locking Tools, in theory, allows the 

application to significantly correct for the ±10% error from the standard HoloLens 2 tracking 

system by sampling the closest spatial anchors to the user and seeing how the current virtual 

position of the user differs from the correct position (based on the spatial anchors). 

 

In addition to the WLT tracking system, we also tested the World Locking Tool’s world 

persistence system. This persistence system aims to recognize unique bridges the headset has 

traveled to and assist with loading the tracking system setup for that specific location so that the 

previously saved virtual objects can be accurately placed. 

Computer Vision Technical Development 

This task addressed objective 3.1, which was highly technical, focusing on automating 

the concrete crack documentation process in the field. It was determined that Computer Vision 
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(CV) and Machine Learning (ML) models were the most suitable for this task. However, three 

primary issues were identified with this approach, guiding three parallel subtasks.  

 

The first was the inability to run these models directly on the HoloLens 2 device without 

significant modification and consequent performance degradation. In response to this issue, a 

server-client pipeline was implemented, inspired by the approach described by Al-Sabbag et al. 

(2022). 

 

The second issue identified was the inaccuracy of established techniques in projecting 

crack centerlines, which hindered effective collaboration between human and machine-generated 

results. To overcome this, a novel, application-specific projection algorithm was developed.  

 

The third issue arose from the models producing an image segmentation mask, where 

black pixels represented the background and white pixels indicated cracked regions. This output 

format was found to be incompatible with the data traditionally recorded by inspectors, which 

included the length of the bridge element affected by the crack, the maximum crack thickness 

and a condition state rating. To resolve this, the model outputs were post-processed with a 

custom image processing routine, converting the results into data that could be directly utilized 

by inspectors. 

 

Each of these issues was addressed in parallel as described in the subtasks below. 

Field Architecture 

To lay the foundation for this research, we first designed a system which supports CV-

based crack documentation within the AR space while also in an internet-denied environment. 

The Microsoft HoloLens 2 was chosen as the AR platform for this research. The bridge 

inspection application was written in Unity C# using Visual Studio 2022 and Microsoft's Mixed 

Reality Toolkit (MRTK) 2. The Computer Vision code was written in Python 3.6 and utilized the 

crack detection machine learning model of Bianchi and Hebdon (2022). Additional post 

processing of the machine learning result was written in Python 3.6.  

  

As these machine learning models cannot be run natively on the HoloLens 2, a server was 

utilized for computer vision tasks. This led to the system architecture seen in Figure 2. The 

server was defined to be a mid-range laptop, with the only hardware requirement being the 

Nvidia graphics card (GPU).  A server-client communication pipeline was developed using 

HTTP requests between python and Unity, following the examples presented in Al-Sabbag et al., 

(2022). This allowed the HoloLens 2 device to send images to the server and receive processed 

crack detection results back. As the overall goal of the project was to function in GPS- and 

internet-denied environments, this communication was sent through an offline router (Netgear) 

and was verified to function identically with a phone offline hot-spot (Pixel 6) in lieu of the 

router. 
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Figure 2. Field architecture utilized in this study. 

Projection of CV Results 

A major challenge we encountered in our research was the accuracy of projecting CV-

generated annotations onto the environment through the HoloLens 2. Machine learning and 

computer vision operate in the 2D image space (x,y), whereas humans interact with physical 

objects in 3D (X,Y,Z). To enable meaningful interaction between humans and computers in a 

crack annotation task, the transformation between the image space (x,y) and the physical space 

(X,Y,Z) needs to be accurate to the millimeter scale. This is a significantly stricter requirement 

than for generic AR applications, where errors of a few inches might be considered acceptable. 

Previous research into projection in other fields (such as computer graphics) often utilized the 

"camera projection formula," as depicted in Figure 3, where C is the camera coordinates in 

pixels, I is the intrinsics matrix which corrects for lens distortion and scales the image to pixel 

dimensions, E is the extrinsic matrix which aligns world coordinates to the camera’s local 

coordinate system, and W is the world coordinates of the projected point. This formula allows 

for the mapping of world coordinates (X,Y,Z) to pixel coordinates directly (x,y), while the 

inverse operation is more complex but follows similarly. However, due to issues like engineering 

tolerances on the camera components, lens distortions, and the eye calibration of the HoloLens 2, 

the standard camera projection formula results in a projection error of 2-3 in. This error led to the 

need for a different approach in this work. 

  



   

 

 13 

Figure 3. Traditional camera projection formula 

Other groups, such as Mohammadkhorasani et al. (2023) and Malek et al., (2023) had 

developed more accurate projection approaches; however, these approaches still necessitated 

additional, user-specific eye calibration steps. Our method, drawing inspiration from the 

approach mentioned in Farasin et al., (2020), utilized Holographic Image Blend shader code 

(Fogerty, 2016). This technique took into account the existing eye calibration within the 

HoloLens 2 to project an image onto a floating canvas, as shown in Figure 4. This canvas 

provided a direct mapping from image coordinates (x,y) to canvas coordinates (Cx, Cy, Cz). 

 

By applying basic linear algebra, we were able to draw a line from the known focal point 

of the camera (Fx, Fy, Fz) through the canvas coordinate (Cx, Cy, Cz), and then raycast this 

vector onto the environmental mesh. Raycasting in this context is defined as finding the 

intersection of this vector with the environmental mesh, where this mesh is the HoloLens 2’s 

interpretation of nearby surfaces based on its built-in depth sensor. This intersection is indicated 

with a physical point (X, Y, Z) corresponding to the specific pixel coordinate (x,y). 

  
Figure 4. Example projection methodology. A temporary canvas plane is generated to leverage the 

HoloLens 2 capabilities for image projection. The algorithm results (e.g. crack outline) are then projected 

through the canvas plane onto the physical surface. 

Crack Detection and Documentation 

Given a mapping from image coordinates (x,y) to physical space (X,Y,Z), we were able 

to project the results of a machine learning algorithm onto the physical surface. However, this 

projection was not useful on its own since standard machine learning algorithms return an image 

"mask" where white pixels correspond to regions likely to contain a crack, and black pixels do 

not. In order to be consistent with standard inspection practices, the automated crack 

documentation algorithm should output three main measurements, illustrated in Figure 5: 1) The 

height of the cracked region, measured vertically in the direction of gravity; 2) The length of the 

cracked region, measured horizontally in alignment with the length of an element; 3) The width 

of the largest crack within this region. The cracked region is defined as total area on a bridge 

element affected by cracking, whether it be a single crack or multiple ones. We note that 
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AASHTO reports are only required to specify the length and crack width measurements (not 

height), however, many inspectors do measure height or crack area (length times height) as an 

additional piece of information, hence it’s inclusion in our documentation methodology. 

 
Figure 5. Crack measurements for standard inspections. 

To derive these three measurements from the "image mask" returned by the machine 

learning algorithm, a custom image processing methodology was developed, as detailed in 

Figure 6.  The advantage of deploying these techniques with HoloLens 2 is that these results are 

returned in real-time. Our crack evaluation code expanded upon previous computer vision (non-

ML) focused research in crack detection and evaluation (Nguyen et al., 2014). The innovation of 

this research lay in the integration of machine learning results with traditional edge detection 

techniques. Traditional edge detection tends to produce a very noisy image. Although this noise 

could be calibrated for different distances and textured surfaces, such as in Malek et al., (2023), 

it remains a major challenge of such approaches. In contrast, the image mask generated by 

machine learning was significantly less noisy but lacked the detail provided by edge detection. 

By performing a "bitwise AND" operation on the two results, we effectively filtered the noise 

from the edge detection results (“filtered edges”) while preserving the higher level of detail, 

thereby enhancing the overall accuracy of the crack evaluation. 
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Figure 6. Post processing machine learning mask into crack spline. 

 From this set of filtered edges, we utilized Gaussian morphological operators such as 

"opening" and "closing" to eliminate any remaining noise and to close gaps in the results. 

Following this, we extracted the "skeleton" of the result, producing a single-pixel spline that 

traced the centerline of the crack. From this spline, we extracted the endpoints for use in our 

crack documentation workflow. For the "crack width" measurements, we selected a given pixel 

on the centerline and extracted a nearby region of pixels. Inspired by Nguyen et al. (2014), a 

third-order polynomial curve was fitted to this centerline. Then, utilizing the "filtered edges" 

data, we divided the same region into edges on one side of the centerline and edges on the other 

side. The polynomial curve, fitted to the centerline, was then offset perpendicular to the 

centerline in each of the two directions, using least squares optimization to determine the optimal 

offset that minimized the distance from the edges on that side. The two offsets were combined to 

yield a "crack width" measurement in pixels.  

  

At this point, the crack endpoints were in pixel coordinates (x,y), and the crack thickness 

was quantified in pixels. This data, along with the pixel coordinates of every pixel on the crack 

centerline, was converted to JavaScript Object Notation (JSON) format and transmitted from the 

server to the HoloLens 2 via the previously mentioned HTTP pipeline and offline router. The 

HoloLens 2 then unpacked the JSON data, projecting the centerline of the crack as a "line" object 

with the specified coordinates and creating "crack point" objects at each endpoint. 

  

For the crack width measurements, given a point on the crack centerline and the thickness 

computed by the server, we calculated the "edge points" in pixel space above and below the 

crack as simply the centerline point ± thickness/2. For each of these "edge points", we projected 

them onto the physical surface and then computed the distance between them in 3D space. This 

method circumvented potential errors associated with attempting to derive a "pixels to inches" 
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conversion factor, which would not only require a planar surface but also be susceptible to minor 

errors in the points used to define that planar surface.  

User Interaction Experiment 

 A user study was conducted to investigate how varying degrees of automation impacted 

the usability, difficulty, and efficiency of crack documentation tasks, addressing objectives 3.2 

and 3.3. Twenty participants were recruited from the student population at Virginia Tech, with 

an average age of 25.4 years (standard deviation = 3.5), comprising 15 males, 4 females, and 1 

non-binary individual, representing novice inspectors. The majors of the users, their familiarity 

with inspection, and their familiarity with augmented reality (AR) were recorded and 

summarized in Figure 7.  

 

Aside from this cohort, two practicing inspectors also participated, albeit with the 

limitation that they did not engage in the 'CV Refines Human' and 'Fully Automated' interactions 

due to time constraints. To avoid confusion with another group of inspectors who participated in 

the field validation, these inspectors will be referred to as “lab inspectors.”  The lab inspector 

data was excluded from statistical analyses. These analyses, which involved calculating means, 

standard deviations, and conducting various significance tests (including ANOVA, t-tests, tests 

for homogeneity of variance, and evaluations of normal distribution), relied solely on data from 

the student population. This exclusion of inspector data from the analyses was deliberate, aiming 

to ensure that the statistical conclusions accurately represented the characteristics of a broader, 

non-expert population and avoided any potential biases that might arise from including the 

expert subset.  

 
Figure 7. Student population major and inspection/AR familiarity. Majors are: Electrical Engineering 

(EE), Industrial and Systems Engineering (ISE), Mechanical Engineering (ME), Computer Science (CS), 

and Civil and Environmental Engineering (CEE). For the familiarity plots, 7 represents extremely familiar 

while 1 represents no experience at all with the subject. 

Experiment Design 

Our decision to primarily involve novice inspectors was based on several considerations. 

Firstly, although the final version of the inspection tool is intended for professional inspectors, 
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the purpose of this study was to assess the impact of specific interaction techniques for defect 

detection automation (detailed below). Novice users, being untrained, represent an unbiased 

group of subjects, as they are equally unfamiliar with both traditional and AR-based inspection 

techniques. As the results will demonstrate, practicing inspectors tend to have a strong 

preference for the Tape measurement approach, which could bias the findings. Secondly, it is 

much easier to recruit novice participants from the student population, which assists in achieving 

a larger study size. 

  

The experiment featured two independent variables. The first was the interaction method, 

with five different methods being evaluated, explained in detail in the following section. The 

second independent variable was the cracked surface documented by the users, with a total of 

five different surfaces, as shown in Figure 8. These surfaces included three full-sized concrete 

bridge girders and two smaller beams that were tested to failure at the Virginia Tech Structures 

lab. Consequently, many of the cracking patterns observed were more severe than what would 

typically be found in an existing bridge. Additionally, one of the cracked surfaces (Figure 8, 

Photo 4) was reinforced with carbon fiber on the upper half of the region of interest for this 

study, while another (Figure 8, Photo 5) had carbon fiber present to the left of the region of 

interest but was not part of the region. 

 
Figure 8. Cracked concrete girder regions (labeled 1–5) used in this study. 
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The order of the experiment tasks was randomized using a Balanced Latin Square design 

(Montgomery, 2020). Before beginning the experiment, each user was introduced to its contents 

and trained on how to measure cracks. Following this introduction, the user completed the pre-

test survey, which collected demographic information and assessed their level of familiarity with 

the tasks. Next, the HoloLens 2 was calibrated to fit the user's eyes. Then, the user was taken 

outside to complete a "tutorial" on the various interaction techniques. The tutorial was 

considered complete when the user confirmed they felt comfortable with the techniques and 

demonstrated the capability to utilize all available interactions. Based on the balanced Latin 

Square Design, the user would start with a given interaction technique and document each of the 

five cracked surfaces, which were ordered randomly according to the balanced Latin square 

design. After completing the 5th task, the user was asked to complete the NASA-Task Load 

Index (TLX) and System Usability Scale (SUS) surveys before repeating the documentation 

process and surveys for the next interaction technique.  

The NASA-TLX is a multidimensional survey that measures perceived workload through 

six dimensions: mental demand, physical demand, temporal demand, performance, effort, and 

frustration. Participants rate each category on a scale of 0 to 100 and then perform pairwise 

comparisons between the dimensions to weigh them according to their perceived relevance to the 

task at hand. SUS is a ten-item questionnaire that provides a quick measure of the usability of a 

system, where participants respond on a five-point Likert scale from "strongly disagree" to 

"strongly agree." Upon the completion of all five interaction techniques, the user was given the 

post-test survey. The total duration of the experiment was approximately three hours. 

In addition to SUS and TLX, the team also recorded time on task and measurement error. 

Although participants took crack length, height, and width measurements (see Figure 5), we 

chose to condense this into area (length * height) and width for conciseness of the results. 

Identifying differences between interaction methods for the area and thickness measurements 

required transformation into an error metric prior to aggregation for each interaction method, due 

to the distinct 'ground truth' values associated with each task. Two different error metrics are 

analyzed in this study 1) Self Error is defined to be relative to each participant's own 

measurements using the Tape method, and 2) Ground Truth (GT) Error is defined to be relative 

to the "correct" global ground truth. The first approach-error relative to user's respective Tape 

measurements-controlled for the lack of inspection experience among the student participants, 

however this method prevented comparative analysis between the AR interactions and the Tape 

interaction. The second approach, error relative to a ground truth, allowed for comparison with 

the Tape interaction but could include a bias due to the user's inexperience. By including both 

analyses, we can identify and account for these biases (if present) by observing the differences 

between the two sets of results. 

  

In this study, for the first approach the error metrics for each task (area and crack width) 

were defined using the following formula: 

  

 𝑉𝑖,𝑒𝑟𝑟𝑜𝑟𝑆𝑒𝑙𝑓 = 𝑉𝑖 − 𝑉𝑇𝑎𝑝𝑒  (1) 

  

In this equation, 𝑉𝑖 represents the measurement (area or crack width) obtained using the  

interaction method, where 𝑖 encompasses the following methods: Manual, Human Corrects CV, 

CV Corrects Human, and Fully Automated. The term 𝑉𝑇𝑎𝑝𝑒 refers to the corresponding 

measurement obtained using the Tape method.  
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For the second approach, the error metrics for each task (area and crack width) were 

defined using the following formula: 

  

 𝑉𝑖,𝑒𝑟𝑟𝑜𝑟𝐺𝑇 = 𝑉𝑖 − 𝑉𝐺𝑇 (2) 

 

where the term 𝑉𝐺𝑇 refers to the Tape measurement obtained by the researchers to establish the 

ground truth result for each cracked region. 

 

 

Interaction Modes 

Building on existing literature on “adaptable automation” and “graceful degradation”, the 

researchers split the AR interface design into four unique levels of automation (in addition to the 

baseline existing measuring Tape workflow) (Wickens et al., 2021, Aniculaesei et al., 2019). The 

goal was to be able to first test these levels of automation separately to determine the benefits 

and limitations of each, as compared to the Tape baseline. Based on those results, a final 

interface could be designed that allows the user to seamlessly swap between levels of automation 

as needed, while always allowing more manual fallbacks for when automation fails. The five 

levels of automation were designated as 1) Tape, 2) Manual AR, 3) Human Refines CV, 4) CV 

Refines Human, and 5) Fully Automated. Manual AR in this context refers to the set of AR 

interactions for crack measurement without any automation, no physical tools are used in the 

manual for this experiment. According to this philosophy, methods (3) and (4) are a 

hybridization of methods (2) and (5).  For this reason, we do not describe the methods in order, 

but rather leave methods (3) and (4) until the end, as these build on the others. 

 

For this study's purposes, a Tape baseline interaction was defined to best mimic the 

existing workflow of a bridge inspector documenting a crack defect on a concrete element. A 

folding ruler was used for measuring linear and area measurements. A crack comparator was 

used for measuring crack widths. A pen and notepad were provided for recording measurements 

taken. 

 

The first AR interaction mode, shown in Figure 9, was called the “Manual AR” case and 

represented the least automated of the AR interaction modes. Based on the interview and survey 

results from the inspectors, it was determined that crack endpoints are something that inspectors 

are interested in tracking for crack growth. For the first Manual AR interaction technique, a user 

tapped the bridge element's surface with their finger and the device created a holographic red 

sphere at that location. As the user marked more points, a blue bounding box was automatically 

generated which enclosed the points and automatically calculated and recorded the associated 

area of the bounding box. Marking all crack endpoints naturally generated a bounding box that 

enclosed the entire cracked region. The second Manual AR interaction technique allowed the 

user to move any of the red spheres by simply “pinching and dragging” them along the physical 

surface of the element. This interaction was locked to the 2D plane of the surface. The third 

Manual interaction technique allowed the user to virtually measure crack widths by “pinching 

and pulling the sphere towards themselves.” As the sphere was locked to the surface of the 
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element, this action caused the sphere to grow larger. The diameter of this sphere was used for 

measuring crack widths; the user could make the sphere larger or smaller until the edges lined up 

with the edges of the crack. The last interaction allowed the user to move the spheres towards or 

away from the surface by first pinching and holding the sphere for 5 seconds, at which point it 

would turn from red to yellow to designate an “unlocked” state in which it can be moved freely 

in 3D.  

 

Figure 9. Manual interaction techniques: 1) Point creation 2) Point translational movement 3) Point scaling 

for crack width measurements 4) 3D movement point movement. 

The most automated AR interaction workflow was named “Fully Automated,” shown in 

Figure 10. In this interaction, the user began by taking a picture of the cracked region. This 

picture was sent to the server and processed into a line tracing the centerline of the crack and 

crack endpoints. Red spheres were automatically placed at the calculated crack endpoints and the 

blue bounding box was generated and used to calculate the affected area. Crack width values 

were automatically calculated by the CV and the largest crack width was recorded for the 

calculation of condition state. If the inspector deems the result unsatisfactory based on his 

experience, they could retake the picture from a different distance/angle to attempt to get a better 

result. In a field scenario, the user could manually override these results, but to evaluate the 

performance of specific levels of automation, this was not permitted in this mode. As the ML 

model results are variable based on distance and angle of the photo, the photo retake option 

allows the user to attempt to get a better result. Generally, taking a picture closer would 

recognize smaller cracks, while taking a picture further away recognized larger cracks. We 

identified a need for scale invariance in these models as a point of future work. 
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Figure 10. Fully Automated interaction techniques 1) Photo capture initiation 2) Photo framing and 

countdown 3) Loading screen 4) CV results projected 5) Photo recapture and finish options. Note that the 

result shown in (4) does not capture the full extents of the crack, representing a case where the photo 

should be retaken. 

 

The first of the two hybrid modes was called “Human Refines CV” and was designed to 

be a less automated interaction in which the human gets the final say in the result. In this 

interaction, it began like the fully automated one in that the user took a photo and the CV 

projected the resulting crack endpoints and area onto the surface. For this interaction, the user 

could not retake the photo but instead could fully modify the results of the CV as if those points 

were created by the user in the Manual interaction mode. 

 

The second of the two hybrid modes was called “CV Refines Human” and was designed 

to be a more automated interaction where the human gave the CV a starting point which the CV 

could then modify. This type of interaction was supported by literature such as Fitts’ list which 

states that computers are better than humans at fine details while humans excel at big picture 

thinking (Fitts, 1951). This functionality was accomplished by implementation of a “snapping” 

functionality akin to Autodesk’s O-Snap functionality. In this interaction mode, the user still 

began by taking a picture, but the CV did not create any points, it only projected a line 

designating where it determined the crack centerline to be. The user then created points, similar 

to the manual interaction mode, however, any points created or moved close to the crack 

centerline would automatically snap to the centerline and update the sphere size to the crack 

width at that location as determined by the CV. The user was not responsible for crack width 

measurements in this mode. 
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Qualitative Field Validation 

A field validation of the AR bridge inspection tool was completed at a concrete T-beam 

bridge in Roanoke, Virginia with a team of three inspectors. These were different from those 

engaged in the user interaction experiment and are referred to as “field inspectors.” The final 

version of the interface was used as described in the results and discussion, section “Augmented 

Reality Interface Design”. The interface utilized for field validation featured a hierarchical 

element selection process in the AASHTO format, along with manual area and condition state 

documentation capabilities for all defects. For crack defects, automatic length and height 

measurement capabilities were provided. Crack width values were measured using a physical 

crack comparator and input through a virtual keyboard. A recommended condition state was 

offered for defects like cracking, which had a quantitative metric (e.g., crack width) 

corresponding to a specific condition state. Condition state definitions were provided for all 

defects, and example condition state photos were made available for cracking, corrosion, and 

spall defects.  

 

Each inspector was given a short tutorial on how to operate the interface. Afterwards, 

each inspector documented a single crack defect on a reinforced concrete bridge girder. While 

using the AR interface, the inspector was continuously encouraged to give comments on what 

they liked and disliked about the interface. Once all three inspectors had documented a single 

crack defect, they were timed while documenting a different crack defect. A freeform collective 

discussion was conducted after the conclusion of the field test, which included suggestions from 

the inspectors on features they would like to see incorporated into a future version of the 

interface as well as their general thoughts of the AR inspection tool itself. 

RESULTS AND DISCUSSION 

Augmented Reality Interface Design 

The first and most important result of the data collection and bridge inspection 

shadowing phase was understanding the bridge inspection workflow. Typically, an inspection 

commences with a review of the prior report, which is then physically carried to the inspection 

site. This document, averaging 20 pages, predominantly features narrative descriptions of 

previous findings concerning defects or areas of concern. Inspection teams, generally comprising 

two members, leverage these reports to guide their inspection, with one member annotating and 

assessing physical conditions on-site and relaying findings to their partner for documentation. 

Inspectors typically follow a hierarchical process when selecting which elements to inspect: they 

first focus on one component (e.g. deck, superstructure) then inspect all elements of the same 

kind (e.g. barrier rail, concrete girders) before moving on to the next element. Post-inspection, 

these annotations and photographic evidence are incorporated into a digital report, which 

subsequently requires manual data entry into various software systems, including structural 

analysis and bridge management tools utilized by different departments. 

 

The challenges identified with this process were primarily attributed to the reliance on 

traditional, narrative-based note-taking methods. This practice, lacking a unified system for data 
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organization, necessitated redundant manual data entries into disparate systems, often leading to 

inaccuracies and issues with data integrity. Additionally, the subjective nature of manual 

measurements and the difficulty in locating defects based on narrative descriptions were 

identified as significant obstacles. Furthermore, insights from inspector surveys indicated a 

cautious stance towards adopting new technological solutions, rooted in previous unsuccessful 

attempts to integrate modern devices into their workflow. 

 

The final bridge inspection augmented reality interface took all these lessons into 

account, from the initial stakeholder surveys to user experience experiments. It also considered 

results from the user experiment, which will be discussed later. The interface is intended to 

completely digitize the inspection process while maintaining the familiar workflow of traditional 

pen-and-paper inspections. Another key feature of the interface is that it allows inspectors to 

seamlessly switch between manual, digital, and automated measurements. This not only allows 

inspectors to work around potential issues with automation, but also allows them to work with 

the digital tools to the extent that they are comfortable. 

 

Figure 11 shows an overview of the AR interface workflow until arriving at the data 

panel, the main menu from which measurements, notes, and photos are recorded. Figure 12 

shows the flow of actions available withing the data panel. 

 

Figure 11. Flow chart of the AR interface workflow to arrive at the data panel. 

The following subsections show each stage (i.e., menu) of the interface to explain each of 

the diagram elements in detail. We note that the actual inspector’s view through the headset is 

slightly different than the images shown below due to limitations of the AR display’s 

video/image capturing features. For example, some virtual elements are visually offset from the 

real-world in the image, but not when viewed through the AR headset. Further, to expedite the 

reporting process, the images shown below were captured at a site with a series of concrete 

blocks. While not a bridge, the two environments are identical from the perspective of the 

interface (unknown outdoor location, without internet or GPS). Lastly, some of the images show 

a “virtual glove” over the inspector’s hands to visualize the HoloLens 2 hand tracking feature. 

Doing so is optional, but can help the user adjust their gestures by understanding where the 

HoloLens 2 perceives the hand to be. 
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Figure 12. Flow chart of the actions available within the data panel. 

Bridge Selection Menu 

The first step is to select the bridge for which the inspection will be performed, as shown 

by the bridge selection menu in Figure 13. This could be a new bridge or a previously inspected 

bridge. Currently, when accessing a previous bridge, the interface searches for and loads bridge 

data based on a unique bridge identifier (specified when inspectors create a “new bridge” for the 

first time in the system). We anticipate the future versions will detect the inspector’s location and 

present a list of one (or more) bridge(s) in that area, whereby inspectors would simply confirm 

the system’s bridge selection upon app startup.  

The previous bridge environment (the 3D geometry used for localization) is saved within 

the HoloLens 2 itself and can be transferred to another HoloLens 2 if needed. The documentation 

data (images, measurements, and notes) are stored in the laptop server. 
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Figure 13.  AR user interface showing the first screen upon first starting the app.  

Defect Creation/Edit Menu 

After inspectors load a bridge (new or existing), the system allows access to a menu 

whereby inspectors can “Create New Defect.” The interface shown in Figure 14 contains 

placeholders (labeled <Empty>) where additional defects can be listed, either from the previous 

inspection or the current one. In our running task example, the inspector chooses “Create New 

Defect”. 

 

When inspectors select “Create New Defect” instructive text appears to guide inspectors 

in the workflow, as shown in Figure 15. We anticipate that this text will be refined, and or 

optional as we learn more about how inspectors wish to work. Continuing this task, an inspector 

would physically touch the bridge surface to denote the location of the new bridge defect. This 

interaction provides haptic feedback and is easier to use than a “point and pinch” gesture. The 

research team chose this under the assumption that all inspections are conducted at arm’s length, 

as is the current AASHTO requirement. Options for annotating at distances of several meters are 

possible and should be considered as alternatives where arm’s reach is not possible. However, it 

is important to note that implementing such a strategy would also require revisions to the 

inspection guidelines. 
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Figure 14. Defect selection menu. 

 
Figure 15. Instructions on how to record the defect location. 

Defect Specification Menu 

After inspectors touch the surface of the bridge (at a defect location), a blue orb (i.e., 

sphere) appears, as shown in Figure 16. In subsequent bridge inspections, the orb signifies that a 

defect has been documented, and inspectors looking out across a bridge section will see 3D 

virtual orbs at all physical locations where defects had been previously noted (top right of Figure 

16).  In this example, we are creating a new defect, whereby the system prompts inspectors for 

structural meta data regarding the defect location. The first menu (Figure 16), prompts the user to 
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select from a list of general elements (sometimes called components) such as Decks and Slabs, 

Railings, Superstructure, etc. Inspectors’ selection at this level leads to another menu (not 

shown).  In this example, the inspector chooses “Decks and Slabs” as the general element (top 

left corner of the menu in Figure 16). 

 

 
Figure 16. General bridge element selection menu. 

This opens another menu of specific element options (Figure 17), which fall under the 

general element category (e.g. reinforced concrete deck, prestressed concrete deck, etc.). Note 

that these elements are coded based on the AASHTO bridge inspection manual. In this example, 

the inspector chooses “12: Reinforced concrete deck.” Subtle, but present, is a “back arrow” 

located above the menu in the center (i.e., a chevron, or < symbol).  This feature allows 

inspectors to return to the previous menu in cases where the incorrect bridge element was 

selected in the previous menu (Figure 17). 

 

After selecting the specific element from the previous menu, the system presents 

inspectors with a list of possible defects that can be associated with reinforced concrete decks 

according to AASHTO (Figure 18).  As before, we present the AASHTO numerical codes to 

assist inspectors in noting defects consistently and documenting defects in compliance.  Not 

visible in the image above is the same “back button” described earlier.  Here the inspector is 

noting that the defect is related to “1130: Cracking (RC and Other)”.  

 

The hierarchical selection process ensures that minimum effort is expended recalling the 

correct element/defect codes or double checking that a defect code is allowed under a certain 

element. Overall, defect specification process takes only a few seconds to complete. 
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Figure 17. Specific bridge element selection menu. 

Figure 18. Defect selection menu. 
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Data Panel 

After specifying the defect type (in our example we are using Cracking (RC and Other), a 

detailed data panel appears with several options available (Figure 19).  Some options are general 

to all defects while others are specific to the defect type.  

 
Figure 19.  Defect data panel. Note that the menu title is incorrect: It should read Cracking (RC and Other), 

as this relates to the available data entry options. 

 

The left side of the panel is reserved for previous inspection data. The right side of the 

panel is reserved for current inspection data. Inspectors work with just the right-hand side when 

documenting a new defect. When working with a previously noted defect, the left-hand side is 

available for reference. In the top center, there is a button that allows inspectors to optionally 

copy data from a previous inspection to the current inspection (for example, to use as a starting 

point for new data entry). In the center middle of the panel are buttons in which inspectors can 

change the mode of the overall panel, which in turn specifies what type of information (as well 

as permissible actions) are available in both the previous (left) and current (right) sides of the 

panel, allowing inspectors to view/manage: (1) measurements, (2) photos, and (3) notes. 

Measurements Mode 

In this mode (also Figure 19), inspectors can view historical measurements as well as 

document new measurements, specific to the defect. Further, inspectors can annotate the scene 

using virtual tools to measure a defect and/or access AI/CV tools to assist in measurements. 

While in measurement mode, inspectors have access to the following functions: 

 

Previous Inspection Data 

The last inspection date is presented at the top of left side, and controls are located at the 

bottom of the left side to allow inspectors to access previous reports. The number of reports and 
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the currently selected report (shown as 0/0 for new defects) is presented to help inspectors 

navigate large measurement sets. As inspectors work their way back through previous reports, 

the date is updated as is the currently selected report. When there is no data available, the panel 

clearly states this as depicted in Figure 19.. 

 

Current Inspection Data 

The right side contains the current inspection data. The current inspection date is located 

at the top of the right side, and controls located at the bottom of the right side allows inspectors 

to specify/confirm a condition state, view details about condition state definitions and see visual 

examples, as well as start an AR annotation. In the case of cracking, inspectors can enter data 

describing the: (1) crack length, (2) crack height, (3) crack width, and (4) crack spacing. If 

measurements are performed manually (e.g. via a tape measure or crack ruler), the data can be 

entered directly using a virtual keyboard (Figure 20) by simply selecting the field to the right of 

the label. Alternatively, the inspector can access digital measurement tools via the “Start 

Annotation” button in the bottom right (see subsection 5 below). Importantly the data panel also 

allows the specification of the defects condition state (CS1-CS4). The white bounding box 

indicates the software’s suggestion based on the specified measurements, but the inspector is 

expected to make the final selection. In order to assist with this process, particularly for junior 

inspectors, a “View condition state details” button is available to view the AASHTO manual 

guidelines for defect type selected (see subsection 6 for more details). 

 
Figure 20. Virtual keyboard entry via the stock Microsoft HoloLens 2 keyboard.  We are working to develop 

a specialized number pad (essentially the right side of the keyboard shown above), that will consume less 

visual space and be easier to work numerical data.  Also shown in the figure, are controls above the number 

pad to allow inspectors to use “speech to text” functions. 
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Photos Mode 

In this mode (Figure 21), inspectors can view historical photos as well as create new 

photos (including photos with AR annotation). While in photos mode, inspectors have access to 

the following functions: 

 
Figure 21. Example of Photos Mode where one photo has been taken during the current inspection. 

Previous Inspection Data 

The last inspection date is presented at the top of left side, and controls are located at the 

top of the left side to allow inspectors to access previous photos. The number of photos as well 

as the currently selected photo (shown as 0/0 for new defects) is presented to help inspectors 

navigate large photo sets. As inspectors work their way back through previous photos, the date is 

updated as is the currently selected photo. When there are no photos available, the panel clearly 

states this as depicted in the Figure below. 

 

Current Inspection Data 

The right side contains the current inspection photos.  The current inspection date is 

located at the top of the right side. The number of photos as well as the currently selected photo 

(shown as 0/0 for new defects) is presented to help inspectors navigate large photo sets.  Below 

the image panel (not visible in Figure 21), inspectors can also take a new photo or start a new 

annotation (see subsection 5. Start Annotation, below). 
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Notes Mode 

In this mode (Figure 22), inspectors can view historical notes as well as create new notes. 

At this time, notes mode is still a work in progress.  However, we anticipate inspectors will have 

access to the following functions: 

 

 
Figure 27. Virtual objects at Virginia Tech test bridge used to ensure the persistence of virtual objects in the 

tracking system. 

Previous Inspection Data 

The last inspection date is presented at the top of the left side. We anticipate adding 

controls located at the bottom of the left side to allow inspectors to access previous notes. The 

number of notes (n) as well as the currently selected note (m) will be represented as m/n. As 

inspectors work their way back through previous notes, the date will be updated as is the 

currently selected note.   

 

Current Inspection Data 

The right side contains the current inspection notes.  The current inspection date is 

located at the top of the right side. Below the image panel (not visible in Figure 22), inspectors 

can also create a New Note, as well as start a new annotation (see section above on Start 

Annotation). Rather than typing notes virtually, it is expected that inspectors will leverage the 

built-in speech-to-text feature to accelerate the process. 
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Start Annotation 

This menu allows inspectors to utilize aspects of our prototype that feature novel world-

relative AR and CV features. In short, this feature allows inspectors to work directly with the 

bridge surface to visually annotate the defect (e.g., crack), and take virtual measurements while 

also affording access to CV assistance to expediate the annotation process. With training, 

performing the process virtually can expedite the data entry process and also collect much more 

granular data on a defect. 

 

The Start Annotation process begins by first assessing if a photo exists for this inspection 

at this specific defect.  If no photo exists, the inspector is prompted to frame a shot of the defect, 

and a countdown begins prior to taking a photo. The concept of operations is that a photo is 

needed for any CV operation and this operation can take a few seconds to process on the server 

side. Thus, we initiate the process with a photo such that inspectors can continue to use the tool 

while the photo image is being processed.  If a photo already exists for this inspection, then the 

CV has already performed its calculations for this defect and instead of prompting the inspector 

take a photo, the annotation menu (Figure 23) is directly presented to inspectors. 

 

The annotation menu is a key component of the annotation process.  In short, the menu 

allows inspectors to manage how the annotation is performed. The options are to: (1) select 

nothing in this menu and immediately begin virtual annotation (the default action), whereby 

inspectors touch the bridge surface directly in order to collect quantitative data (see Virtual 

Annotation below); (2) Start a new annotation using data from the previous inspection (initiated 

using Start from Prev button); or (3) Start a new annotation using the data derived from the CV 

process (initiated using Start from CV button).  In all cases, the visual result is a series of virtual 

points (i.e., red spheres) placed initially by the inspector (manual interaction), the previous 

inspection, or the CV. Once points are placed, inspectors can move them to match the current 

defect condition (see Taking AR Measurements below). As points are being manipulated, the 

annotation menu further allows inspectors to Undo and Redo point placement actions using 

buttons located across the top.  Finally, inspectors can re-take a photo (both to document the 

defect as well as to provide new input to the CV components) and finalize the annotation using 

the Finish button. 
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Figure 23. Annotation Menu.  

Virtual Annotation 

As mentioned above, once inspectors start an annotation the default app behavior allows 

inspectors to directly place points on a bridge surface to both denote and measure a defect’s 

quantitative parameters of interest (e.g., for cracks, this would be length – as well as maximum 

crack width).  These points can also be initially placed by the system using the previous 

annotation or CV, with the inspector being able to subsequently move the points to positions of 

their liking.  

 

To place a point, inspectors simply extend their index finger and touch the bridge surface 

(Figure 24).  A red point/sphere appears, which can then be moved using a pinch gesture (index 

finger and thumb).  When any outer point is being moved, the dimensions of the overall 

bounding box are updated in real-time for inspectors to see. Once the pinch is released, the point 

stays in place. 

 

It is important to note that inspectors can place as many points as they wish per defect, 

with the minimum number of points being two.  Thus, for example, some inspectors may wish to 

place points to mark multiple areas of interest in a defect (e.g., end points and/or branching of 

cracks that diverge).  These points not only assist in measurement, but also mark key features of 

a defect that will be visually available (i.e., visually overlaid onto the bridge) during subsequent 

inspections. 

 

Once inspectors are confident in the placement of points (again, either manually, or 

assisted via previous and/or CV assistance), the quantitative measurement data shown is 

automatically copied into the measurement panel, and inspectors can then “close out” of that 
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specific defect.  This close-out action automatically saves all measurements, photos and notes to 

the AR device for future export. 

 

 
Figure 24.  Taking AR measurements is done using bare-handed interaction, whereby inspectors simply 

touch the bridge surface to establish points of interest 

 

View Condition State Details  

As mentioned above, the current inspection side of the panel also affords access to 

reference data regarding condition state. This feature provides textual descriptions (Figure 25) 

and photographs (Figure 26) of example defects at a given condition state. The information 

shown in this panel is defect-specific and available on-demand to assist inspectors in recalling 

quantitative and qualitive AASHTO guidelines regarding defect condition state designation. At 

this time, the prototype has textual information for all defects, but images only for cracking, 

spalling, and corrosion defect states. 
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Figure 25. Example of information displayed when “View Condition State Details” is chosen in the context of 

a Reinforced Concrete Deck – Cracking (RC and Other). 

 
Figure 26. Shows example photos provided when “View Condition State Details” is chosen in the context of 

Reinforced Concrete Deck – Cracking (RC and Other). Photos obtained from the AASHTO Bridge Reference 

Manual. 
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General Observations on the Interface 

A majority of the interface is operated via button clicks, a simple AR interaction which is 

intuitive and requires virtually no experience to learn. Creating and moving objects in 3D is 

slightly more difficult and requires practice. However, we have observed that the learning curve 

is shallow, and most novice users become proficient in less than an hour. The manipulation of 

objects can be affected by the aforementioned issues in the hand tracking or spatial mapping, but 

these are not considered interface issues per se, but rather hardware and operation issues. 

 

One practical limitation of AR interfaces in general is the typing of text and/or numbers 

using a virtual keyboard. This can be cumbersome and slow to execute. In our interface, this is 

not considered a major obstacle since number pads could be replaced with sliders and keyboards 

with speech to text, limiting the need for direct text/number entry. 

World Localization and World Persistence 

To test our world localization and world persistence systems we discussed earlier, World 

Locking Tools was implemented into the application and several tests were performed to 

determine its usefulness. Firstly, we traveled to a steel-girder bridge near the Virginia Tech 

campus and placed virtual cubes all around the bridge in conspicuous, easily recalled locations 

and then tested the system's ability to world persist by returning to the same bridge several times 

during the semester where each time the application was started, and the location and type of 

objects was ensured. When we tested the system, it was able to successfully recall 100% of 

virtual objects (correct object and correct location). Figure 27 below shows the red cubes, which 

were our chosen virtual object, to test world persistence and tracking, overlayed onto our test 

bridge near Virginia Tech. 

 

 
Figure 27. Virtual objects at Virginia Tech test bridge used to ensure the persistence of virtual objects in 

the tracking system. 
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In addition to the real-life persistence testing performed at a bridge site, we had 

previously performed a more general tracking error experiment where we walked around the 

Virginia Tech campus (approximately 1,100 ft straight-line distance) using an application 

utilizing the World Locking Tools software system and tested to see the overall tracking error 

incurred over that large distance (Figure 28). Tracking error on an AR headset can manifest itself 

as a virtual object shifting or drifting from its previously placed position. In this test, we placed 

virtual red cubes on specific physical environment places (like a bike rack) and then walked back 

and forth along the 1,100 ft straight-line distance and then returned to each virtual object to see if 

its position had shifted since its initial placement. What we found was that over that 1,100-ft 

path, the objects had shifted, on average, only about 6 in from their original position. This result 

is much better than the standard ±10% error discussed earlier and further proved that World 

Locking Tools was indeed a viable world tracking and persistence tool which could handle 

tracked environments at the general size we required. 

It should be noted that the 6-inch error noted here does not extend to the crack 

measurements as these are fundamentally different processes. World localization is intended for 

use in placing the defect orbs (Figure 16) at the approximate defect location and recalling them 

during subsequent visits. Measurements use the local environment mesh generated by the 

HoloLens 2. Measurement accuracies are discussed in the following two sections. 

 
Figure 28. Test on Virginia Tech campus of the World Locking Tools system to see the average tracking error 

(virtual object drift) incurred over around 1,100 feet of Straight-line headset movement tracking. 
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Computer Vision Development 

Field Architecture 

 

A limitation of the HoloLens 2 headset is that it is optimized for indoor use, so its 

functionality may be reduced in outdoor settings. The research team did not expend significant 

effort trying to improve operation performance, as this is linked primarily to hardware and 

software development within the device. The researchers believe that outdoor performance will 

steadily improve with new hardware releases as the mixed reality outdoor application space 

continues to grow. For completeness, we mention some of observed hardware limitations below. 

 

Some of the features that leverage the headset’s infrared cameras (also referred to as 

long- and short-throw sensors) could be affected by sunlight. This included the hand tracking 

feature, which could sometimes suffer from an offset to the physical hand position. At worst, this 

created an inconvenience, but could be resolved by visualizing the hand-tracking feature, 

allowing the user to adjust for the offset. The current system can run continuously for 1-2 hours, 

depending on outside temperature, which may not be sufficient for a full inspection. This could 

be extended via an external power bank and will likely improve in subsequent HoloLens 

generations. 

 

As the existing hardware could not facilitate direct deployment of ML models, a server-

client data transfer system was employed. This system was tested extensively for data transfer 

speeds and reliability with different distances and environments. In addition to qualitative testing 

at bridges, Figure 29 shows the results of a quantitative data transfer test in and around a 

concrete building on the Virginia Tech campus. The server was set up in an office and a small 

text file was sent to the HoloLens 2 every 1 second. For each transfer, the physical location of 

the HoloLens was recorded as well as the total data transfer time in milliseconds. For Figure 29a, 

the transfer time is plotted against the straight-line distance from the HoloLens 2 to the server. 

Figure 29b shows the physical position of the HoloLens 2 plotted in 3D space as a point cloud, 

where each point is color coded by the transfer time. 
 

 
Figure 29. Data transfer speeds for text files. a) Plotted as transfer time vs distance and b) Plotted spatially 

in 3D with color representing transfer time; red points are failed transfers in stairwells of the building. 
 



   

 

 40 

This experiment showed that the chosen server-client setup could send data with transfer 

times ranging from 100-500 milliseconds for distances up to 525 ft. As this test involved small 

text files, this can be interpreted as the “server response time” or the overhead delay to any data 

transfer. The experiment was repeated for low resolution images of approximately 100 KB and 

showed similar transfer times. Full resolution images of size 3 MB were found to have transfer 

times ranging from 1.8 - 6.6 seconds. For reliability, all transfers outside of the building were 

successful even at the maximum 500 ft range tested. However, inside of the building there were 

clusters of failed transfers in the stairwells, implying that some structural materials may block 

communication. 

 

Projection of Computer Vision Results 

 

When testing existing methods of projecting computer vision results onto physical 

surfaces, we observed translational offsets of approximately 2-4 inches. This level of precision is 

adequate for many computer vision tasks such as attaching labels to detected objects but was 

found to be inadequate for projecting crack annotations. Figure 30a shows an example of the 

precision of existing projection approaches, using a basic blob detection algorithm where the 

centroids of black dots are recognized in the image and projected onto the physical surface as 

green spheres. 

 

Through our novel projection method, we observed translational offsets on the order of 

0.02 in for crack centerline projections, demonstrating the precision of our approach. Figure 30b 

shows the precision for our projection approach using the same blob detection test case with red 

spheres. Figure 31 shows various additional projection results for crack centerlines.  

Figure 30. Precision of projection approaches plotted using a blob detection algorithm for detecting black 

dots on a white background. a) Precision of existing projection approaches, green spheres are the projection 

results and should be centered on the black dots and b) Precision of our projection approach. 

 

Crack Detection and Documentation 

 

One of the motivations for incorporating ML based automation into the field environment 

was to identify and mitigate the variability of these algorithms. Taking a photo from a different 

distance or angle can drastically affect the result, as shown in Figure 32. This is the motivation 

for incorporating inspector collaboration with these algorithms rather than independent 

automation.  
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Figure 31. Precision of our projection result for aligning crack centerlines over various physical cracks. 

Images 1-3 show hairline cracks ranging from 0.02-0.04 inches in width (labeled as 0.5-1 mm), with observed 

offsets of approximately 0.02 inches. Image 4 shows the precision for a larger crack of approximately 0.5 

inches in width. 

 

 
Figure 32. Example of variability in the computer vision crack measurement algorithm. Taking the photo 

from different distances and angles can lead to variable performance due to the underlying ML variability. 

Note that both a) and b) underestimate the affected crack area. 



   

 

 42 

 

The model used in this study takes approximately 0.2 seconds to evaluate an image. Post 

processing of this result takes 1-2 seconds. As previously mentioned, image data transfer was 

found to take 1.8-6.6 seconds based on distance. The final result was returned to the user 

approximately 3-8 seconds after taking the picture (based on distance from server), this included 

data transfer times between the HoloLens 2 and the server, as well as all image processing steps 

on the server. We found this approach to work well for smaller cracks, including hairline cracks 

as small as 0.02 inches when the photo was taken close to the surface. However, the ML model 

struggled to detect very large cracks (0.5 inches and larger), which prevented this approach from 

measuring those cracks accurately. 

User Interaction Experiment 

 The goal of the user interaction experiment was to understand how the use of defect 

documentation automation impacted the inspection performance. We studied both objective and 

subjective data.  Objective data collected included the time spent on each crack documentation 

task and measurements of crack height, width, and thickness. Subjective data encompassed 

perceived workload, assessed through the NASA-Task Load Index (TLX) survey, and system 

usability, measured via the System Usability Scale (SUS). Furthermore, a post-study 

questionnaire was administered, which gathered users' preferred interaction method and free-

form comments on the overall experience. All statistical analysis results can be found in the 

supplementary materials. 

Subjective Results 

For the perceived workload as measured by the NASA TLX (Figure 33), a repeated-

measures ANOVA testing was conducted to assess the impact of the type of interaction method 

on perceived workload. The scores were found to be normally distributed, as determined by 

Shapiro-Wilk's test, and there was homogeneity of variances, as assessed by Levene's test (p = 

0.265). The means and standard deviations for all data are presented in the supplementary 

materials. The repeated-measures ANOVA revealed that the mean perceived workload scores 

differed significantly across the five interaction methods (p = 0.0002). Paired samples t-tests 

were then conducted to compare differences in perceived workload for each interaction method.  

All of the AR interactions were found to have lower mean perceived workload than the Tape 

baseline, however, only the two most automated interactions (CV refines Human and Fully 

Automated) were significantly lower than Tape. In this study, the Bonferroni correction was 

applied to adjust the alpha value used for determining significance in the t-tests. This adjustment 

was made using the formula: 

 

 

(3) 

where α* represents the adjusted threshold. This computation was performed for the five 

interaction methods under consideration, ensuring a more stringent criterion for statistical 

significance. 
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Figure 33. Box plot and associated scatter data of Perceived Workload (TLX) - Diamonds represent lab 

inspector data (not collected for the last two methods), while dots represent student data. Error bars are 

standard deviation. Groups which do not share a letter have statistically significant differences. Groups 

with the § symbol are significantly different from the baseline (Tape). 

Referencing the perceived workload data in Figure 33, the two most automated 

interaction methods (CV refines Human and Fully Automated) were associated with significantly 

lower perceived workloads compared to the use of Tape, indicating a better outcome as lower 

workload scores are preferable. The less automated methods (Manual AR and Human refines 

CV) exhibited mean perceived workloads comparable to the more automated approaches, though 

they were not significantly lower than the Tape baseline (p = 0.015 and p = 0.025, respectively, 

against a threshold of α* = 0.01). This suggests that a larger participant sample might have 

produced significant differences. The inspector data (diamonds in Figure 11) show the opposite 

trend: increased perceived workload with increasing automation, indicating a worse outcome. 

This is to be expected and showcases the inspectors show a bias towards the Tape baseline 

condition due to years of experience using that interaction. 

  

Similar to the analysis for perceived workload, a repeated-measures ANOVA was 

conducted to assess the effect of the interaction method type on system usability (Figure 34). The 

scores were found to be normally distributed, as determined by Shapiro-Wilk's test. However, 

the assumption of homogeneity of variances was not met, as indicated by Levene's test (p = 

0.013). Given the violation of homogeneity of variances, the Greenhouse-Geisser adjustment was 

applied to the repeated-measures ANOVA. This adjustment led to the conclusion that the mean 

system usability scores did not significantly differ across the five interaction methods (p = 0.683, 

p(GG) = 0.596). 
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Figure 34. Box plot and associated scatter data of Perceived Usability (SUS) - Diamonds represent 

inspector data, while dots represent student data. Error bars are standard deviation. All methods share the 

letter “A”, indicating no statistically significant differences.  

Regarding the perceived system usability data presented in Figure 34, all interaction 

methods were deemed similarly usable, with the Manual method scoring slightly higher than the 

others (indicative of better system performance and user satisfaction), albeit not to a statistically 

significant degree (p = 0.596). This outcome is particularly encouraging for AR interactions, 

suggesting that despite common issues such as glare and hand tracking difficulties, the 

convenience offered by AR systems appears to offset these challenges. As with the workload 

data, inspector usability results show a slight decreasing trend (worse outcome) with increasing 

automation. 

 

Last, as part of the post study questionnaire the user's preferred interaction method was 

recorded (Figure 35). A portion of this questionnaire included free-form comments from the 

users; the Manual interaction stands out as the favorite, followed by Human refines CV, then 

Tape. The student users mentioned doubts of the measurement accuracy and complaints of the 

CV refines Human interaction's O-Snap functionality. One lab inspector preferred Tape, while 

the other lab inspector preferred the Manual interaction. The first inspector mentioned that the 

CV was impressive when conditions were cooperative, while the second inspector said the 

system showed a "great deal of potential." Both lab inspectors also mentioned that the CV was 

accurate when it worked, but often would produce failed crack detections. This response aligns 

with our conclusion of needing a "Human in the Loop" for these types of automation as the 

human can correct the result when needed, while the automation can save time and reduce 

workload when correction is unnecessary. 
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Figure 35. Student and inspectors' preferred interaction method. 

 Objective Results 

Completion time was measured in seconds for each individual crack documentation task. 

These times were aggregated across the five tasks for each interaction method. Times were not 

normally distributed as assessed by Shapiro-Wilk's test. After applying a natural log 

transformation to the completion time data, the transformed times were found to be normally 

distributed as assessed by Shapiro-Wilk's test. The transformed times were found to have 

homogeneity of variances as assessed by Levene's test (p = 0.221). A repeated-measures 

ANOVA determined that the mean transformed times differed significantly across the five 

interaction methods (p = 5.4e-06). 

  

A paired samples t-test was performed to compare differences in transformed completion 

time for each interaction method. Manual and Human refines CV did not have significantly 

different times to Tape. CV refines Human and Fully Automated were found to be significantly 

faster than Tape, although CV refines Human was not significantly different than Manual. 

 

For completion time (Figure 36), the less automated interactions (Manual and Human 

refines CV) showed similar completion times to traditional Tape interaction. For the more 

automated interactions (CV refines Human and Fully Automated) both are shown to be 

significantly faster than traditional Tape (p = 0.007 and p = 0.005 respectively). This result is 

expected as both of those interactions required less input from the user; neither required the user 

to measure Crack Width, and Fully Automated only required a photo. Inspector data shows 

slower completion times on average with AR compared to Tape. 
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Figure 36. Box plot and associated scatter data for completion time for each of five cracked regions - 

Diamonds represent inspector data, while dots represent student data. Error bars are standard deviation. 

Groups which do not share a letter have statistically significant differences. Groups with the § symbol are 

significantly different from the baseline (Tape). 

The measurement data collected in this study encompassed the length and height of the 

affected crack region, along with the largest crack width observed within this region. To 

facilitate statistical analysis, the length and height were multiplied to derive an area metric. For 

both the area and crack width datasets, the coefficient of variation was calculated for each 

interaction method, shown in Figure 37. Each data point corresponds to a distinct crack region 

from Figure 8 (five total). The data from these regions were not aggregated at this stage. The 

dataset's small size, with just five crack regions, limits further statistical analysis due to 

insufficient data points. 

  

 
Figure 37. Coefficient of variation for area and crack width measurements. 
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A previous study by Washer et al., (2020) with 40 inspectors assessing the same bridge 

found area measurement variations ranging from as low as 18% to often exceeding 100%. Their 

methodology, requiring inspectors to both locate and measure cracked regions, introduced more 

variability than our approach, which focused solely on measuring predefined regions. As 

depicted in Figure 37, our experiment's variation for area and crack width measurements under 

the Tape condition ranged from 10-40%, aligning closely with the findings of Washer et al., 

(2020), albeit at the lower end. Due to the limited dataset (five regions), a comprehensive 

statistical analysis was not feasible; however, we observed consistent variation across all 

interaction methods for area measurements, except for the Fully Automated condition, which 

exhibited a significantly higher variation, suggesting lesser reliability. Similarly, crack width 

measurements showed consistent variation for Tape, Manual, and Human refines CV methods. 

In contrast, methods automating crack width measurement (CV refines Human and Fully 

Automated) revealed a substantial increase in variation, indicating lower reliability for these 

measurements. Coefficient of variation was not computed for inspector data due to the small 

sample size (two inspectors). 

  

Figure 38 illustrates the dataset analyzed for area error relative to users' Tape (self error), 

which demonstrated a normal distribution according to Shapiro-Wilk's test, although Levene's 

test indicated a variance homogeneity violation (p = 0.001). The Friedman rank sum test 

demonstrated significant discrepancies in mean area errors across five interaction methods (p = 

2.3e-08), with the Wilcoxon signed rank test identifying a notable difference between the Fully 

Automated interaction and other methods. No significant variances were observed among 

Manual, Human refines CV, or CV refines Human interactions.  

  

 
Figure 38. Crack Area Error relative to users' Tape - Diamonds represent inspector data, while dots 

represent student data. Error bars are standard deviation. Groups which do not share a letter have 

statistically significant differences.  

 

Similarly, for area error relative to ground truth (Figure 39), normal distribution was 

confirmed, alongside a variance homogeneity violation (p value = 0.015). The Friedman test 

highlighted significant mean area error differences across interaction methods (p = 4.29e-09), 
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with the Wilcoxon test pinpointing a significant discrepancy between the Fully Automated 

interaction and others, including Tape. No notable differences were detected among Tape, 

Manual, Human refines CV, or CV refines Human interactions. 

  
Figure 39. Crack Area Error relative to ground truth - Diamonds represent inspector data, while dots 

represent student data. Error bars are standard deviation. Groups which do not share a letter have 

statistically significant differences. Groups with the § symbol are significantly different from the baseline 

(Tape). 

Figure 40 illustrates the dataset analyzed for crack width error relative to user's Tape, 

which revealed a normal distribution, confirmed by Shapiro-Wilk's test, as well as homogeneity 

of variances by Levene's test (p value = 0.942). A repeated measures ANOVA showed 

significant differences in mean crack width error relative to users' Tape (p = 3.15e-11), with 

Pairwise T-test revealing significant differences between the CV refines Human and Fully 

Automated interactions compared to Manual and Human refines CV interactions. 

  
Figure 40. Crack Width Error relative to users' self Tape - Diamonds represent inspector data, while dots 

represent student data. Error bars are standard deviation. Groups which do not share a letter have 

statistically significant differences.  
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For crack width error relative to ground truth (Figure 41), the Shapiro-Wilk's test 

indicated a violation of normality (p = 3.57e-07), while homogeneity of variance was confirmed 

by Levene's test. The Friedman rank sum test demonstrated significant discrepancies in mean 

crack width errors across the five interaction methods (p = 4.71e-36), with the Wilcoxon signed 

rank test identifying larger mean crack width error between CV refines Human and Fully 

Automated conditions as compared to all other interactions. Additionally, Manual and Human 

refines CV were found to have significantly more error than Tape, but less error than CV refines 

Human and Fully Automated interactions. It should be noted that crack width error is 

exaggerated in these results since some cracks were extreme, as wide as 3 inches. 

  

 
Figure 41. Crack Width Error relative to ground truth - Diamonds represent inspector data, while dots 

represent student data. Error bars are standard deviation. Groups which do not share a letter have 

statistically significant differences. Groups with the § symbol are significantly different from the baseline 

(Tape). 

For the area and crack width error metrics, we observed similar trends between the errors 

relative to the user's own Tape and those relative to ground truth. This suggests that the user's 

inexperience with crack documentation tasks did not significantly impact the experiment's 

results. The discussion will henceforth focus on the error relative to ground truth data results, 

enabling comparison with the baseline Tape condition. In line with the trends seen in the 

coefficient of variation data, area error relative to ground truth did not significantly differ among 

interaction methods, except for the Fully Automated interaction, which was associated with 

significantly more area error. Specifically, the Fully Automated condition had a mean area error 

of approximately 2.5 ft² below ground truth, representing an unconservative underestimation. 

This finding indicates that AR area measurements can effectively substitute for a physical Tape 

measure and can be partially automated without a significant increase in error. Conversely, 

measurements of crack width showed an increase in error for Manual and Human refines CV 

interactions (~0.2 inches additional mean error compared to Tape) while the CV refines Human 

and Fully Automated showed a larger increase in error (~0.8 inches additional mean error 

compared to Tape). Both of these results represent crack widths smaller than the actual width, 
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which is an unconservative result. This suggests a discrepancy in participants' visual 

interpretation of a holographic sphere for crack width measurement tasks, indicating that this 

measurement should continue to use the physical crack comparator for optimal accuracy. 

Inspector data shows similar trends to student data for area and crack width error metrics, once 

again implying that the student user's lack of inspection experience did not significantly affect 

the error metric results.  

 

The large variation in crack width error in both CV refines Human and CV only 

interaction techniques were driven largely by the practical limitations of the implemented CV 

algorithm in the experimental conditions. In particular, the crack detection portion of the 

algorithm struggled to detect both thin and thick cracks at the extremes, leading to generally 

shorter crack outlines. This was influenced by distance to the crack: smaller cracks would be 

more likely detected by taking a close-up photo, whereas large cracks would be more likely 

detected by taking a photo further away. This is a known problem with crack detection 

algorithms, as they generally work best for cracks within a certain range of pixel widths. If a 

crack was detected, however, the measured crack widths via our custom approach were generally 

not sensitive to distance from the crack. Large crack width measurement errors would occur 

when the ground truth maximum crack width was not detected by the algorithm.  

Qualitative Field Validation 

Observations 

 

For the bridge subjected to this field test, only one section exhibited cracking within 

arm’s reach, located on the inner side of a concrete bridge girder. The area under the bridge was 

poorly lit, necessitating the use of a flashlight to view the crack, which could only illuminate a 

small portion of the crack at any given time. Consequently, the CV could only identify the 

illuminated portion of the crack. A broader light source was recognized as necessary for utilizing 

this feature under similar conditions. 

 

The simulated field inspection found that each crack documentation took 2-3 minutes per 

inspector; however, this duration included delays due to various minor interface bugs. Given that 

the training time was short, approximately 15 minutes per inspector, it is reasonable to expect 

that this time would decrease with extended training and experience. 

  

Inspectors found the interface to be intuitive and easy to learn, reporting no safety 

concerns and appreciating the hands-free nature as safer compared to traditional tablet 

workflows. The inclusion of condition state example definitions and photos was well-received, 

with inspectors highlighting their potential benefits for junior inspectors. While the button 

activation generally functioned well, a preference was expressed for interface elements to be 

positioned closer to the user and off to the side. Hand tracking exhibited occasional issues near 

bridge surfaces. The HoloLens 2 device caused reflections on the lenses from areas behind the 

user, akin to a welding mask, which were sometimes distracting. One inspector, having 
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undergone hand surgery, had trouble performing the “flat palm” gesture required for adjusting 

the virtual menus. 

  

One inspector suggested incorporating functionality seen in their tablet application, 

which displays the difference between measurements from previous inspections and the current 

one, into the AR inspection tool. Additionally, the ability to dynamically customize font and 

window sizes was identified to better accommodate inspectors with reduced eyesight. The need 

for a feature to delete defects, whether mistakenly created or remediated, was emphasized for 

future versions, along with the request for a virtual Tape measurer. 

  

Potential future applications of this type of bridge inspection tool were identified, 

including scour area and riverbed profile measurements. The documentation of warping 

measurements on steel elements subjected to impact damage, requiring six-foot measurements, 

was noted as a task that would be significantly facilitated by the 3D sensing capabilities of the 

AR device. Moreover, the ability to place points in AR to mark sound/unsound locations was 

suggested as a helpful feature for documenting delaminated regions identified through concrete 

sounding. 

 

Cost Benefit Analysis 

 

As of 2024, a hard-hat integrated HoloLens 2 head set costs roughly $5,000. For 

automation integration, an additional $2,000 would be required to purchase a laptop computer 

and Wi-Fi router to run the machine learning models. 

 

The cost of training is likely to equal up to 3 hours of personnel time, depending on 

familiarity with mixed reality devices. During user experience testing, which took 2-3 hours per 

participant, it was observed that novice user proficiency increased substantially over this time 

period.  

 

The cost of storage per bridge is largely dependent on the amount of data desired. 

Assuming 100 documented defects per bridge, with each defect having 3 MB of associated 

images and documentation, each bridge will generate roughly 0.3 GB of data per inspection. 

Assuming cloud storage at $2 per month per 100 GB, this results in approximately $0.07 per year 

per inspection. This would compound roughly every two years as inspections are repeated. 

 

The speed of use of the system was not significantly different from the use of a traditional 

measuring tape. However, significant time savings are expected in the office regarding report 

generation and quality assurance. In this regard, we estimate that the system could save 

approximately one hour per inspection. 

 

The added value of data is difficult to estimate at this point in the research and would 

require trial implementations for real-life use cases. Thus, for now this is not considered, but it 

will certainly be positive considering the added granularity that the HoloLens 2 data provides. 

 

Taking these conservative estimates into account and assuming that 1 personnel hour 

equals $30 (factoring in salary, travel, etc.), it would take approximately 240 bridge inspections 
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to break even with the initial investment for one system. This is less than a year’s worth of 

inspections, factoring in only one hour saved per inspection. If additional efficiencies and added 

value can be identified, the break-even number of inspections could decrease dramatically. 

 

CONCLUSIONS 

 

AR interface design 

 

1. Menu-based data entry via an AR interface was an effective and intuitive way to record 

inspection information in a digital format. The interface was reviewed  in the field by a 

team of three inspectors, who agreed that it conformed well to the AASHTO reporting 

requirements and that it was easier to navigate than the current InspectX system. 

(Objective 1.1, 1.2) 

 

2. A majority of issues with AR operation were related to hardware limitations in outdoor 

settings, like poor hand-tracking and sensor saturation. These should be carefully 

considered but should become less burdensome as the technology matures. (Objective 

1.1, 1.2) 

 

3. AR-based manual length and height measurements were effective, although slightly less 

accurate than physical tape measurements; width measurements using a variable-width 

spheres were not user-friendly and decreased accuracy, thus are not recommended. 

(Objective 1.3) 

 

World Localization 

 

1. The HoloLens 2 world mapping tools can be leveraged to project computer vision results 

onto the physical space with sub-millimeter precision. This allows precise overlaying of 

crack segmentation outlines, measurements, and area bounds. (Objective 2.1) 

 

2. The position of an annotation will drift as the user moves about the physical space, the 

larger the space, the larger the drift. This can be mitigated through the use of World 

Locking Tools to less than a 6-inch deviation over 1,100 ft. Practically, this means that if 

an inspector leaves a defect location and comes back (either in the same or subsequent 

inspection), the annotations could have shifted by a few inches. This is not a concern for 

marking the general defect location but could impact the accuracy of historical overlays. 

The latter case could be addressed by a computer vision-based correction when new 

annotations are generated. (Objective 2.2) 

 

Automated Defect Annotations 

 

1. The current AR prototype supports real-time projection of CV results in the field via a 

laptop server with GPU and local Wi-Fi network (router or hotspot). The hardware 

requirements are necessary to avoid the limitations of running ML models on the 

HoloLens 2 platform. (Objective 3.1) 
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2. The current AR prototype will support automated virtual crack length and height 

measurements, but requires occasional manual intervention for best results. In particular, 

the automated crack detection algorithm can miss the extremes of a crack, generally 

leading to underestimation. (Objective 3.1) 

 

3. The current AR prototype will support automated virtual crack width measurements, 

however inconsistent results lead us to recommend a manual approach. Crack width 

measurements require both crack detection and edge detection, making them more 

sensitive to lighting conditions and other sources of noise. Errors tended to be sporadic in 

nature (either very accurate or completely off). Nevertheless, the method developed in 

this research is one of the first demonstrations of crack width measurements in true field 

conditions (versus simply crack detection). Further research is required to drive this 

capability forward. (Objective 3.1) 

 

4. For novice users, all AR techniques reduced the perceived workload to traditional tape 

measurements and were generally preferred. The opposite was true for inspectors who 

perceived a higher workload with AR and preferred the tape interaction more. Due to the 

inspectors’ existing familiarity with the tape measure method, this result confirms that 

training and experience play a large role in preference and cognitive load. Taking the 

novice users as an unbiased case (no experience in either), the research suggests that AR 

has the potential to alleviate the cognitive load of inspection tasks. (Objectives 3.2, 3.3) 

 

5. With respect to time and accuracy, experienced inspectors were better than novice users 

using traditional techniques, but similar using the AR-based techniques. Again, this 

suggests that experience is an important factor in quantifying efficiency gains. The 

performance metrics recorded in this work are the result of approximately 30 minutes of 

AR training, so it is expected that there is large room for improvement. (Objective 3.2, 

3.3) 

 

6. High levels of automation could speed up documentation tasks by about 20% but in their 

current state incur unacceptable levels of error. Improvements will require additional 

research into more robust computer vision, which was not a primary goal of this research. 

(Objective 3.2, 3.3) 

 

RECOMMENDATIONS 

 

1. Refinement of AR interactions and hardware architecture/setup for remote field use. We 

recommend that VTRC should work with a select group of VDOT inspectors to fine-tune 

both the data entry interface format and the hardware architecture required for running AI 

assistance tools. The former should focus on further user experience studies with a 

broader inspector base and involve adjustments and improvements to the existing 

interface. The latter should focus on trialing hardware solutions that would require 
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minimal setup time: ideally by turning on a small, networked PC server housed inside a 

work vehicle and walking to the bridge site with only the AR headset on.  

 

2. Develop a set of standards and procedures for exporting inspection data, streamlining 

report generation, and integrating with existing software (InspectX, AASHTOWare 

Bridge, or others). This recommendation focuses on extending the AR-based workflow 

to the office to explore its potential as an end-to-end solution. This work would leverage 

the already-developed hierarchical data structure to facilitate ease of integration with 

reporting systems. As in the previous recommendation, we suggest that VTRC work with 

a select group of VDOT stakeholders to validate the entire inspection to report workflow 

and assess potential time savings. 

 

3. Expand the scope of automated defect annotations to include corrosion, section loss, 

spalling, delamination, and others. This recommendation is aimed at broadening the 

scope of AR-enabled tasks to demonstrate AR’s potential as a complete bridge inspection 

tool. This would entail further research into state-of-the-art defect detection algorithms as 

well as custom development of measurement extraction approaches like the one 

developed in this work for crack area and width extraction. Additional research could 

focus on optimizing these algorithms for accuracy in variable field conditions. 

IMPLEMENTATION AND BENEFITS 

 

Researchers and the technical review panel (listed in the Acknowledgements) for the 

project collaborate to craft a plan to implement the study recommendations and to determine the 

benefits of doing so. This is to ensure that the implementation plan is developed and approved 

with the participation and support of those involved with VDOT operations. The implementation 

plan and the accompanying benefits are provided here. 

Implementation 

With regards to Recommendation 1, the Structure and Bridge Division does not believe 

that an augmented reality platform is sufficiently ready for bridge safety inspections in real-

world conditions. Furthermore, the results of this research pertain to a single proprietary system. 

However, the Division sees the potential for further refining the hardware architecture and safety 

inspectors’ interactions with a non-proprietary augmented reality system to support the full range 

of data collection following the Nation Bridge Inspection Standards and referencing relevant 

VDOT libraries containing archival reports and plan sets. Because these functionalities are 

inherently specific to VDOT, the Division feels that additional development is required for a 

platform that focuses on VDOT’s Structure and Bridge Division’s specific needs. Thus, this 

topic will be presented at the next Bridge Research Advisory Committee meeting where research 

priorities are considered for funding.   

 

Regarding Recommendation 2, the Structure and Bridge Division certainly sees the need 

to incorporate the complete set of required inspection data gathered using generic augmented 
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reality (AR) and artificial intelligence (AI) tools into standard bridge safety inspection reports. 

However, full integration of this novel data collection into the Structure and Bridge Division’s 

data system (such as InspectX) cannot take place until the results of Recommendation 1 are fully 

implemented. Prior to this integration phase, the focus should be on understanding and 

addressing the hardware requirements necessary to create a local network for the AR device 

(headset). This includes coordination with the Virginia Information Technology Agency (VITA) 

and VDOT’s Information Technology Division (ITD) concerning the procurement, deployment, 

storage, and management of essential equipment such as computers, virtual headsets, routers, or 

other network devices needed for field setups. A better understanding of the hardware and 

security requirements is vital to ensure the setup can be standardized for use by multiple teams 

across all districts in Virginia. Additionally, because this project only considered one virtual 

platform, there needs to be an exploration of non-proprietary options that cater to the Structure 

and Bridge Division’s specific safety inspection needs. Assigning inspection teams to test 

hardware functionality will be part of this process. Thus, this topic will be presented at the next 

Bridge Research Advisory Committee meeting where research priorities are considered for 

funding.   

 

Similarly, implementing Recommendation 3 is not feasible until Recommendations 1 and 

2 are implemented. Thus, the Structure and Bridge Division will not act on Recommendation 3 at 

this time. However, the Division does recognize that many more structural defect assessment 

capabilities need to be incorporated into the augmented reality / artificial intelligence platform in 

order to cover the range of scenarios bridge safety inspectors come across on a typical basis. 

Thus, the Division will encourage academia and the industry to expand capabilities with defect 

recognition and quantification so that VDOT can consider including them in a future inspection 

platform. Provided this future development and successful implementation stemming from 

Recommendations 1 and 2, the Structure and Bridge Division will support additional evaluation 

of the newly available technology compared with VDOT’s inspection needs.  

Benefits 

While there are no immediate benefits to be gained from implementing the results of this 

particular research, this project has shown promise for the development of tools in the future that 

could improve the process by which VDOT conducts its bridge safety program, by way of: 

• decreased duration of individual inspections, and thus improved safety for inspectors as 

well as less disruptions to the traveling public 

• increased accuracy of the data collected during the inspections; 

• improved deterioration tracking over time; 

• automated inspection report generation; 

• automated integration of inspection data with bridge management software. 

 

Further developments of the AR and AI technology within the industry will help to actualize 

these benefits. 
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