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ABSTRACT 

Safety Service Patrols (SSPs) provide motorists with assistance free of charge on most 

freeways and some key primary roads in Virginia. This research project is focused on developing 

a tool to help the Virginia Department of Transportation (VDOT) optimize SSP routes and 

schedules (hereafter called SSP-OPT). The computational tool, SSP-OPT, takes readily available 

data (e.g., corridor and segment lengths, turnaround points, average annual daily traffic) and 

outputs potential SSP configurations that meet the desired criteria and produce the best possible 

performance metrics for a given corridor. At a high level, the main components of the developed 

tool include capabilities to: a) generate alternative feasible SSP beat configurations for a 

corridor; b) predict incidents and SSP characteristics (e.g., incident frequency, SSP service time) 

for a given SSP beat configuration; c) estimate performance measures (e.g., SSP response time, 

number of incidents responded to); and d) identify and present the best SSP configuration(s) 

through visual aids that facilitate decision making.  

To generate the incident data needed for the simulation-based SSP-OPT tool, a 

hierarchical negative binomial model and a hierarchical Weibull model are developed for 

incident frequencies and incident durations, respectively, based on the historical incident data. 

These models have been found to be effective in simulating the spatiotemporal distribution of 

incidents along highway corridors and for generating their attribute data (e.g., incident type, 

duration). The simulation program employs a discrete event-based approach and requires a few 

calibration parameters (e.g., SSP vehicle speed). After calibrating the model, the validation 

results show good agreement with field observations when applied to a sample SSP corridor 

from I-95. A user interface is created for the SSP-OPT tool in MS Excel to facilitate data entry 

and visualization of the output metrics for a given corridor. The output includes the list of 

alternative feasible beat configurations and aggregated performance measures from multiple runs 

for each individual beat, as well as for each alternative beat configuration spanning the entire 

corridor. The proposed SSP optimization model could be applied to corridors with or without 

existing SSP service. The tool will help identify the best beat configurations to minimize SSP 

response times and maximize SSP response rates for a given number of SSP vehicles on a 

corridor. Implementing these optimal solutions in the field will result in travel time savings and 

improve highway safety since the SSP resources will be more efficiently utilized, thus reducing 

the impacts of incidents on traffic flow. 
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INTRODUCTION 

Safety Service Patrol (SSP) programs are increasingly popular for highway safety and 

incident management on heavily traveled corridors. They provide essential incident management 

functions including detecting, verifying, and clearing incidents as well as helping stranded 

motorists on the freeways. Traffic incidents account for more than fifty percent of the non-

recurring traffic delay in urban areas and for almost all delay incurred in rural areas.1 Incidents of 

various types that occur on freeways include, but are not limited to: disabled vehicles, debris on 

the roadway, spilled loads, vehicle crashes, obstruction to traffic, dead animals, and other 

potential hazards.2 Rapid removal of incidents from the freeways reduces delays, improves 

safety, protects the lives of travelers, and restores the performance of the transportation network 

quickly. Therefore, SSP programs are essential for the safety and efficiency of transportation 

systems. 

To realize the full benefits of SSP programs, they need to be carefully designed, with 

consideration given to multiple factors, and methodically optimized. Traffic and network 

conditions change, so they also must be dynamically managed and structurally planned, inter-

jurisdictional and multidisciplinary, and relevant performance metrics need to be documented.3 
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An incident management program generally consists of seven steps including detection, 

verification, response, site management, traffic management, clearance, and recovery.4 The core 

services and benefits of SSPs include detecting incidents disrupting traffic, reducing incident 

duration, clearing obstructions, setting temporary traffic control for emergency responders, and 

other types of assistance functions that improve traffic operations and safety. The longer the 

incident lasts, the worse its impact on traffic. The total incident duration has various components 

including detection time, verification time, response time, clearance time, and recovery time.5 

SSP programs are designed to reduce these component times (especially detection and response 

times) so overall incident-induced delays are minimized.  

The operational and safety benefits of SSPs have been studied and documented by many 

states, including Virginia. In 2006 and 2007, two studies conducted by Virginia Transportation 

Research Council6, 7 showed the core functions of SSPs in urban and rural areas and their direct 

and indirect benefit-to-cost ratios. SSP deployment planning tools were also developed in those 

studies. Given the limited resources available to state Departments of Transportation, the 

continuing growth of traffic on major routes, and changes in roadway conditions, a more robust 

and dynamic optimization tool is needed to ensure optimal allocation of SSP resources when 

making deployment decisions. Such an optimization tool would aim to maximize benefit-to-cost 

ratios, efficiency, and the return on investment.  

Tackling SSP design problems requires dealing with three major considerations. The first 

step is beat configuration, in which the patrolled corridor is divided into segments, with each 

referred to as a beat. A freeway network is segmented into links, and each link is assigned to at 

least one beat. The second consideration is the fleet size constraint, which determines the optimal 

number of trucks required to fully cover the network, taking into account the costs associated 

with additional trucks. Finally, truck allocation decisions are made based on how best to assign 

SSP trucks to beats to minimize the overall delay caused by incidents. In most cases, one truck is 

assigned to each beat.  

This study aimed to develop a tool, hereafter referred to as SSP-OPT, to assist the 

Virginia Department of Transportation (VDOT) with optimizing SSP routes and schedules. The 

computational tool SSP-OPT will process readily available data (e.g., corridor and segment 

lengths, turnaround points, and Annual Average Daily Traffic (AADT); and will output potential 

SSP configurations that meet a set of desired criteria to produce the best possible performance 

metrics for a given corridor.  

 

PURPOSE AND SCOPE 

 

The primary objective of this research was to develop a methodology and a tool for 

optimizing the VDOT SSP routes, schedules, and vehicles needed to service a given freeway 

corridor. The methodology incorporates various decision variables and parameters to 

accommodate the complexities in real-world deployments. More specifically, the research study 

had the following objectives: 
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• Review and document the current state of the practice by other states and their 

implementation of SSP optimization procedures. 
• Identify and specify the functional requirements for the SSP-OPT tool in terms of its 

objectives (performance measures or targets), decision variables (e.g., required 

resources, beat lengths), constraints (e.g., resource limitations, weekday vs. weekend 

operations), and model outputs (e.g., SSP routes, performance metrics).  
• Develop an optimization framework that accounts for all factors identified and a 

computationally efficient method to perform the optimization process.  
• Create an optimization tool for VDOT staff to execute the SSP deployment 

optimization methods and determine the most feasible solutions to a given scenario.  
• Validate and test the SSP-OPT tool by conducting sample analyses for selected 

corridors under various operating conditions.  
• Document the steps required to execute the SSP-OPT tool in a reference manual for 

VDOT users. 

 

The spatial scale for this project is defined at the corridor level. Therefore, optimizing 

SSP routes at a regional or state level is beyond the scope of this project. However, the tool 

developed in this research is considered flexible and incorporates multiple factors, including 

traffic characteristics, historical incident patterns, network coverage, response times, rural vs. 

urban setting, and available turn-around points. These factors and other considerations and 

constraints are incorporated into the SSP-OPT tool as appropriate by allowing the user modify 

input parameters for the scenarios. The prediction models supporting the tool are built based on 

the historical incident and SSP data provided by VDOT. The tool is designed to support the 

overall route planning for SSP services and does not include uncommon operational practices 

including overlapping SSP routes and multiple vehicles within one beat.  The majority of SSP 

routes in the state have one SSP vehicle per beat.  

 

 

METHODS 

 

Overview  

 

The following tasks were conducted to achieve the study objectives: 

  

1. Literature review 

2. Data collection 

3. Development of methods for incident frequency and duration prediction  

4. Development of algorithms for simulating SSP operations  

5. Model calibration and validation 

6. Programming the SSP-OPT tool (Figure 1) and creating a user interface. 
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Figure 1. Key Components of the SSP-OPT Tool.  SSP = Safety Service Patrol, AADT = Annual Average 

Daily Traffic, VDOT = Virginia Department of Transportation 

 

The core component of the methodology is a discrete event-based simulation model for 

capturing the daily operations of an SSP vehicle within a beat. The simulation-based approach 

captures detailed performance data and complex dependencies. Figure 1 shows the main 

elements of the SSP-OPT program, which allows the user to specify the parameters needed to 

define the corridor, settings, and desired criteria. In addition, the model takes in calibrated 

statistical models for generating incident data consistent with historical incident profiles for the 

defined corridor. The simulation module includes the necessary algorithms to generate feasible 

beats, generate incident data, and simulate SSP vehicle operations. Output from the model 

includes key performance metrics, such as response time, rate, and the best beat configuration(s).  

Following the literature review, subsequent sections describe these model components, 

beginning with the incident frequency and duration models. Next, the details of the SSP 

simulation model are presented, along with how specific performance measures are computed 

and aggregated.  

Literature Review 

The research team conducted a literature review that included a survey of existing 

methods for estimating incident frequency and duration and SSP route planning and 

optimization. There is large body of academic papers on incident modeling. The literature review 

helped identify the main factors typically used in incident frequency and duration modeling, as 

well as appropriate state-of-the-art techniques for generating reliable predictions from the 

available data. For SSP beat design and planning, the available literature is reviewed to identify 

the key considerations and optimization approaches. The literature review was conducted using 

multiple online databases of academic articles, conference proceedings, and reports.  
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Data Collection 

To create the SSP-OPT tool, field data are needed for model development, validation, and 

testing. The incident data in Virginia are collected through two traffic incident management 

systems: the Advanced Transportation Management System (ATMS) and the statewide Virginia 

Traffic System (VATraffic). Only ATMS provides detailed information about the SSP and other 

agents (e.g., Virginia state police) responding to each incident. This level of information is 

needed to obtain the on-scene time for each responding agent. The on-scene time is needed to 

identify and calculate incident durations (i.e., response time and service time for the SSP) for 

each incident. Only VATraffic data have the longitude and latitude for each incident, which is 

essential to geocode incidents on road segments and model incident frequencies. In addition, this 

study uses three-year (2017-2019) incident data to model incident frequencies and durations to 

avoid any potential impact of COVID-19 pandemic on the typical traffic patterns. Furthermore, 

the three-year traffic volume information was also obtained from VDOT.8 

 

Incident Frequency Modeling 

There are a variety of alternative incident frequency modeling approaches, including 

Poisson, negative binomial, and their zero-inflated versions. For this project, the negative 

binomial (NB) and the hierarchical negative binomial (HNB) are selected because they are found 

to be effective in addressing overdispersion issues in data and spatial heterogeneity. If sufficient 

historical data are available, sampling from such data could also be performed to predict 

frequencies for desired time periods. However, for such predictions to be reliable, the temporal 

variations in factors contributing to incident frequencies, such as traffic volumes, need to remain 

stable over time. This is typically not the case, as traffic volumes fluctuate over the years. 

Therefore, the historical incident frequency (HIF) method is not used in the SSP-OPT tool for 

generating incidents but is used as a benchmark for comparing the results from NB and HNB 

models.  

To fit the NB and HNB models to the incident data, contributing factors (explanatory 

variables) need to be identified. Traffic volumes and road lengths are two commonly used 

contributing factors in incident frequency modeling in practice. In addition, for the HNB model 

group identifiers need be determined to account for the spatial heterogeneity of incident 

frequencies among different road segments. As explained in the Results section, route names and 

VDOT district names are utilized to create these groups.  

Figure 2 shows the distributions of incident counts and two explanatory variables (i.e., 

AADT, road length), collected at the AADT road segment level in 2017-2019. The plots suggest 

the AADT and road length are skewed, and, therefore, the two explanatory variables are log-

transformed in developing the incident frequency models. In addition, the response variable for 

the models is the annual incident frequency for each segment. Figure 2 also reveals the 

overdispersion issues on incident frequencies due to a large number of zero-incident 

observations. The NB model is suitable for addressing the overdispersion issue observed in this 

data.  
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Figure 2. Distributions of Annual Average Daily Traffic (AADT), Road Segment Length, and Incident 

Frequency  

To formally define the methods utilized in the report, let 𝑦𝑖𝑗,𝑡 denote the observed 

incident frequency for road segment 𝑖 (𝑖 = 1,2,3, … , 𝑛), group identifier 𝑗(𝑗 = 1,2,3, … , 𝑚) and 

year 𝑡 (𝑡 = 2017, 2018, 𝑎𝑛𝑑 2019). Let 𝜆𝑖𝑗,𝑡 denote the corresponding expected incident 

frequency.  

(1) HIF Method 

The HIF method assumes that incident frequencies in the current year 𝑦𝑖𝑗,𝑡  are equal to 

those in the last year 𝑦𝑖𝑗,𝑡−1 (Eq. 1). The main assumption of the HIF approach is that the 

contributing factors and incident occurrence patterns do not change over time.  

𝑦𝑖𝑗,𝑡 = 𝑦𝑖𝑗,𝑡−1 [Eq. 1] 
(2) NB Method 

For the NB models, the observed incident frequency for road segment 𝑖 and year 𝑡, is 

given by 𝑦𝑖,𝑡~𝑁𝐵(𝜆𝑖,𝑡), where NB(.) represents the negative binomial distribution function.  

(3) HNB Method 
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For the HNB model, the probability of observing incident frequency 𝑦𝑖𝑗,𝑡 is given by Eq. 

2:  

𝑃(𝑦𝑖𝑗,𝑡|𝜆𝑖𝑗,𝑡) =
𝑒−𝜆𝑖𝑗,𝑡𝜆𝑖𝑗,𝑡

𝑦𝑖𝑗,𝑡

𝑦𝑖𝑗,𝑡!
[Eq. 2] 

The Poisson parameters 𝜆𝑖𝑗,𝑡 could be specified by a series of explanatory variables, 𝐴𝐴𝐷𝑇𝑖𝑗,𝑡, 

𝑅𝑜𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ𝑖𝑗, and the group identifiers 𝑗 as shown in Eq. 3: 

ln(𝜆𝑖𝑗,𝑡) = 𝛽0𝑗 + 𝛽1𝑗 ln(𝐴𝐴𝐷𝑇𝑖𝑗,𝑡) + 𝛽2𝑗 ln(𝑅𝑜𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ𝑖𝑗) + 𝜀𝑖𝑗,𝑡 [Eq. 3] 

where exp (𝜀𝑖𝑗,𝑡) is assumed to be gamma-distributed with a mean equal to 1 and a variance 

equal to 𝛼2. 𝛽0𝑗 = 𝛾00 + 𝜀0𝑗 , 𝜀0𝑗~𝑁(0, 𝜎0
2); 𝛽1𝑗 = 𝛾10 + 𝜀1𝑗, 𝜀1𝑗~𝑁(0, 𝜎1

2); 𝛽2𝑗 = 𝛾20 +

𝜀2𝑗 , 𝜀0𝑗~𝑁(0, 𝜎2
2). 

 The model parameters are found by fitting these models to the incident data from 

VaTraffic system by using glmmTMB package in the statistical programming language R.9  

 

Incident Duration Model 

Hazard-based duration models and hierarchical hazard-based models are used for incident 

duration prediction in this study. To be more specific, the estimation of incident duration could 

be regarded as the continuous survival time 𝑇 of incidents following Weibull distributions. Let 

𝐹(𝑡) denote the cumulative distribution of survival time 𝑇 and 𝑓(𝑡) be the corresponding 

probability density function. Thus, the survival function 𝑆(𝑡) is the probability of observing an 

incident duration longer than the survival time 𝑡 as shown in Eq. 4: 

𝐹(𝑡) = 1 − 𝑆(𝑡) [Eq. 4] 

The hazard function ℎ(𝑡) is defined by Eq. 5 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
= 𝜆𝑝(𝜆𝑡)𝑝−1 [Eq. 5] 

where 𝜆 and 𝑝 are the location and the scale parameters for the Weibull distribution, 

respectively. The log-transformed survival time 𝑡 is specified by the linear combination of 

explanatory variables. 

To develop the hierarchical hazard-based models, this study assumes that the parameter 

for each explanatory variable varies across the group identifiers, thus capturing unobserved 

heterogeneity of SSP service time. 

The response variable is the service time for an incident responded to by an SSP vehicle. 

The explanatory variables include incident type, time of day (AM: 7 AM-9 AM, MD: 9 AM-

3PM, PM: 3 PM-7 PM, and NT: 7 PM-7 AM), season, and the group identifiers (defined based 
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on route names and VDOT district names). The model parameters are found by fitting these 

models to the observed field data by using INLA package in the statistical programming 

language R.10 

 

SSP Simulation Model 

The main components of the SSP-OPT tool (displayed in Figure 1) are explained below.  

Alternative SSP Configuration Generation 

For a given corridor consisting of multiple segments, there may be numerous ways to 

design the SSP routes and to schedule vehicles. For example, assume a corridor of 25 miles 

needs to be partitioned into nonoverlapping beats (the term ‘beat’ refers to an SSP route), each to 

be served by one SSP vehicle, and there is a turnaround point at each milepost. Without 

imposing a lower or upper bound on beat lengths, there are 16,777,216 unique ways to partition 

this corridor. The majority of these include beats that are just one or two miles long. If beats 

shorter than four miles are eliminated, we will be left with only 476 possible beat configurations. 

This example shows that the problem size can be reduced dramatically once unrealistic scenarios 

are eliminated. This section describes how all feasible beat configurations are generated for the 

simulation as input. Once performance metrics are computed for all these feasible SSP beat 

configurations, the best or optimum configurations can then be identified. 

All beat configurations are based on the turnaround points or interchange mileposts. Once 

the start milepost and end milepost are selected for the corridor to be optimized, all possible beat 

configurations are generated by grouping the interchanges between the start and end points based 

on the milepost information. In this project, interchanges where the SSP vehicle can make a U-

turn are considered as turnaround points. For example, if there are N interchanges in the corridor, 

the number of intermediate interchanges between the start and end points are N-2, and the total 

possible beat configurations can be computed by the combination formula given in Eq. 6 where 

𝐾 is the total number of beat configurations, 𝑀 is the maximum number of beats selected for this 

corridor, n is the number of intermediate interchanges defining the boundaries of the beats, and 

𝑁 is the total number of interchanges. 

𝐾 = ∑ (
𝑁 − 2

𝑛
)

𝑀−1

𝑛=1

[Eq . 6] 

Figure 3 shows examples where different beat configurations are generated for the 

corridor with two or three beats. In the simulation program, the total possible beats are generated 

by Eq. 6 and infeasible ones (those shorter or longer than thresholds defined by the user) are 

eliminated so that the problem size is manageable.  
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Figure 3. Sample Beat Configurations  

Incident Generation 

Incidents and their characteristics, such as location, occurrence time, and type, are needed 

as input for the simulation model. The first step is to estimate the total count of incidents for each 

segment making up the corridor being analyzed. This is accomplished by using a Monte Carlo 

(MC) method to generate incidents from the incident prediction model (i.e., HNB model) 

described before. For these generated incidents, various attributes need to be specified so that 

they can be adequately simulated. Some of these attributes include incident type, time of day the 

incident occurs, and SSP service time. SSP service time refers to the amount of time it takes for 

the SSP vehicle to service the incident after arriving on the scene. Service time is generated by 

using the duration models (i.e., hierarchical Weibull model) described previously.  

The duration model requires certain input variables (e.g., time of day, incident type, 

season), and the values for these are randomly sampled based on the distributions of the 

empirical data obtained from VDOT for years 2017-2019. Since such distributions may vary 
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across different VDOT districts and different routes, these distributions are calculated for 

different groups defined based on VDOT districts and route names (see Appendix C). In 

summary, the needed incident data are generated by using both the statistical models developed 

and the empirical distributions for a given road segment:  

 

• Incident counts or frequencies are determined based on the HNB model.  

• SSP service times are determined based on the hierarchical Weibull model. 

• Incident type, time of day, and other pertinent data are estimated based on empirical 

distributions created for respective groups defined by VDOT districts and route 

names.   

Figure 4 shows the overall process of generating incidents and their characteristics using 

the MC method. The first step is to estimate the empirical distributions of attributes or 

contributing factors 𝑋𝑗 for incident duration modeling (SSP service in this case). For example, 

the incident frequency distributions for weekdays and weekends might be significantly different 

due to changes in travel patterns. Therefore, the empirical distributions of incident frequencies 

for weekdays and weekends are used to adjust the daily incident frequencies by weekdays and 

weekends. The empirical incident frequency distributions for other contributing factors are also 

considered, such as the hour of the day, incident type, and season of the year. All the empirical 

distributions are aggregated by the VDOT districts and route names (see Appendix C) to 

accommodate potential heterogeneity at spatial scales.  

 

Figure 4. Incident Data Generation Process 

The second step of the MC method is to generate two patterns of incident frequencies by 

weekdays and weekends. Four input variables (traffic volumes, road length, VDOT districts, and 

route names) are required to apply the incident frequency model discussed above. The model 

yields the number of incidents on each road segment for each day using the input data and the 

empirical distributions for weekdays and weekends. To be consistent with the assumptions made 
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in the incident frequency modeling process, Poisson distributions are used with different mean 

values of daily incident frequencies (at different VDOT districts and routes). 

After generating the incidents for each road segment and their attributes, the exact 

incident occurrence time is randomly determined within the hour using a uniform distribution. 

The simulation’s time resolution is in seconds. Therefore, clock times are recorded in seconds for 

all events. The generated incidents are then simulated and served by the SSP under different beat 

configurations. Figure 5 shows two different three-beat configurations with the same incident 

scenario and locations.  

 

Figure 5. Two Different Beat Configurations with the Same Incident Data 

 

SSP Simulation 

A flowchart for the SSP simulation model is presented in Figure 6. First, all possible beat 

configurations are generated based on the start and end milepost. Then, the SSP vehicle profile, 

which contains the SSP vehicle speed and location, is initialized, and incidents are generated as 

input to the SSP simulation model. When an incident occurs while SSP vehicles are patrolling, 

the simulation checks the SSP’s working status. If an SSP vehicle is available in the vicinity of 

the incident, then the vehicle is dispatched to the incident location. Moreover, when an incident 

happens in the opposite direction, the SSP vehicle is directed to the nearest interchange to turn 

around to get to the incident scene (e.g., if the incident happens in the southbound direction, and 

the SSP is patrolling the northbound direction, the SSP is instructed to turn around at the nearest 

interchange). The SSP vehicle is notified a certain amount of time after the incident occurs, 

rather than immediately. The delay in notification is needed to model real-world operations since 

not all incidents are detected immediately; nor are SSP vehicles informed straightaway. Various 

sources detect incidents, including surveillance cameras monitored by the traffic operations 

centers (TOCs) and state police, but patrolling SSP vehicles detect a significant percentage of 

incidents (especially disabled vehicles). The delay in notification allows time for the SSP vehicle 

detect (or discover) the incident in the simulation environment as it traverses the road section 
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where the incident is located. However, the delay in notification time needs to be calibrated for 

the simulation to yield incident detection rates by SSPs that are consistent with field 

observations. The calibration data for the notification time (or threshold) are presented in the 

Results section.  

When an SSP vehicle is notified to respond to an incident, but it is already in service 

(e.g., serving a different incident), then the incident will remain in waiting mode until this SSP 

vehicle is available. If the waiting time exceeds a specific threshold, the SSP service or request 

for the incident will be canceled. This threshold is another parameter that needs to be calibrated 

based on field data. If there is no incident when the SSP vehicle becomes available, the SSP 

vehicle will resume patrolling the beat it is assigned to.  

 

Figure 6. Flowchart for the Safety Service Patrol (SSP) Simulation Model 

All incidents in each beat are simulated for all beat configurations. It should be noted that 

the SSP simulation model relies on a few assumptions. Based on the incident datasets (2017-

2019), the average SSP response rate for crashes along the SSP corridors is around 87%. It is 

assumed that 15% of the crash incidents do not require an SSP vehicle; therefore, that percentage 

of incidents is randomly selected and excluded from the simulation. The simulation model also 

assumes each SSP vehicle patrols its beat continuously for the assigned shift: SSP rest time is not 

considered in the simulation model. The simulation is conducted for each beat independently of 

others.  
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Performance Metrics 

There are two commonly used performance metrics for evaluating alternative SSP beat 

designs, response time (RT) and response rate (RR). RT is measured from the time the SSP 

operator was notified until the time the SSP vehicle arrives on the incident scene, while RR is the 

percentage of incidents responded by SSP vehicle in relation to the total number of incidents. 

These statistics can be aggregated at the beat or beat configuration level for a corridor. In 

addition to these two commonly used metrics, two additional metrics are generated by the SSP-

OPT tool: response time-2 (RT2), and service time utilization (TU). RT2 is measured from the 

time the incident occurs to the time the SSP vehicle arrives on the scene. While highly correlated 

with RT, RT2 captures the additional time from incident occurrence to the time the SSP operator 

is notified. Data for RT2 are not generally collected in the field, as the exact incident occurrence 

times are unknown. However, in the simulation, this information is available. TU is used to 

compute the fraction of time the SSP vehicle is responding and attending to incidents in relation 

to the total patrolling time (or shift time).  

After these four metrics are collected from the simulation, normalized RR and RT are 

computed by using data from all beat configurations with the same number of beats. The 

equations for these normalized metrics are below. The min and max values are computed based 

on the performance metrics of the configurations belonging to the same number of total beats. 

These normalized metrics are then used to generate one composite score. For this, their convex 

combination is calculated by using a weighting factor () as shown in Eq. 13. This weighting 

factor can be adjusted by the user depending on the importance placed on RR in comparison to 

RT. For example, setting  to 1.0 assigns all weight to RR.  

All these metrics would be useful in comparing different beat designs and identifying 

potential areas for improvement in efficiency. The expressions for calculating these performance 

metrics are given below:  

𝑅𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 Serviced 𝑏𝑦 𝑆𝑆𝑃

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠
[Eq. 7] 

𝑅𝑇 = 𝑆𝑆𝑃 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 𝑜𝑛 𝑆𝑐𝑒𝑛𝑒 − 𝑆𝑆𝑃 𝑁𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 [Eq. 8] 

RT2 = 𝑆𝑆𝑃 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑇𝑖𝑚𝑒 on Scene − 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑂𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑇𝑖𝑚𝑒 [Eq. 9]  

𝑇𝑈 =
𝑇𝑜𝑡𝑎𝑙 𝑆𝑆𝑃 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑇𝑖𝑚𝑒

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑖𝑜𝑑
[Eq. 10] 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑅 =
𝑅𝑅 − min (𝑅𝑅)

max(𝑅𝑅) − min (𝑅𝑅)
[Eq. 11] 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑇 =
𝑅𝑇 − max(𝑅𝑇)

min(𝑅𝑇) − max(𝑅𝑇)
[Eq. 12] 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑆𝑐𝑜𝑟𝑒 = α ∗ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑅 + (1 − α) ∗ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑅𝑇 [Eq. 13] 
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RESULTS 

 

Literature Review 

Incident Frequency 

Incident frequency models generally include four types of factors: traffic characteristics, 

temporal factors, road geometry, and environmental factors.11-14 In terms of traffic 

characteristics, traffic volumes are found to be positively associated with incident frequencies.14 

Such positive correlation has also been observed in crash safety research 15.The temporal factors 

(i.e., peak hours vs. off-peak hours, weekdays vs. weekends) are also used to represent variations 

in traffic characteristics (such as vehicle speed, traffic congestion status, and driver behaviors 

attributed to different trip purposes).11 For example, according to one study, incident frequencies 

vary by time of day at the 0.10 significance level. 11 For road geometry, the number of congested 

lanes is found to be positively correlated with incident frequencies during peak and off-peak 

hours.11 Beside traffic characteristics and road geometry, environmental factors also influence 

incident frequency estimation. For instance, incidents are more likely to occur on rainy days.12 

However, different types of incidents might show negative correlations with the same weather 

conditions. Snowy days increase the likelihood of crashes, but do not appear to affect the 

likelihood of the occurrence of disabled vehicles.14  

Despite the abundant literature on crash frequency modeling, incident frequency 

modeling still needs to be further explored. Various conventional count models have been widely 

used in incident frequency modeling, such as Poisson12, negative binomial11, and zero-inflated 

(i.e., Poisson or negative binomial).12 However, the conventional count models assume the 

incident observations of each road segment are independent of each other, which is frequently 

violated due to unobserved factors that contribute to crash occurrence. To account for the 

potential correlation among incident observations, generalized estimating equations were used in 

modeling incident frequencies.14 Furthermore, a classification and regression tree, a machine 

learning approach, was used to model incident frequencies compared to traditional negative 

binomial models.11 Due to the limited extant literature on incident frequency modeling, this 

study summarizes incident frequencies extensively and borrows ideas from crash frequency 

modeling. Hierarchical models have been used in crash safety analyses16, 17 by assuming a set of 

parameters for each selected group, which could capture the potential correlations among 

observational sites.  

Incident Duration 

Table 1 summarizes potential safety factors that could impact incident duration, including 

traffic characteristics, temporal factors, road geometry, environmental factors, and incident 

characteristics.18-20 For traffic characteristics, traffic volumes are positively correlated with 

duration of incidents involving disabled vehicles.20 The ratio of average traffic speed to the 

posted speed limit is also positively correlated with incident duration.21 Regarding temporal 

factors, incident duration presents vast variations across the time of day, day of week, and season 

of year. For road geometry, the presence of shoulders or intersections is positively associated 

with longer durations of crashes21, and as for environmental factors, dry road conditions are 
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negatively associated with incident durations.22 In addition to the commonly used four types of 

safety factors detailed above, incident characteristics are essential determinants of incident 

duration. For example, the number of responders is positively associated with incident duration. 

In contrast, the incidents detected by or responded to by safety patrolling services tended to be 

associated with lower incident durations.20 The presence of injuries is also found to be negatively 

correlated with incident durations.21 Finally, incident duration tended to be longer if more lanes 

were blocked.23 

Table 1. Potential Factors Affecting Incident Duration 

Type of factors Factors 

Traffic characteristics Traffic volume, speed, lane occupancy, queue length 

Temporal factors Time of day, day of week, season of year 

Road geometry Shoulder, intersections, lane closures, road class 

Environmental factors Rain, snow, dry, wet 

Incident characteristics Incident severity, incident type, types of involved vehicles, number of casualties, 

number of lanes blocked, number of vehicles involved 

For incident duration modeling, incident durations (i.e., response time plus clearance 

time) are often estimated by conventional statistical models and machine learning methods.18 For 

statistical models, hazard-based duration models and traditional ordinary least squares models 

are used to estimate and predict incident durations. 18, 20, 24-28 More specifically, hazard-based 

duration models mainly denote accelerated failure time models and semi-parametric hazard-

based models with commonly used assumptions (i.e., Weibull, log-normal, log-logistic, Gamma, 

and inverse Gaussian distributions) for the distributions of incident duration. 18, 29, 30 In addition, 

machine learning approaches involving the classical classification tree methods31, 32, artificial 

neural networks33, Bayesian networks34, and support vector machines35 are also developed to 

estimate and predict incident durations.  

Incident Simulation & Optimization 

There are various studies on SSP systems that document benefits and costs of existing or 

planned SSP programs. While researchers used historical data, as well as statistical methods to 

design SSP programs, very few have used mathematical frameworks to design SSPs. As a result, 

there is no consensus on how specific factors should be considered in the design of the SSP 

programs. These factors include reduction in delays, SSP response rates, SSP response times, 

reduction in the likelihood of secondary crashes, etc.  

Decision makers need reliable tools for planning effective SSP program routes, given the 

size of transportation networks and the reality of budgetary constraints. Tennessee’s HELP 

program36 and Maryland’s Coordinated Highways Action Response Team (CHART) program37 

are among the first programs to use traffic and incident indexes to select important locations for 

SSP coverage. In the state of Florida, Carrick and others have developed quantitative methods to 

assist decision makers in identifying road segments that warrant SSPs.38 They extended this work 

by developing a decision table-based mechanism to collect information, analyze it, and 

recommend guidelines for deploying SSPs. However, to be accurately employed elsewhere, this 

method must be calibrated using local data. Khattak et al., have explored secondary incidents and 

proposed a priority ranking method for selecting locations to provide freeway service patrols.39 
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Various mathematical frameworks and optimization methods have been used to design 

the SSP programs. One such pioneering work was done by Haghani et al.40 using a mixed integer 

programming model with the aim of determining the optimal beat configuration, fleet size, and 

allocation of patrol trucks to beats by minimizing incident-incurred delay while considering the 

operational cost of the patrol programs. Their study used Coordinated Highways Action 

Response Team (CHART) data for designing their SSP. Pal and Sinha41 also proposed a mixed-

integer programming model to determine optimal locations of incident response units that would 

minimize operational cost. With a goal of guiding SSP dispatching policy, Ma et al.42 applied a 

quantitative assessment of the influences on the incident duration for different SSP strategies. 

Sherali et al.43 formulated two mixed-integer models to determine the optimal assignment of 

multiple response units to multiple incidents considering operation and opportunity costs. Kim et 

al.44 developed an integer-programming model to minimize the total incident-incurred delay, and 

Daskin45 proposed a mixed-integer model to determine the dispatching policy and routing for 

incident response units. These studies determined the optimal locations and dispatching policy of 

response units without considering the patrolling of the incident response units.  

Zografos et al.46 proposed a districting model to minimize incident-induced delay by 

determining the optimal locations of emergency response units. Zhu et al.47 evaluated the 

performance of the incident response units based on three different strategies, i.e., allocating 

response units near high-frequency incident locations, distributing the units equally over the 

network, or placing them at the traffic operation centers to dispatch to the incident location once 

an incident occurs. Another study by Zhu et al.48 developed a methodology to evaluate and 

compare patrolling and dispatching strategies for allocating emergency response units based on 

field data. They concluded the effectiveness of those response strategies depends on critical 

factors such as incident frequencies, traffic characteristics, and available detection methods. 

Petty5 presents a model based on traffic theory, in combination with marginal benefit 

analysis, for determining where to place tow trucks to maximize the expected reduction in 

congestion. Yin49 proposed a minimax bi-level programming model to calculate a fleet allocation 

that decreases the maximum system travel time that may result from incidents. Yin50 formulated 

a mixed integer nonlinear programming model to allocate patrol trucks among beats by 

optimizing the performance of the SSP system. Also, Daneshgar et al.51 presented a model based 

on two deterministic and probabilistic approaches to estimate the average response time to 

optimize patrol program performance by minimizing total response time and determining the 

best beat configuration among existing beat structures.  

Daneshgar and Haghani51 developed a joint mixed-integer model to determine the beat 

configuration and fleet size, assuming a single depot and based on minimization of total response 

time without presenting a heuristic algorithm to solve the problem for large networks. One of the 

issues in several earlier studies47, 52, 53 is that their methodologies only considered major 

incidents54, although there is a need for a model that can allow for incidents with different 

severities while minimizing their clearance time. Finally, Lou55 developed a non-linear model to 

determine beat configuration and fleet allocation with the objective of minimizing the overall 

average incident response time. The model, however, had many simplistic assumptions. Haghani 

and others have developed an improved version of Lou’s model that determines the beat 

configuration, fleet size, and truck allocation by minimizing incident-incurred delay as well as 

operational cost.40, 56  
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The SSP simulation model developed in this study considers the various aspects and 

limitations of past studies to create a robust tool for maximizing the impact of an SSP program. 

The use of a simulation-based approach allows the capture of spatial and temporal variations in 

incidents and their durations at a higher resolution and enables the generation of not only average 

performance metrics, but of their variability as well.  

 

Data Analysis 

Analysis of Incident Frequency 

As previously stated, incident data in Virginia are collected in two databases: ATMS and 

VATraffic. ATMS data provide detailed information about incident management stages, as well 

as the event times for SSP. After analyzing the statewide data from ATMS and VATraffic, it was 

observed that ATMS data were not available for the Hampton Roads District for 2017-2019. 

Table 2 summarizes the total number of incidents for the two incident databases. Each database 

contains unique incident identifiers or IDs. These IDs are used to combine or merge the data 

elements from the two databases. However, not all incidents are recorded in both databases. 

Table 2 shows both the matched records as well as the total records when both databases are 

combined. The percentage values are calculated in relation to the total counts when the records 

from both datasets are combined.  

Table 2. Number of Incidents in VATraffic and ATMS (Year: 2017-2019) 

Datasets 
Other Districts 

(All VDOT districts except Hampton Roads) 
Hampton Roads 

Count Percentage Count Percentage 

VATraffic 351,540 84.06% 75,526 99.13% 

ATMS 286,369 68.47% 1,646 2.16% 

Matched 219,692 52.53% 983 1.29% 

Combined 418,217 100.00% 76,189 100.00% 

Notes: Matched = VATraffic ∩ ATMS; Combined = VATraffic + ATMS − Matched  

The total number of incidents in VATraffic, recorded in all districts other than Hampton 

Roads, account for 84% of the combined incidents (481,217). For Hampton Roads District, 99% 

of the combined incidents in Hampton Roads are from VATraffic as the incident data are not 

generally available in ATMS for the selected years. Incidents from the ATMS dataset account 

for 68% of the combined incidents in the other districts. The matching records, incidents 

available in both datasets, constitute about 53% of the combined records.  

Figure 7 shows the distribution of incidents in VATraffic (Figure 7a) and the matched 

records (Figure 7b) across the state. It is evident there are practically no matched records for the 

Hampton Roads District. Therefore, the study excluded Hampton Roads data when modeling 

incident frequencies and durations due to the lack of data. Hereafter, all analyses are performed 

with data from all VDOT districts except Hampton Roads. Therefore, “other districts” qualifier 

will not be included in the descriptions and table captions.  
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Figure 7. Geocoded 2017-2019 Incidents in VATraffic (a) and Matched Incidents (b)  

To further understand the incident data, Table 3 presents the distributions of incident 

frequencies for corridors with and without SSP service (Hampton Roads data not included). The 

table shows that 90.39% of incidents are available in the VATraffic dataset for the SSP corridors, 

while this value is 66.68% for non-SSP corridors. Since most incidents that occurred along the 

SSP corridors are recorded in VATraffic, these data are used for incident frequency modeling. 

However, for incident duration (i.e., SSP service time) modeling, the matched records are used 

since data attributes from both VATraffic and ATMS are needed (e.g., latitude and longitude 

from VATraffic, durations from ATMS).  

Table 3. Description of VATraffic and ATMS Incident Data (Year: 2017-2019) 

Datasets 
SSP Corridors Non-SSP Corridors  

Count Percentage Count Percentage 

VATraffic 277,059 90.39% 74,481 66.68% 

ATMS 205,462 67.03% 80,907 72.44% 

Matched 175,999 57.42% 43,693 39.12% 

Combined 306,522 100.00% 111,695 100.00% 

Notes: Matched = VATraffic ∩ ATMS; Combined = VATraffic + ATMS − Matched.  SSP = Safety Service Patrol  
 

Table 4 presents the data for detection source and response agency for incidents along the 

SSP corridors. These data are generated based on the matched records in Table 3. Information 
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about the agency responding to the incidents is extracted from the ATMS agent data. Some 6,518 

incidents are excluded, since they did not have the agent information, which accounts for about 

3.70% of the matched incidents in Table 3. Disabled vehicles, traffic crashes, disabled tractor-

trailers, and vehicle fires constitute about 90% of all incidents in Table 3. As these four types of 

incidents make up the great majority of all incidents, only these four types are selected in 

developing models for incident frequencies and durations.  

Table 4. Detection Source and Responding Agency for Incidents along Safety Service Patrol (SSP) Corridors  

Incident Type 
Incident 

Freq. 

Detected by SSP Responded by SSP 

Count Percentage (Count/ 

Incident Freq.) 
Count Percentage (Count/ 

Incident Freq.) 

Disabled Vehicle 103,247 65,752 63.68% 99,399 96.27% 

Traffic Crash 41,317 3,465 8.39% 27,673 66.98% 

Disabled Tractor Trailer 6,831 3,452 50.53% 6,167 90.28% 

Vehicle Fire 1,211 70 5.79% 752 62.15% 

Weather 653 58 8.88% 58 8.88% 

Brush Fire 349 22 6.30% 183 52.44% 

Others 15,873 5,203 32.78% 10,952 69.00% 

Total 169,481 78,022 46.04% 145,184 85.66% 

Table 5 shows the breakdown of incidents by type, whether more than one SSP vehicle 

responded, and whether travel lanes are blocked. The results show that 93.38% of incidents were 

responded to by only one SSP vehicle, while only 6.62% needed multiple SSP vehicles for the 

four types of incidents. Given the relatively small percentage of incidents requiring multiple SSP 

vehicles, such scenarios are not considered in the SSP simulation logic.  

Table 5. Travel Lane Status of Safety Service Patrol (SSP)-involved Incidents along SSP Corridors  

Incident Type 

Percentage of 

incidents 

responded to 

by SSP 

Only One SSP involved 

(93.38%) 
Multi-SSP Involved (6.62%) 

Travel lanes 

not blocked 
Travel lanes 

blocked  
Travel lanes 

not blocked 
Travel lanes 

blocked  

Disabled Vehicle 67.66% 91.24% 5.22% 2.77% 0.77% 

Traffic Crash 27.07% 49.82% 32.79% 5.52% 11.87% 

Disabled Tractor Trailer 4.48% 84.30% 10.12% 3.10% 2.48% 

Vehicle Fire 0.79% 24.43% 48.87% 4.98% 21.72% 

Figure 8 shows the temporal distributions of SSP response rates for the selected incident 

types along the SSP corridors. SSP response rates for traffic crashes and vehicle fires have 

similar temporal patterns with significant temporal variations in the time of day. In contrast, SSP 

response rates for disabled vehicles and disabled tractor-trailers are also similar for different 

times of day but with higher SSP response rates and lower temporal variations than for traffic 

crashes and vehicle fires. Given these observations, in this study, disabled vehicles and disabled 

tractor-trailers are combined into one category called Disabled while crash and vehicle fire are 

combined into another category called Crash. This reduces the complexity of the simulation 

logic and the amount of output data generated by the SSP-OPT tool.  
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Figure 8. SSP Response Rates for the Selected Incidents along Safety Service Patrol (SSP) Corridors (2017-

2019) 

In addition to the observed temporal variations of SSP response rates during the day, the 

spatial variations of the SSP detection rates and response rates are also summarized. Figure 9 and 

Figure 10 present the SSP detection rates for crashes and disabled vehicles along SSP routes, 

respectively. Based on these maps, it can be observed that crashes have significantly lower SSP 

detection rates than disabled vehicles. SSP detection rates tend to be higher for both types of 

incidents in mountainous areas where alternative incident detection methods might be limited.  

 
Figure 9. Detection Rates for Crashes along Safety Service Patrol (SSP) Routes 
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Figure 10. Detection Rates for Disabled Vehicles along Safety Service Patrol (SSP) Routes 

Figures 11 and 12 depict the SSP response rates for crashes and disabled vehicles, 

respectively. The SSP response rates have fewer spatial variations.  

 
Figure 11. Response Rates for Crashes along Safety Service Patrol (SSP) Routes 

 
Figure 12. Response Rate for Disabled Vehicles along Safety Service Patrol (SSP) Routes 
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After the data were analyzed, it was discovered that there were a significant number of 

cases where the SSP response time was less than one minute for some incidents, although the 

detection source for these incidents was not listed as SSP in the database. When the SSP 

response time is less than one minute, it is plausible to assume that such incidents were also 

detected by SSP. Including these incidents (when SSP is not listed as the detection source, but 

SSP response time is under one minute) as part of those detected by SSP, significantly increased 

the rate of detection by SSP vehicles for some corridors. Figure 13 and Figure 14 show these 

updated detection rates, called patrolling detection rates, for crashes and disabled vehicles, 

respectively. In comparison to the detection rates in Figure 9 and Figure 10, the results in Figure 

13 and Figure 14 show that some corridors (e.g., I-95 in Northern VA) have much higher 

detection rates for disabled vehicles.  

 
Figure 13. Patrolling Detection Rates for Crashes along Safety Service Patrol (SSP) Routes 

 
Figure 14. Patrolling Detection Rates for Disabled Vehicles along Safety Service Patrol (SSP) Routes 
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Analysis of Incident Duration 

Figure 15 presents the flowchart for the incident management procedure used by Federal 

Highway Administration.57 In general, it is difficult to get an accurate timestamp of when exactly 

an incident first occurred. The first time the incident is detected may be used as an 

approximation for the actual occurrence time. While accurately recording the exact time an 

incident occurs is important, this time is not needed for the SSP simulation program as the 

incidents are randomly generated. Instead, two important durations are needed for simulation 

calibration and validation: SSP response time and SSP service time. These times are obtained 

from the field data using various timestamps collected which are shown in Table 6.  

 
Figure 15. Flowchart for the Incident Management Procedure 
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The SSP response time is calculated by Eq.14.  

𝑆𝑆𝑃 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 = 𝑆𝑇𝑅 𝑇𝐼𝑀𝐸 𝑂𝑁 𝑆𝐶𝐸𝑁𝐸(𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑜𝑛 𝑠𝑐𝑒𝑛𝑒 𝑆𝑆𝑃) −

𝑆𝑇𝑅 𝑇𝐼𝑀𝐸 𝑁𝑂𝑇𝐼𝐹𝐼𝐸𝐷(𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑛𝑜𝑡𝑖𝑓𝑖𝑒𝑑 𝑆𝑆𝑃) [Eq. 14]
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In some cases, one incident could be responded to by multiple SSP vehicles. For such 

cases, the expression above captures the total time, from the first notification sent out to the time 

when the first vehicle arrives at the scene. For example, the first notified SSP vehicle might not 

be able to arrive on scene before another SSP vehicle due to traffic congestion and availability of 

other SSP vehicles.  

The SSP service time refers to the time interval between the departure time of the last 

SSP vehicle and the on-scene time for the first SSP, which is calculated by Eq.15, 

𝑆𝑆𝑃 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 = 𝑆𝑇𝑅 𝑇𝐼𝑀𝐸 𝐷𝐸𝑃𝐴𝑅𝑇𝐸𝐷(𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑆𝑆𝑃) −
𝑆𝑇𝑅 𝑇𝐼𝑀𝐸 𝑂𝑁 𝑆𝐶𝐸𝑁𝐸 (𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑆𝑆𝑃) [Eq. 15]

 

Figure 16 shows the SSP response times for different types of incidents that are detected 

by SSP vs other detection methods. The results indicate that the SSP response time for incidents 

that are responded to by SSP is significantly shorter for incidents detected by SSP. In addition, 

disabled vehicles and disabled tractor-trailers were found to have higher SSP response priority 

than traffic crashes and vehicle fires once detected by SSP due to significantly lower response 

time. As shown in Figure 17, disabled vehicles and disabled tractor-trailers have similar SSP 

service times, while traffic crashes and vehicle fires also have similar SSP service times. 

Therefore, the study combined disabled vehicles and disabled tractor-trailers into one new type 

of incident as opposed to the other new type of incidents (traffic crashes and vehicle fires) when 

modeling SSP service time.  

 
Figure 16. Safety Service Patrol (SSP) Response Time by Incident Type for Incidents Detected by SSP vs. 

Other Detection Methods 
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Figure 17. Safety Service Patrol (SSP) Service Time for Incidents Responded to by SSP 

Incident Prediction Models 

This section describes the incident frequency and incident duration prediction models, 

which are required for incident simulations. More specially, incident frequency models and SSP 

service time models make generating incident frequencies and SSP service time possible after 

the user provides the basic input variables (e.g., AADT, road length).  

Incident Frequency Prediction  

To clean the data and remove potential erroneous entries, spatial filters are applied to the 

VATraffic data. Some data points were found to be outside VA, based on the longitude and 

latitude data, and these are eliminated. In addition, incidents outside the SSP corridors are 

omitted from the analysis. As indicated earlier, incidents from the Hampton Roads region are 

also excluded.  

After data cleaning, a Hierarchical Negative Binomial (HNB) model is fit to the 2017-

2019 data. Table 7 presents the input variables and their coefficients and standard deviations. 

The coefficients for the random effect terms (44 of them) are included in a csv file as part of the 

SSP-OPT program. These coefficients capture heterogeneity among different corridors and 

districts as defined by the route names and VODT districts in Appendix C. The incident records 

from VATraffic include route names and VODT districts. The fixed effects for AADT and road 

length are found to be positively associated with incident frequencies.  

In addition to the HNB, an NB model is fit to the same data. The prediction performance 

of both HNB and NB are shown in Table 8, as well as those from HIF approach. For a given 
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segment, the HIF method uses the incident count from a previous year as the prediction. For 

example, it uses the 2017 count as the prediction for 2018 and 2018 for 2019.  

As reported in Table 8, the performance of the HNB model is found to be significantly 

better than that of NB based on Mean Absolute Error, Mean Absolute Percentage Error, and 

pseudo-R squared. Furthermore, Figure 18 shows better agreement of the HNB predictions with 

the observed data – points are closer to the dashed diagonal. The HIF approach has lower error 

rates, but it requires access to (historical) incident data from a previous year, which may not be 

available for all corridors. Moreover, it is not sensitive to any changes in traffic volumes. 

Therefore, for incident frequency modeling, the HNB model is selected. While the majority of 

the SSP corridors are covered in the 44 group identifiers, some interstates in the Commonwealth 

are not. For such cases, incident frequencies will be estimated by using the fixed effects.  

Table 7. Results of Hierarchical Negative Binomial Models 

Variables 
All Periods 

Coefficient Standard Error 

Fixed effects 

Intercept -4.70  0.98 

Log (AADT) 0.77  0.09 

Log (Road Length) 0.75  0.03 

Random effects that vary by group ID (N= 44, based on VDOT districts and routes). 

Intercept Varies by group ID 5.21 

Log (AADT) Varies by group ID 0.47 

Log (Road Length) Varies by group ID 0.14 

 

 
Figure 18. Comparisons of Incident Frequency Prediction Performance for All Time Periods.  HIF = 

Historical Incident Frequency, NB = Negative Binomial, HNB = Hierarchical Negative Binomial.  
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Table 8. Comparisons of Incident Frequency Prediction Performance for All Models and All Time Periods.  

HIF = Historical Incident Frequency, NB = Negative Binomial, HNB = Hierarchical Negative Binomial. 

Metrics Year HIF NB HNB 

Mean Absolute Error 2018 23.15 48.47 30.95 

2019 18.87 43.66 29.60 

Mean Absolute 

Percentage Error 

2018 25% 53% 33% 

2019 21% 48% 38% 

Pseudo R-squared 2018 0.87 0.59 0.81 

2019 0.92 0.62 0.80 

Incident Duration Prediction 

To prepare the data for duration modeling, the same dataset used previously for incident 

frequency modeling is used. However, additional screening is applied to further clean the data. 

For example, some timestamps were inconsistent (e.g., on-scene time < notification time, 

departure time < on-scene time, and end time < time departure) and such records were excluded 

from the dataset. In addition, outliers in SSP response times and SSP service times are removed 

by INLA package of R.10  

Table 9 presents the results of the hierarchical Weibull models for SSP service time. 

Time of day, seasons, and incident types are found to be significant factors in estimating SSP 

service time. The duration of incidents that occurred at the MD, PM, and NT periods is found to 

be positively associated with the SSP service time. The AM period is taken as the base or 

reference period. Incidents that occurred in the fall and winter season are found to have a longer 

service time compared to the spring and summer. Crashes are also found to have a longer service 

time than disabled vehicles. In addition, a large variation of random effects for the intercept, the 

PM period, winter season, and incident types indicate the importance including spatial 

heterogeneity as defined by group identifiers based on routes and VDOT districts – these groups 

are in Appendix D. 

Table 10 compares the prediction performance of two SSP service time models: Weibull 

and hierarchical Weibull models. The estimates of the hierarchical Weibull models outperform 

the Weibull model as demonstrated by the lower MAE value and both have similar Pseudo R-

squared and MAPE values.  

Table 9. Results of the Hierarchical Weibull Model for Safety Service Patrol (SSP) Service Time 

Variables 
Fixed effects 

Random 

effects Coefficients Standard Error Change (%) 

Intercept 2.59 0.02 - 0.02 

MD (9 AM-3 PM) 0.03 0.02 3.05 < 0.01 

PM (3 PM-7 PM) 0.03 0.02 3.05 0.02 

NT (7 PM-7 AM) 0.07 0.02 7.25 <0.01 

Fall (No = 0, Yes = 1) 0.02 0.01 2.02 < 0.01 

Winter (No = 0, Yes = 1) 0.03 0.01 3.05 0.02 

Incident type (Disabled vehicle = 0, Crash =1) 0.96 0.01 161.17 0.21 
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Table 10. Prediction Performances of Safety Service Patrol (SSP) Service Time Models 

Prediction Metrics 
SSP Service time for incidents responded to by SSP 

Weibull Hierarchical Weibull 

Mean Absolute Error (minutes) 12.41 12.17 

Mean Absolute Percentage Error 56% 55% 

Pseudo R-squared 0.31 0.32 

 

Development of the SSP-OPT Tool 

SSP Model Calibration 

For model calibration, seven beats on I-95 and three beats on I-81 were selected as a 

sample to calibrate the SSP model. Data from 2019 for these ten beats were used for the model 

calibration. Incidents for each day were generated in the simulation with their observed 

occurrence times, locations, and service times. All 10 beats were simulated for one year, and the 

results were collected and analyzed for parameter calibration. The field data used in calibration 

from these 10 beats are summarized in Table 11. It should be noted that the number of samples 

(incidents) observed on beats 8, 9, and 10 are smaller than those from the other beats.  

 

Figure 19. Ten Selected Beats for Model Calibration 
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There are three key model parameters to be calibrated: (1) thresholds for notification 

time, (2) SSP vehicle speed, and (3) waiting time threshold. The process followed in calibrating 

these parameters is described below.  

Notification Time Calibration 

The notification time primarily affects the SSP detection rates. The detected incidents can 

be classified into two groups: one represents incidents detected by SSP and the other includes 

incidents detected by any other sources. However, those incidents detected by other resources 

with SSP response times are less than 1 minute are also treated as detected by SSP in the 

simulation. If an incident is detected by SSP, the response time is expected to be close to be zero, 

which is generally the case in the field data.  

Table 11. Incident Information for 10 Calibration Beats 
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Response Rate 
SSP Detection Rate Incidents 

Responded by SSP 

with Response 

Time >1min 

Disabled 

Vehicle 
Crash Disabled 

Vehicle 
Crash Number 

of 

Incidents 

% 

1 1301 1154 45 0.89 0.94 0.78 0.61 0.13 541 47% 

2 1940 1844 21.4 0.95 0.97 0.92 0.52 0.17 1002 54% 

3 941 871 29.8 0.93 0.96 0.85 0.69 0.14 353 41% 

4 880 806 41.4 0.92 0.96 0.78 0.69 0.21 251 31% 

5 2296 2073 29.8 0.90 0.98 0.63 0.72 0.57 200 10% 

6 2851 2528 29 0.89 0.98 0.61 0.75 0.52 292 12% 

7 3636 3273 25 0.90 0.98 0.66 0.79 0.62 346 11% 

8 185 185 38 1.00 1.00 1.00 0.52 0.10 95 51% 

9 660 655 60 0.99 1.00 0.95 0.84 0.59 35 5% 

10 775 771 60 0.99 1.00 0.98 0.82 0.57 35 5% 

Since the detection rates for the two incident types, i.e., disabled vehicles and crashes, are 

significantly different (see Figures 13 and 14), the thresholds for notification times need to be set 

to different values. The simulation models were run under varying notification times, and the 

SSP detection rates were recorded for the two incident types and compared to the field 

observations. The goal is to match the observed detection rates as much as possible. An example 

is presented in Figure 20 for beat number two. As the notification threshold (x-axis) is increased, 

the detection rate also increases as expected, eventually approaching 100%. The field 

observations are marked with the horizontal dash lines. The notification times that produce the 

closest values to the field data are indicated on the figures for this beat, and this process is 

repeated for all the other beats.  

The notification times for disabled vehicles and crashes are calibrated for all ten beats. 

Figure 21 shows these calibrated values versus beat lengths. Given the relatively strong 
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correlation between the calibration values and beat length, a simple linear regression line with 

zero intercept is fit to the data. The respective regression equations are included in Figure 21. 

These equations are coded in the simulation to set the notification time thresholds for each beat.  

 
Figure 20. Example of Notification Time Calibration for Disabled Vehicle and Crash (Beat 2) 
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Figure 21. Notification Time Regression Results for Disabled Vehicles and Crashes 

SSP Speed and Waiting Time Calibration 

For calibrating the speed of the SSP vehicle and the waiting time threshold, the SSP 

operations are tested on the ten beats with different speed and waiting time values. The 

differences between field data and simulation results, in terms of response time and response 

rate, are used as the error measure. The results are summarized as heatmaps shown in Figures 22 

and 23. The values in the cells are computed by Eq. 16. 

𝐶𝑒𝑙𝑙 𝑉𝑎𝑙𝑢𝑒 = 𝐹𝑖𝑒𝑙𝑑 𝑉𝑎𝑙𝑢𝑒 − 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 [Eq. 16] 

In Figures 22 and 23, the rows represent the speed (mile/min), and columns the waiting 

time (in minutes). The speed values yielding the lowest errors are indicated by red rectangles. It 
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is evident that no single speed value is optimal for all beats. After considering the geographic 

location of the ten selected beats (Figure 19) and analyzing the errors in Figure 22 and Figure 23, 

three speed categories are recommended for the SSP vehicle speed in simulation as follows:  

 

• Urban or congested corridors: 35 mph (0.58 miles/min) 

• Rural corridors: 60 mph (1.0 miles/min) 

• Suburban corridors: 45 mph (0.75 miles/min) 

The waiting time does not show a strong trend based on the results in Figures 22 and 23. 

Setting the waiting time to a very low value, e.g., 10 minutes, worsens the response rates, as 

more incidents will be omitted from the SSP service. A value too large is not optimum either, as 

the errors in response times become too large. Therefore, the waiting time threshold in the 

simulation is set to a default value of 30 minutes. This can be replaced by the user if needed.  
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Figure 22. Heat Maps of Response Time Error for 10 Beats 
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Figure 23. Heat Map of Response Rate Error for 10 Beats 
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SSP Model Validation  

For model validation, a corridor consisting of two SSP beats on I-95 (beats 1 and 2 in 

Figure 19) is selected. The segment includes 20 interchanges between the start and end 

mileposts. Incident data generated from the incident frequency and duration models (i.e., HNB 

and Hierarchical Weibull models) are used as input to the simulation model. The incident data 

are synthesized for 40 weekdays to reach a stable generation of incident frequencies, and the 

simulation period is set to 24 hours. The calibration parameters are set as described in the 

previous section.  

For this selected I-95 corridor, the beat lengths are restricted to between 7 and 30 miles. 

With this constraint, the total number of all feasible beats is found to be 36 by the SSP-OPT tool. 

These beats are listed in Table 12. The "Start" and "End" columns contain the mileposts 

representing the beginning and end of the corridor. The mileposts recorded in columns starting 

with an “X” demarcate the boundary between two beats within the corridor. These generally 

correspond to interchanges where the SSP vehicle can make a U-turn. For example, beat 

configuration C7 has two beats: one from milepost 50 to 72.5 and another from milepost 72.5 to 

83.2. In these columns, a "-1" indicates an inapplicable value. 

The results of the simulation are presented in Figure 24, which comprises three types of 

charts for three different simulation runs. The first row of charts displays the RT and RR 

performance metrics, the second row the TU and RT, and the third row RT2 and RR. The chart 

axes are labeled accordingly, and different beat configurations are annotated. The red dots 

represent two beat configurations, the green triangles three beats, and the blue squares four beats. 

It is evident that the performance of a beat configuration improves as the number of SSPs 

assigned to the corridor increases. This is indicated by a decrease in both RT and 𝑅𝑇2, along 

with an increase in RR as the number of beats is increased from two to three or four.  

The field observations are indicated by the red diamond for the existing two-beat 

configuration. The two-beat configuration C7 is identical to the existing SSP beat configuration 

in the field. The simulation results for this beat are circled in the charts. The results show good 

agreement with the field data. As shown in Figure 24, performance metrics fluctuate from one 

simulation run to another. To obtain more stable results, the simulations can be repeated multiple 

times. Figure 25 shows the outputs for individual runs, as well as the average of RR and RT 

when the number of simulations increases. The results become quickly stable after only ten or so 

runs. For this beat configuration, the RR and RT values from the field observations are 0.92 and 

12.66 minutes, respectively. Running the simulation ten times and averaging the results yields 

0.95 and 13.56 minutes for RR and RT, respectively. The RR and RT from the simulation are 4% 

and 7% higher than the field values. These small differences indicate the SSP-OPT can produce 

relatively accurate results.  

To determine the optimum beat configuration, performance metrics from the tool could 

be analyzed. Since there are multiple criteria (e.g., RR, RT), the best option would depend on the 

user’s preferences or on how much importance is placed on different metrics. The SSP-OPT tool 

also computes a composite score by combining normalized metrics for RR and RT as shown 

previously in Eq. 13. The SSP-OPT tool also displays a subset of the solutions that perform best 
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in terms of one metric. Figure 26 shows this subset for the analyzed I-95 corridor where top two 

performing beat configurations are displayed when only one metric is considered. 

Table 12. Feasible Beat Configuration  

Beat Config Total Beats Start X1 X2 X3 End 

C1 2 50 57.2 -1 -1 83.2 

C2 2 50 60.3 -1 -1 83.2 

C3 2 50 62 -1 -1 83.2 

C4 2 50 63.9 -1 -1 83.2 

C5 2 50 66.9 -1 -1 83.2 

C6 2 50 68.5 -1 -1 83.2 

C7 2 50 72.5 -1 -1 83.2 

C8 2 50 73.3 -1 -1 83.2 

C9 2 50 74.7 -1 -1 83.2 

C10 2 50 75.6 -1 -1 83.2 

C11 3 50 57.2 66.9 -1 83.2 

C12 3 50 57.2 68.5 -1 83.2 

C13 3 50 57.2 72.5 -1 83.2 

C14 3 50 57.2 73.3 -1 83.2 

C15 3 50 57.2 74.7 -1 83.2 

C16 3 50 57.2 75.6 -1 83.2 

C17 3 50 60.3 68.5 -1 83.2 

C18 3 50 60.3 72.5 -1 83.2 

C19 3 50 60.3 73.3 -1 83.2 

C20 3 50 60.3 74.7 -1 83.2 

C21 3 50 60.3 75.6 -1 83.2 

C22 3 50 62 72.5 -1 83.2 

C23 3 50 62 73.3 -1 83.2 

C24 3 50 62 74.7 -1 83.2 

C25 3 50 62 75.6 -1 83.2 

C26 3 50 63.9 72.5 -1 83.2 

C27 3 50 63.9 73.3 -1 83.2 

C28 3 50 63.9 74.7 -1 83.2 

C29 3 50 63.9 75.6 -1 83.2 

C30 3 50 66.9 74.7 -1 83.2 

C31 3 50 66.9 75.6 -1 83.2 

C32 3 50 68.5 75.6 -1 83.2 

C33 4 50 57.2 66.9 74.7 83.2 

C34 4 50 57.2 66.9 75.6 83.2 

C35 4 50 57.2 68.5 75.6 83.2 

C36 4 50 60.3 68.5 75.6 83.2 

Notes: C (Configuration); X (Milepost demarcating the boundary between two beats within the corridor) 
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Figure 24. Performance Metrics of Safety Service Patrol (SSP) Simulation 
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Figure 25. Average Response Rate (a) and Average Response Time (b) as the Number of Runs Changes 

 

 
Figure 26. Performance Metrics for Recommended Beat Configurations 

  



39 

 

User Interface for the SSP-OPT Tool  

A user interface for the SSP-OPT tool is developed in the Visual Basic for Applications 

(VBA) programming language within MS Excel – see Figure 27. The main algorithms behind 

the tool are coded in the R programming language. R offers a wide range of statistical models, 

data processing libraries, and data structures enabling efficient computation and code 

development. VBA Macros within MS Excel call the R programs to generate the incident data 

and perform the simulation runs. The user can set various input parameters within Excel that are 

then read by the R program as input in the SSP simulation logic.  

The SSP-OPT tool interface has six worksheets, and a detailed user guide (see Appendix 

A). The first worksheet requires the user to input the path for Rscript.exe (executable R). The 

ODU team prepared a zip file containing an installation of the R along with all the necessary 

libraries. The user, therefore, does not need to directly install R or interact with R, but will 

simply unzip the provided files. However, this is a relatively large file (387MB).  

The second worksheet allows the user to enter corridor geometry and traffic volume data. 

The third and fourth worksheets contain key parameters and constraints for incident generation 

and simulation. If the user chooses to optimize or analyze an existing SSP corridor, the existing 

beat configuration data can be entered on the “Existing_Beat_Config” worksheet. The users can 

choose to perform the analysis for weekdays or weekends, adjust SSP operations shifts or hours, 

specify desired minimum and maximum beat lengths, and customize various parameters 

governing the simulation logic such as SSP speeds, waiting time threshold, and notification time 

functions in the simulation. The total number of simulation runs can be controlled as well.  

Based on the simulation results, the model generates the recommended beat 

configurations and output the data for all possible beat configurations in csv files. The last two 

worksheets are used to load the output files and display the performance metrics. 
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Figure 27. SSP-OPT Interface 
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DISCUSSION 

• The incident prediction models developed here are based on 2017-2019 statewide incident 

data from Virginia SSP corridors (except for those in Hampton Roads District). As traffic 

patterns change, and traffic monitoring technologies (e.g., surveillance cameras) and SSP 

programs evolve, such changes may affect incident data and SSP performance characteristics 

(e.g., response time). In addition, construction projects like the expansion of Hampton Roads 

Bridge Tunnel could also affect incident occurrence patterns. Consequently, the prediction 

models may need to be recalibrated in the future to accommodate significant deviations from 

the conditions reflected in 2017-2019 data.  

• The output from the SSP-OPT tool includes multiple performance metrics (e.g., RR, RT). 

However, benefits to the traveling public in terms of dollar amounts or travel time savings 

are not computed within the tool. If needed, the total benefits could be estimated by using the 

FHWA’s TOPS-BC (Tool for Operations Benefit-Cost Analysis) tool adopted by VDOT. 

TOPS-BC tool for SSP benefits has various input parameters including the number of 

incidents, the percentage of incidents serviced by SSP, lane blocking incidents, and average 

incident duration reduction due to SSP. The SSP-OPT tool directly provides the percentage 

of incidents serviced by SSP and SSP response time. These metrics can be incorporated into 

the TOPS-BC tool to estimate the benefits of SSP operations improvements.  

• The SSP-OPT tool is currently not optimized to handle large networks, e.g., corridors longer 

than 100 miles. Since SSP operations are planned at the VDOT district level, most SSP 

corridors within the districts are shorter than this limit. The computation time for the 

simulation depends on the number of turnaround points/interchanges, user preferences for 

beat size, and the selected number of simulations, as well as the specifications of the 

computer (i.e., processing speed and memory) running the program. Computation times from 

several tests are listed in Appendix C.  

• MS Excel was selected to create the user interface for the SSP-OPT tool since it is commonly 

available on VDOT computers. As explained earlier, the main algorithms are coded in the R 

programming language which are called from the Excel interface. As explained in the 

Implementation and Benefits section, some difficulties were encountered in installing the tool 

on the VDOT computers (e.g., security restrictions for VBA macros). An alternative platform 

for the user interface might be considered to improve the usability of the tool as discussed in 

the Implementation and Benefits section.  

 

CONCLUSIONS 

• The SSP simulation model incorporates a hierarchical negative binomial model for incident 

frequencies and a hierarchical Weibull model for incident duration. These models were 

found to be effective in simulating the spatiotemporal distributions of incidents along the 

highway corridors and for generating their attribute data (e.g., incident type, SSP service 

duration).  
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• The simulation-based approach proposed in this study for modeling SSP operations is shown 

to produce realistic performance measures (e.g., response time, response rate) that are 

consistent with field observations. The simulation program employs a discrete event-based 

approach using a few calibration parameters (e.g., SSP vehicle speed, thresholds for waiting 

and notification times). After calibrating the model, the validation results show good 

agreement with field observations when applied to two sample SSP corridors from I-95.  

• The proposed SSP optimization model could be applied to corridors with or without existing 

SSP service. However, it should be noted that the models are calibrated based on historical 

incident and SSP operational data from existing SSP corridors. The model outputs for future 

scenarios will be valid insofar as those scenarios are consistent with the historical data.  

 

RECOMMENDATIONS  

1. The Virginia Transportation Research Council (VTRC) should conduct a pilot project on 

integrating the SSP-OPT tool into the planning process of SSP beat design and vehicle 

scheduling. The pilot project will be helpful in demonstrating how effective the SSP-OPT 

tool is in supporting real-word decision making. The feedback from the pilot may identify 

potential revisions and improvements that could be made to enhance its useability and 

functionality in practical scenarios. Based on the feedback from the TRP, the SSP-OPT tool 

could be revised and customized to streamline its integration into the design process of SSP 

beats and schedules.  

 

IMPLEMENTATION AND BENEFITS 

The researchers and the technical review panel (listed in the Acknowledgments) for the 

project collaborate to craft a plan to implement the study recommendations and to determine the 

benefits of doing so. This is to ensure that the implementation plan is developed and approved 

with the participation and support of those involved with VDOT operations. The implementation 

plan and the accompanying benefits are provided here. 

 

Implementation 

To implement the recommendation above, the SSP-OPT tool needs to be tested and 

evaluated on VDOT computers and revised as needed to ensure a positive end user experience. 

In this project, MS Excel and macros written in VBA are used to create the user interface and 

facilitate interactions with the SSP simulation coded in R. Based on several initial tests of the 

tool on VDOT computers, some difficulties were encountered in program installation including 

security restrictions with MS Excel Macros and unzipping the large number of R files needed for 

the program to run. While the program functions and produces the desired performance metrics, 

alternative options for program installation (e.g., cloud-based services, access through virtual 

machine) could be considered and pursued to streamline the user experience. In addition, the 
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outputs from the tools can be further enhanced and customized to the needs and preferences of 

the VDOT staff responsible for SSP route planning.  

To conduct the pilot project, VDOT would need to identify a suitable pilot site (i.e., an 

interstate corridor with or without SSP service) and coordinate with the respective TOC and staff 

to determine the scope of the pilot project. The scope of the study will include specifying the 

corridor length to be covered by the SSP service, preparing the input data, defining scenarios to 

be tested, and analyzing the scenarios with the SSP-OPT tool. If there is already SSP service in 

place along the corridor, the pilot project could entail a comparison of the tool’s output (i.e., 

performance metrics) with ground truth data. In addition, the optimal beat configurations 

produced by the tool could be considered as alternative options for revisions to the beat lengths 

and SSP vehicle schedules. The pilot project will help identify potential revisions that can be 

made to the tool for better integration within the SSP planning processes. The pilot will also pave 

the way for a broader adoption of the tool across the VDOT districts and will serve as an 

example of how the tool can be used to identify alternative beat designs that optimize SSP 

resources while maximizing the quality of the service to the traveling public.  

After revising the SSP-OPT tool and conducting the pilot project, the research team, in 

coordination with VTRC, will provide written instructions on using the SSP-OPT tool and will 

conduct a webinar for interested VDOT staff to demonstrate the application of the SSP-OPT tool 

in identifying candidate beat configurations and generating their performance metrics. The 

webinar will be scheduled by the VTRC in consultation with ODU and participants from VDOT. 

Invitees may include TOC managers and staff who engage in SSP scheduling and operations 

from different VDOT districts. Implementation funds will be requested to undertake this effort 

within one year of the publication of this report. 

 

Benefits 

The operational and safety benefits of SSPs have been studied and documented by many 

states including Virginia. VDOT’s SSP service covers approximately 926 miles of roadway. 

Planning and managing the SSPs effectively across the state requires robust and practical tools 

that can help in optimally allocating SSP resources. This entails determining the best beat 

designs and SSP shifts for a corridor, given a limited number of SSP vehicles. The SSP-OPT tool 

created within this project is expected to meet this need. The tool generates all feasible beat 

configurations and evaluates them one by one in a simulation model to produce accurate 

performance metrics, including response rate and average response time. The output from the 

tool will help decision makers select the best possible beat configurations that meet the desired 

criteria. Overall, the tool will have benefits both for the motorists as well as the VDOT districts 

operating SSP services: 

 

• The tool will help identify optimal beat configurations that minimize SSP response times 

and maximize the SSP response rates that can be attained with a given number of SSP 

vehicles on a corridor. Implementing these solutions in the field will result in travel time 

savings and will improve highway safety since SSP resources will be more efficiently 

utilized in reducing the impacts of incidents on traffic flow.  
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• The SSP-OPT tool will help VDOT staff quickly evaluate alternative beat designs before 

implementing them in the field. Once widely adopted, the tool can become an integral 

part of the SSP planning process to consistently determine beat configurations across the 

state based on quantitative performance metrics generated by the tool. The tool can also 

be used to evaluate existing SSP operations, identify inefficiencies, and support decisions 

in reallocating resources where most needed.  
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APPENDIX A: SSP-OPT USER GUIDE 

This Appendix provides instructions for using the SSP-OPT tool. To facilitate data entry 

and interactions with the tool, a user interface is created in MS Excel. The Visual Basic for 

Applications (VBA) programming language is used to read, load, and write data files needed for 

the core components of the SSP-OPT tool, which are coded in the R programming language. 

These core components include incident data generation, generating alternative beat 

configurations, simulating SSP operations, and computing performance metrics. After the user 

enters the needed input data, the SSP-OPT tool computes performance metrics (e.g., average 

response time, response rate) for numerous SSP beat configurations and identifies a few beats 

that perform the best in terms of these metrics.  

All files needed to run the program are packaged in a zip file named 

“SSP_SIMULATION_MODEL.” In addition to the code written for the SSP-OPT tool, this zip 

file also contains an installation of R programming language and all libraries needed for the code 

to run. Simply unzipping the files as explained in this Appendix is sufficient and there is no need 

to download or install R from its website.  

The R scripts need to read various csv input files from a working directory. The R scripts 

are written to look for input files under a folder named “SSP” in C drive. Therefore, the user 

needs to create a folder named “SSP” under C drive and unzip SSP_SIMULATION_MODEL to 

this new folder as shown in Figure A1. After unzipping this file, the following two folders will 

be created that contain all the necessary files: 

• SSP_SIMULATION_MODEL 

• R-4.2.2 

 

Figure A1. The SSP Folder in C Drive Containing “SSP_SIMULATION_MODEL Folder. 

 

The first folder, SSP_SIMULATION_MODEL, which is also referred to as “working 

folder,” contains the R source code and Excel files needed, while the second one is the 

installation of R programming language. The user does not need to modify any files directly as 
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all data and parameter entry can be done through the main Excel file named “VDOT_ODU_SSP-

OPTIMIZER.xlsm” as discussed below. This Excel file is also referred to as the User Interface or 

simply UI. This file is in “C:\SSP \SSP_SIMULATION_MODEL.”  

After unzipping the files, the user can start the program by opening VDOT_ODU_SSP-

OPTIMIZER.xlsm. It should be noted that this file contains a VBA macro and, therefore, 

Windows may block its running. In that case, the user needs to enable macros in Excel. The are 

two ways to unblock the macros. The following steps might be helpful in unblocking the macro: 

Method 1: 

1. Close the workbook containing the blocked macro. 

2. In File Explorer, browse to the location where the workbook is saved. 

3. Right-click the file and select Properties from the context menu. 

4. In the Properties dialog box, check the Unblock box, and then click OK. 

Method 2 (this is the method found to work on VDOT computers during testing): 

1. Open the workbook containing the blocked macro. 

2. Click File→Options→Trust Center→Trust Center Settings→Trusted Locations. 

3. Click Add new location, and copy & paste the path 

“C:\SSP\SSP_SIMULATION_MODEL” in the path box, and then click OK. 

A few steps need to be followed to load the necessary input data and execute the source 

code to generate the output. These steps are listed below and explained in detail in the following 

sections.  

 

• Step 1: Specify the path for R program. 

• Step 2: Enter information for incident generation. 

• Step 3: Type existing beat configuration (if needed). 

• Step 4: SSP simulation parameters input. 

• Step 5: Load generated incident data. 

• Step 6: Run the SSP simulation. 

• Step 7: Load the simulation results into the output worksheets. 

These steps are explained in detail below. Also, the UI file is populated with data for a 

corridor on I-95 from Exit 50 to Exit 83. 

Step 1: Specify the Path for the R Program 

In this step, the user sets the environment by entering the path address to the R 

installation. To begin with this step, open “VDOT_ODU_SSP-OPTIMIZER.xlsm” which is in the 

working directory (i.e., SSP_SIMULATION_MODEL). Go to “R_PATH” worksheet to enter 

the path name as shown in Figure A2. The entry in cell B5 is for the R program and the path 

name needs to include “Rscript.exe” as shown in the figure.  
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Figure A2. Identify Path for R Program and Working Folder 

Step 2: Road Geometry for the Incident Models. 

This step is about entering the road geometry for the corridor and other pertinent data in 

“Simulation_Input” worksheet. This information is organized by road segments. Each segment 

represents a section of a highway between two turnaround points (e.g., interchanges) where the 

SSP vehicle can make a U-turn. The “Simulation_Input” worksheet has eight columns to be 

completed for each road segment as shown in Figure A3. While entering the data, the following 

details need to be observed:  

 

⚫ Segment IDs in column B are just consecutive integers denoting the sequence of 

segments making up the corridor to be analyzed. The numbers could be any 

consecutive integers. 

⚫ Route IDs in column C denote the interstate name and number. There needs to be “-” 

between the number and the capital letter I. (e.g., I-95, I-64, I-81, etc.) 

⚫ District IDs in column D represent the VDOT district name. The first letter should be 

capitalized. 

⚫ Columns E and F are, respectively, for specifying the cardinal direction (e.g., N, S, 

E, W) and AADT for one of the directions of the highway. Columns F and G are for 

the opposing direction of the road.  

⚫ Road length in miles will be entered in column I. 

⚫ Start and end mileposts for each segment are typed into columns J & K. 

⚫ The Region variable column L should be selected from the three alternatives from 

the pulldown options. (“Rural,” “Suburban,” and “Urban.”). Urban can be used for 

congested corridors that may not be necessarily in urban areas. This variable is used 

to determine the SSP vehicle’s speed in the simulation.  

After completing the data entry, click “Create Input File for Incident Generation 

Program” button to generate the data and save the input file needed for the statistical models for 

generating incidents along this corridor. These incidents will be used later in the simulation. The 

generated file called“Incident_Input.csv” can be found in the “C:\SSP 

\SSP_SIMULATION_MODEL\Input\User Input” folder. This csv file will be displayed for 

verification, the user will simply close it after reviewing it for accurate data entry as needed.  
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Figure A3. Interface for Entering Road Geometry and AADT Data 

Steps 3 and 4: Simulation Input Parameters 

These two steps are about defining input parameters needed for the simulation program. 

These two steps are organized for easy referencing – see Figure A4.  

 
Figure A4. Load Road Segments and Input Parameters 

In Step 3, information for existing beat configuration is entered in worksheet 

“Existing_Beat_Config.” This step is optional as there may not be SSP service for the corridor 

being studied. Specify the existing beat configuration by entering the mileposts for each beat. 

 

⚫ Type the Start Milepost in cell C2. Then type the end milepost for each beat in this 

corridor in the subsequent cells under Column C. (e.g., if the corridor is from 

milepost 50 – 83.2 and the beat configurations are 50 – 72.5 and 72.5 – 83.2, the user 

should type 50, 72.5, and 83.2 in column C). These mileposts should correspond to 

(or be selected from) mileposts values typed in the “Simulation_Input” worksheet.  

⚫ Click the button “Generate the Existing Beat Configuration” to save the existing beat 

configuration to a csv file that will be used in the simulation. This file is named 

“Existing_Beat_Config.csv”. This csv file will be displayed for verification, the user 

will simply close it after reviewing it for accurate data entry as needed. 
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In Step 4, important simulation model parameters are specified. These parameters are 

listed in columns A and B in the worksheet titled “Input_Parameters,” and are explained below: 

  

⚫ The Weekday/Weekend option can be specified in cell B1. This allows simulating 

either weekday or weekend operations. Enter 0 for the weekend and 1 for weekdays.  

⚫ SSP service start and end times in simulation can be set in cells B2 and B3. Use a 

number from 0 to 24 to indicate the starting and ending hour of operations. Hour 0 

corresponds to midnight to 1:00AM whereas 23 to 11:00PM to midnight. The hour 

entered for the end time is not included within the SSP operations period. For 

example, to simulate SSP operations starting at 6:00 AM and ending at 2:00 PM, the 

user enters 6 for the start time and 14 for the end time.  

⚫ The program allows the user to set the maximum and minimum number of beats to 

be considered for the corridor being studied. These are set in cells B4 and B5. The 

minimum beat number must be ≥ 2. The maximum beat number should be equal or 

higher than the minimum beat number. 

⚫ The beat length range can be set in cells B6 and B7. Minimum/Maximum beat 

lengths are used in creating feasible beat configurations.  

⚫ SSP vehicle speeds for different regions are found in cells B10-12. In the simulation, 

the SSP vehicle patrols the beat and responds to incidents at these speed values. 

⚫ Not all incidents could be responded to within a reasonable time as the SSP vehicle 

may be servicing other incidents. If the wait time (to respond to an incident) exceeds 

a threshold, that incident is labeled “unable to respond” and ignored for the rest of 

the simulation. The threshold is set in cell B15, and the default value is 30 minutes.  

⚫ Notification time coefficients can be adjusted in cells B19 (for disabled vehicle 

incidents) and B20 (for crash incidents). These parameter values define the linear 

regression functions for the notification times. They should not be modified unless 

there is a need to recalibrate these parameters.  

⚫ The number of runs for each beat configuration in the simulation can be adjusted in 

cell B23. The default value is set to 10. 

⚫ The weighting factor for the composite score, it can be adjusted in cell B25. The 

default value is set to 0.5. Higher values place more emphasis on response rate rather 

than on response time. 

⚫ The parameters are color coded to guide the user. The ones in red should not be 

modified unless a new calibration study is conducted to update these simulation 

parameters. The values in orange could be revised if the user believes that the default 

values may not represent the field conditions or preferred simulation settings. The 

ones in green need to be set by the user depending on the type of analysis being 

conducted. They pertain to the SSP operations hours and days and the number of 

beats to be considered for the corridor.   

After entering the input parameters, the user can click the button “Load Input 

Parameters” to generate the input parameters file needed for the simulation. This file called 

“Parameter_Input.csv” can be found in “C:\SSP \SSP_SIMULATION_MODEL\Input\User 

Input” folder. This csv file will be displayed for verification, the user will simply close it after 

reviewing it for accurate data entry as needed. 
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Step 5: Load Generated Incident Data 

This step generates the incident data or profile for the corridor using the statistical models 

developed. The user can click the button “Load Generated Incident Data” to generate and load 

the incidents to be simulated in the SSP tool. The generated file called “Incident_Profile.csv” 

can be found in the \SSP_SIMULATION_MODEL\Output\Incident_profile.   

 
Figure A5. Load Generated Incident Data 

Step 6: Run SSP Simulation 

Once all input data is ready, the simulation program can be run to generate all feasible 

beat configurations and their performance metrics. Execute the R program by clicking the “Run 

SSP Simulation” button. This will generate output files that are stored in “Output” folder. The 

computation time in this step will vary depending on the corridor length and other parameters.  
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Figure A6. Run SSP Simulation 

Step 7: Load the Simulation Data into the Output Worksheets 

After the simulation is completed, four CSV files are generated and stored in “Output” 

folder:  

1. Beat_Configuration.csv: This contains the list of all feasible beats meeting the 

specifications, e.g., maximum and minimum beat lengths and beat number.  

2. SSP_Performance_Metric(Beat-View).csv: This file provides performance metrics for 

each beat within each feasible beat configuration. Each beat configuration can have two 

or more beats. The data from this file can be loaded to the UI by pressing the button in 

“Output_All” worksheet and navigating to the output folder to select 

SSP_Performance_Metric(Beat-View).csv. 

3. SSP_Performance_Metric(Config-View).csv: This file provides performance metrics for 

each feasible beat configuration. The values for individual beats for a given configuration 

are aggregated in generating this file.  

4. SSP_Project_Best_Beat_Config.csv: This file is a subset of the previous file and reports 

results only for those configurations that are found to perform better/best in terms of the 

key objectives (minimum response time and maximum response rate). The data from this 

file can be loaded to the UI by pressing the button in “Best_Configurations” worksheet 

and navigating to the output folder to select SSP_Project_Best_Beat_Config.csv. 
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Figure A8. Worksheets for Loading Results for All Beat Configurations & Best Configuration 

In addition to tabular results, the program automatically generates a scatter plot for 

response time and response rate (Figure A9), based on the composite score calculated, two of the 

key performance metrics. This plot is saved under “Output” folder.  

 
Figure A9. Sample Plot Showing the Results from the Best Beat Configuration Table 
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APPENDIX B: COMPUTATIONAL TESTS 

Table B1. Results of Computational Tests 

Hardware 
Operating 

System 
CPU Memory 

Test 

Scenario 

Total 

number of 

beat 

configura-

tions 

Total 

beats 

Total time to 

simulate 40 

days for 

each 

configura-

tion 

Rate 

Laptop Microsoft 

Windows X 

Intel®-

Core™-i5-

7300HQ 

CPU @ 

2.50GHz 

16GB (I-95 

from MM 

98.1 to 

148.2 mi) 

133 432 3.58 minutes 37 beat 

configurations/ 

minute/run 

Laptop Microsoft 

Windows XI 

Intel®-

Core™-i7-

12700H 

CPU @ 

2.30GHz 

16GB (I-95 

from MM 

98.1 to 

148.2 mi) 

133 432 0.59 minutes 255 beat 

configurations/ 

minute/run 

Workstation Microsoft 

Windows X 

Intel®-

Core™-i7-

9800X CPU 

@ 3.80GHz 

32GB (I-95 

from MM 

98.1 to 

148.2 mi) 

133 432 0.92 minutes 144 beat 

configurations/ 

minute/run 
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APPENDIX C: GROUP IDENTIFIERS FOR INCIDENT FREQUENCY PREDICTION 

Table C1. Group Identifiers for Incident Frequency Prediction 

Group 

Identifiers 

Route 

Name 

VDOT District Group 

Identifiers 

Route 

Name 

VDOT District 

1 I-195N Richmond 23 I-66W Culpeper 

2 I-195S Richmond 24 I-66W Northern Virginia 

3 I-295N Richmond 25 I-66W Staunton 

4 I-295S Richmond 26 I-77N Bristol 

5 I-381N Bristol 27 I-77N Salem 

6 I-381S Bristol 28 I-77S Bristol 

7 I-395N Northern Virginia 29 I-77S Salem 

8 I-395R Northern Virginia 30 I-81N Bristol 

9 I-395S Northern Virginia 31 I-81N Salem 

10 I-495N Northern Virginia 32 I-81N Staunton 

11 I-495S Northern Virginia 33 I-81S Bristol 

12 I-581N Salem 34 I-81S Salem 

13 I-581S Salem 35 I-81S Staunton 

14 I-64E Culpeper 36 I-85N Richmond 

15 I-64E Richmond 37 I-85S Richmond 

16 I-64E Staunton 38 I-95N Fredericksburg 

17 I-64W Culpeper 39 I-95N Northern Virginia 

18 I-64W Richmond 40 I-95N Richmond 

19 I-64W Staunton 41 I-95R Northern Virginia 

20 I-66E Culpeper 42 I-95S Fredericksburg 

21 I-66E Northern Virginia 43 I-95S Northern Virginia 

22 I-66E Staunton 44 I-95S Richmond 

 

  



60 

 

 

  



61 

 

APPENDIX D: GROUPS IDENTIFIERS FOR INCIDENT DURATION PREDICTION 

Table D1. Group Identifiers for Incident Duration Prediction 

Group 

Identifiers 

Route 

Name 

VDOT District Group 

Identifiers 

Route 

Name 

VDOT District 

1 I-195N Richmond 23 I-66W Staunton 

2 I-195S Richmond 24 I-77N Bristol 

3 I-295N Richmond 25 I-77N Salem 

4 I-295S Richmond 26 I-77S Bristol 

5 I-381N Bristol 27 I-77S Salem 

6 I-395N Northern Virginia 28 I-81N Bristol 

7 I-395S Northern Virginia 29 I-81N Salem 

8 I-495N Northern Virginia 30 I-81N Staunton 

9 I-495S Northern Virginia 31 I-81S Bristol 

10 I-581N Salem 32 I-81S Salem 

11 I-581S Salem 33 I-81S Staunton 

12 I-64E Culpeper 34 I-95N Fredericksburg 

13 I-64E Richmond 35 I-95N Northern Virginia 

14 I-64E Staunton 36 I-95N Richmond 

15 I-64W Culpeper 37 I-95S Fredericksburg 

16 I-64W Richmond 38 I-95S Northern Virginia 

17 I-64W Staunton 39 I-95S Richmond 

18 I-66E Culpeper    

19 I-66E Northern Virginia    

20 I-66E Staunton    

21 I-66W Culpeper    

22 I-66W Northern Virginia    

 

 


