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Abstract:

Accurate prediction of travel time reliability measures would help state departments of transportation set performance
targets and communicate the progress toward meeting those targets as required by the Moving Ahead for Progress in the 21%
Century Act (MAP-21). In arecent Virginia Transportation Research Council study, Methods to Analyze and Predict Interstate
Travel Time Reliability, researchers developed and tested statistical and machine learning models to analyze and predict travel
time reliability on interstate highways. The generalized random forest (GRF) model showed promise in terms of data processing
(no need for pre-clustering of travel times) and the relative accuracy of the results and was recommended for further evaluation
by the study’s technical review panel.

The current study directly adapted the previously developed GRF models to meet the requirements of MAP-21 federal
target setting. In particular, the GRF approach developed using the INRIX Traffic Message Channel network for weekday peak
period traffic by the prior study was successfully (1) adapted to the federally required National Performance Management
Research Dataset (NPMRDS) network, and (2) expanded to cover the weekday midday and weekend daytime periods. The
technical review panel was also interested in practical steps to implement the predictive models. To that end, suggested
procedures for applying the new GRF models—including relevant model inputs and data preparation steps—are documented in
this report.

Direct application of the GRF models trained with INRIX data (2017-2018) to predict travel time reliability measures
in 2009 on the NPMRDS network highlighted the need for developing new GRF models targeted to the NPMRDS network,
especially when the 90th percentile travel time was predicted. Whereas the INRIX models showed mean absolute percentage
errors of 37% and 51% for freeway and interchange segments, respectively, for the PM peak hours, the new GRF models
(trained with 2017-2018 NPMRDS data) had relatively smaller mean absolute percentage errors of 34% for freeway segments
and 38% for interchange segments depending on how work zones were characterized and how data were aggregated. Because
operational improvements are often evaluated on the basis of how they improve reliability, especially on how the 90th percentile
travel time is affected, the new GRF models are relevant for planning operational investments. In addition, because many of
these improvements affect interchanges, the remedy of the new GRF models is essential for evaluating weaving strategies or
traveler information systems that could be implemented at these locations.
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ABSTRACT

Accurate prediction of travel time reliability measures would help state departments of
transportation set performance targets and communicate the progress toward meeting those
targets as required by the Moving Ahead for Progress in the 21 Century Act (MAP-21). Ina
recent Virginia Transportation Research Council study, Methods to Analyze and Predict
Interstate Travel Time Reliability, researchers developed and tested statistical and machine
learning models to analyze and predict travel time reliability on interstate highways. The
generalized random forest (GRF) model showed promise in terms of data processing (no need for
pre-clustering of travel times) and the relative accuracy of the results and was recommended for
further evaluation by the study’s technical review panel.

The current study directly adapted the previously developed GRF models to meet the
requirements of MAP-21 federal target setting. In particular, the GRF approach developed using
the INRIX Traffic Message Channel network for weekday peak period traffic by the prior study
was successfully (1) adapted to the federally required National Performance Management
Research Dataset (NPMRDS) network, and (2) expanded to cover the weekday midday and
weekend daytime periods. The technical review panel was also interested in practical steps to
implement the predictive models. To that end, suggested procedures for applying the new GRF
models—including relevant model inputs and data preparation steps—are documented in this
report.

Direct application of the GRF models trained with INRIX data (2017-2018) to predict
travel time reliability measures in 2009 on the NPMRDS network highlighted the need for
developing new GRF models targeted to the NPMRDS network, especially when the 90th
percentile travel time was predicted. Whereas the INRIX models showed mean absolute
percentage errors of 37% and 51% for freeway and interchange segments, respectively, for the
PM peak hours, the new GRF models (trained with 2017-2018 NPMRDS data) had relatively
smaller mean absolute percentage errors of 34% for freeway segments and 38% for interchange
segments depending on how work zones were characterized and how data were aggregated.
Because operational improvements are often evaluated on the basis of how they improve
reliability, especially on how the 90th percentile travel time is affected, the new GRF models are
relevant for planning operational investments. In addition, because many of these improvements
affect interchanges, the remedy of the new GRF models is essential for evaluating weaving
strategies or traveler information systems that could be implemented at these locations.
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INTRODUCTION

Under the Moving Ahead for Progress in the 215 Century Act (MAP-21), state
departments of transportation (DOTS) are required to assess and report the travel time reliability
(TTR) performance on the National Highway System. Accurate prediction of reliability
measures would help DOTSs set performance targets and communicate the progress toward
meeting those targets. Determining credible forecasts of TTR measures is increasingly
becoming a key component of the system planning and performance measurement process at
many transportation agencies, including the Virginia Department of Transportation (VDOT), as
they work toward establishing reliability targets and tracking progress toward meeting them.
Provided sufficient historical travel time data are available to characterize fully the distributions
of trip travel times, determining the TTR measures for specific origin-destination pairs is
generally straightforward. However, developing credible forecasts of TTR can be a significant
challenge because of the dynamic nature of traffic and the variety of factors known to contribute
to unreliable travel times, such as traffic incidents, inclement weather, work zones, special
events, traffic control devices, fluctuations in demand, and inadequate base capacity
(Transportation Research Board, 2003). Not surprisingly, most TTR prediction models
developed in the past focused on predicting a single performance measure using a few variables
(e.g., traffic volume, incidents, and weather) with data collected from one corridor or a limited
number of segments (Zargari et al., 2021).

Another challenge to determining credible TTR predictions is the “largeness” and
complexity of relevant input data. At present, the main source of travel time data for reliability
analysis is probe vehicle data. Many state transportation agencies in the United States procure
and use probe vehicle data from commercial entities such as INRIX to measure highway system
performance or to provide traveler information. The Federal Highway Administration, through
its National Performance Measurement Research Dataset (NPMRDS) program—and in
collaboration with commercial entities such as INRIX, TomTom, and HERE—has also offered
free probe data to state and local transportation agencies since 2013. These probe data sources
generally have wide coverage areas and measure travel times on links termed “traffic message
channel” (TMC) segments. TMCs enable access to travel time distributions at generally high
spatial and temporal resolutions. This is desirable, as accurate travel time cumulative
distribution functions (CDFs) are essential to successful TTR applications. However,
“estimating and keeping separate CDFs for hundreds of individual TMCs may not be efficient
from a data management and analysis perspective” (Zhang et al., 2021a).
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The purpose of a 2021 Virginia Transportation Research Council (VTRC) study, Methods
to Analyze and Predict Interstate Travel Time Reliability (hereinafter called “the Phase | study”),
was to overcome some of these challenges by developing a linear quantile mixed modeling
framework and generalized random forest (GRF) models for TTR analysis and prediction on
interstate highways during the peak traffic periods (Zhang et al., 2021b). The mixed modeling
framework first partitioned TMCs into approximately homogenous clusters based on the
similarity of their travel time CDFs and then used linear quantile mixed models (LQMMs) to
quantify TTR impact factors and predict relevant TTR measures for each cluster. Using
clustered data meant that “LQMMSs were only necessary for a limited number of clusters rather
than for hundreds of individual segments, thus making the process more efficient and
manageable” (Zhang et al., 2022). Random forests, first introduced by Breiman (2001), are one
of the most commonly used machine learning techniques with a reputation for good prediction
accuracy. The GRF approach as implemented in the Phase | study allowed for modeling the
enormous amounts of TMC data with no need for performing clustering as an interim step of the
reliability analysis. The models were developed and tested using INRIX commercial data from
2017-2019. It was found that the GRF models performed better than LQMMs at predicting the
federally mandated level of travel time reliability (LOTTR) measure (as well as the 80th and
50th percentiles of travel times) and performed only slightly worse at predicting the 90th
percentile. Therefore, the GRF approach was preferred over LQMMs for reliability prediction.
For VDOT to apply the GRF approach for successfully predicting TTR, the Phase I study
provided three recommendations:

1. VTRC should develop detailed step-by-step data preparation and modeling guidance
for relevant VDOT divisions and the Office of Intermodal Planning and Investment
(OIPI).

2. VTRC should conduct additional research to meet the requirements of MAP-21
federal target setting, including expansion of the GRF models to use the NPMRDS,
extension to weekday midday and weekend periods, and expansion of the GRF
approach to cover the non-interstate National Highway System.

3. VDOT’s Traffic Engineering Division and Operations Division should explore new
data sources that could augment or improve existing data sources that were identified
as having limitations, such as weather data and work zone information.

This implementation study addressed Recommendation 1 and the parts of

Recommendation 2 pertaining to the interstate system.
PURPOSE AND SCOPE
The purpose of this implementation study was to achieve the following objectives:
e Adapt and apply the GRF approach developed for peak periods using the INRIX

TMC network in the Phase I study to the NPMRDS network and confirm, if as
expected, the value in developing new models customized for the NPMRDS network.
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e Expand the GRF approach to cover the weekday midday and weekend daytime
periods using NPMRDS while simultaneously exploring the best way to incorporate
two specific sets of data into the GRF approach: operational data (presence of Safety
Service Patrol [SSP] and parallel managed lanes) and data reflecting shoulder and
lane closures due to work zones.

e Develop detailed step-by-step data preparation and modeling guidance for relevant
VDOT divisions and OIPI so that they can use the GRF approach developed in both
this study and the Phase | study for predicting TTR.

The scope of the study was limited to interstate highways in Virginia.

BACKGROUND
Overview of Phase | Study

The methodology and major results from the Phase | study formed the framework for this
implementation study. This section provides a summary of relevant portions of the Phase | study
to provide background and context for the information discussed in the current study.

The VTRC report Methods to Analyze and Predict Interstate Travel Time Reliability, by
Zhang et al. (2021b), described a study designed to develop a method to analyze and predict TTR
on interstate highways. Using data collected in Virginia from 2017-2019, the study developed
models to estimate the 50th, 80th, and 90th percentiles of travel times at the TMC level to
quantify the effects of TTR impact factors and predict select reliability measures.

First, LQMMs were built using both data maintained by VDOT and crowdsourced event
data. To enhance efficiency and make the process more manageable, segments were partitioned
into approximately homogeneous clusters based on the similarity of their travel time CDFs. A
single LQMM model was then fit to the data in each cluster. Model results using the
crowdsourced data were unstable and difficult to interpret because of data quality issues such as
unbalanced spatial density, duplicate reporting, and inconsistent event classification because of
individual observer bias. The results using VDOT-maintained data were more reliable and
interpretable. Those models showed that frequencies of non-recurrent events, such as incidents
and weather, were correlated with higher travel time percentiles. The LQMM was compared
with the trend line approach, a common prediction method used in practice, and the results
showed that LQMMs significantly improved the accuracy of predictions over the trend line
approach based on mean absolute percent error.

Second, GRF models were tested as an alternative prediction method. GRF models
improved the prediction accuracy over LQMMs for the 50th and 80th percentiles, but the
accuracy was slightly worse than LQMMs for the 90th percentile. In addition, the GRF models
could also reflect the impact of variables that were removed from LQMMs because of
insignificance, such as the presence of SSPs. Further, it was not necessary to cluster TMC
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segments into homogeneous groups with similar shapes of travel time distributions when using
random forests, thus helping to reduce the work required to format data prior to modeling.

Third, before-after studies were conducted to illustrate the application of LQMMs and
GRF models. Both models accurately captured actual changes in reliability created by
improvement projects. GRF models were more sensitive to the reliability changes caused by
non-recurrent events, such as incidents or work zones.

The study recommended that VDOT use the GRF model for predicting TTR on interstate
highways. A brief description of the GRF method is provided here to provide the context for its
application in this implementation study. A more detailed description is provided in Athey et al.
(2019) and the Phase I study report (Zhang et al., 2021b).

Random Forest Models

Random forests, first introduced by Breiman (2001), are one of the most commonly used
machine learning techniques with a reputation for good prediction accuracy and the capacity to
handle large numbers of predictor variables even in the presence of complex interactions. The
essential idea of random forests is to generate an ensemble of trees through bootstrap (or
subsample) aggregation whereby each tree is grown on a different random subset of the training
data. Individual trees are grown by recursively splitting the feature space into regions containing
observations with similar values of the response variable. Each split seeks to maximize the
improvement to model fit, e.g., by choosing the variable and threshold value that minimizes the
sum of squared residuals. A random selection process that restricts the variables available at
each step of the algorithm provides additional randomness in the trees. The prediction of the
conditional mean is obtained by averaging the response across the ensemble of trees.

Generalized Random Forests

GRF is a method for nonparametric estimation that applies to an array of statistical
estimation tasks including non-parametric quantile regression, conditional average partial effect
estimation, and heterogeneous treatment effect estimation. It shares several attributes with the
standard random forest algorithm including subsampling, recursive partitioning, and random split
selection. However, whereas the standard random forest algorithm obtains the final estimate by
averaging estimates from each member of an ensemble, the GRF estimate is based on a weighted
average. Individual tree weights are derived as a type of adaptive nearest neighbor estimator by
“averaging neighborhoods implicitly produced by different trees” (Athey et al., 2019). The node
splitting rules are designed to seek trees that when combined into a forest induce weights that
lead to “good” estimates able to capture heterogeneity in the target parameter. GRF for quantile
estimation (Athey et al., 2019) uses the moment conditions in the form of Equation 1 to identify
the best split that maximizes the heterogeneity of quantiles of interest among the child nodes.

Yo(Y) = q1({V; > 6} — (1 - 1({Y; < 6}) [Eq. 1]
where q is the estimated quantile, 6 is the estimation a tX;, and Y; is the observation atX;.
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Application of GRF to Travel Time Reliability Prediction

Data used for the analysis were for the morning and afternoon peak traffic periods (6 to
10 AM; 4 to 8 PM) for the years 2017-2019. Probe travel times were obtained from INRIX. The
probe travel times were based on TMC segments. The model input variables were as follows:

Segment length (mile)

Number of through lanes (count)

Frozen precipitation (inches)

Rain precipitation (inches)

Number of fatal and severe injury crashes (count)
Number of visible injury crashes (count)

Number of nonvisible injury crashes (count)
Number of property damage only crashes (count)
Number of work zone shoulder closures (count)
Number of work zone lane closures (count)
Number of breakdown incidents (count)

Number of hazard incidents (count)

Area type (1 if rural, O otherwise)

Volume to capacity ratio (ratio)

Presence of parallel HOV/Express lanes (1 if present, O otherwise)
Heavy vehicle percentage (percent)

Availability of SSP (1 if available, 0 otherwise).

The assembled data were used to develop GRF models to predict the 50th, 80th, and 90th
percentiles of travel times separately for freeway segments and interchange segments. The
models were constructed using different values of model parameter mtry—the number, on
average, of candidate variables available for node splitting of random forests. It was found that
prediction accuracy increased with increasing values of mtry and models with mtry equal to the
total number of variables performed best. The results tended to be more accurate for freeway
segments than for interchange segments, and the prediction accuracy decreased as the travel time
percentile being predicted increased.

Overall, the GRF performed better than the alternative method evaluated in the Phase |
study, i.e., LQMMs, and was preferred over LQMMs for reliability prediction.
METHODS
This implementation study included four major tasks:
e Task 1: Collect and prepare data.

e Task 2: Evaluate the performance of the “INRIX-trained” GRF models with
NPMRDS.



e Task 3: Develop and evaluate new GRF models using NPMRDS.

e Task 4: Develop a data preparation and modeling guide.

Task 1: Collect and Prepare Data

This task involved collecting and preparing the data needed to expand the GRF approach
developed in the Phase I study to use NPMRDS and to cover all four MAP-21 analysis periods.
Those periods are defined as:

e AM: 6 AM to 10 AM on weekdays

e Midday: 10 AM to 4 PM on weekdays
e PM: 4 PM to 8 PM on weekdays

e Weekend: 6 AM to 8 PM on weekends.

Three years of data (2017-2019) were used. Major data elements and sources included
the following:

e NPMRDS travel times and TMC segment metadata

e Traffic volumes, roadway geometry, incidents, work zones, managed lanes, and SSP
data from internal VDOT databases

e Weather data from the Local Climatological Data provided by the National Centers
for Environmental Information.

In addition to the model variables used in the Phase I study, this study collected
additional information to explore new variable forms for work zones, parallel managed lanes,
and SSPs that might better reflect their temporal and spatial features. Table 1 lists the variables
considered in this study. In the Phase | study, work zone variables included the numbers of
shoulder closures and lane closures (work zone variable option C in Table 1). To consider the
impact of work zone duration, the fractions of time when there was a shoulder closure / lane
closure due to a work zone (work zone variable option P in Table 1) were calculated. As the
work zone shoulder and lane closures events are not directly available from VDOT’s work zone
database, the number of lanes affected by work zones (closed or narrowed) and the total number
of lanes, which are readily available from VDOT’s work zone database, were used to calculate
new work zone variables (work zone variable options L and LP in Table 1).

The data conflation procedure developed in the Phase | study was used to assemble data
from multiple sources. The NPMRDS TMC segment was used as the spatial unit of analysis.
Datasets with a temporal dimension (such as travel time, traffic volumes, and incidents) were
first aggregated at an hourly level. Three types of data aggregations were used to create datasets
for analysis:

1. Type 0: Data were aggregated at an hourly level.
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2. Type 1. Data were aggregated at a “whole-period” level for each of the four analysis
periods. For example, the data would be aggregated from 6 AM to 10 AM on each
weekday for the AM peak period. As with the Phase | study, the SSP and parallel
managed lanes indicator variables were set to 1 if SSP and parallel managed lanes
were present in any hour of the analysis period (option 1 for managed lanes and SSP
in Table 1).

3. Type 2: Data were aggregated at a whole-period level such as type 1 aggregation, but

the fraction of time when SSP/ parallel managed lanes were in operation during the
whole period was calculated (option 2 for managed lanes and SSP in Table 1).

Table 1. Variables Considered for GRF Models

Variable Category Variable Variable Name
Geometric features Segment length (miles) miles
Number of through lanes (count) throu_lane
Managed lanes Option 1 Presence of parallel managed lanes (presence=1, Par_lane
otherwise=0)
Option 2 Fraction of time when parallel managed lanes are | Par_lane_r
present (decimal)
Area type Area type (urban=0, rural=1) rural
Weather Frozen precipitation (inches) frozen_precip
Rain precipitation (inches) rain_precip
Incident Frequency of fatal and severe injury crashes (count) Severe_Injury
Frequency of visible injury crashes (count) Visible Injury
Frequency of nonvisible injury crashes (count) Nonvisible Injury
Frequency of property damage only crashes (count) PDO
Frequency of breakdown incidents (disabled vehicles) (count) | breakdown
Frequency of hazard incidents (fire related) (count) hazard
Work zone Option C | Number of shoulder closure work zones (count) shoulder_closure
Number of lane closure work zones (count) lane_closure
Option P Fraction of time when there was a shoulder shoulder_closure_r
closure due to work zone (decimal)
Fraction of time when there was a lane closure lane_closure_r
due to work zone (decimal)
Option L Number of lanes affected (count) lane_affected
Option LP | Fraction of lanes affected (decimal) lane_affected r
Traffic demand Volume-to-capacity ratio (decimal) VC_ratio
Percentage of heavy vehicles (decimal) heavy percent
Safety Service Patrol | Option 1 Presence of SSP (present=1, otherwise=0) ssp
(SSP) Option 2 Fraction of time when SSP is present (decimal) Ssp_r

Task 2: Evaluate the Performance of the INRIX-Trained GRF Models With NPMRDS

This task applied the GRF models developed for weekday peak traffic periods (6 AM to
10 AM and 4 PM to 8 PM) based on the INRIX TMC segments in the Phase | study to NPMRDS
segments and evaluated their performance. The models trained in the Phase | study were directly
used to predict the 50th, 80th, and 90th percentiles of travel times using NPMRDS segments.
The main purpose of this task was to assess the transferability of the Phase | GRF models to
NPMRDS segments. The prediction accuracy was evaluated using performance measures



including mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared
error (MSE), and bias (the average difference between predictions and observations).

Task 3: Develop and Evaluate New GRF Models Using NPMRDS

This task developed a new set of GRF models for all MAP-21 analysis periods using
NPMRDS travel time data. As in the Phase | study, separate models were created for freeway
mainline segments and interchange segments. For each of the four analysis periods, GRF models
were trained using data aggregated at the hourly level and the whole-period level to identify the
best modeling approach. This is in contrast to the Phase | models, which were trained solely at
the whole-period level. In addition, a single model for all analysis periods together, with period
specified as an indicator variable, was explored.

The GRF models were evaluated using MAE, MAPE, MSE, and bias. An average score
using these four measures was calculated for each model and each predicted travel time
percentile to rank the models, and then the best-performing models were selected.

Task 4: Develop Data Preparation and Modeling Guide

This task developed a step-by-step guidance document for VDOT divisions and OIPI so
that they could use the GRF models for predicting TTR on interstates. This document includes
specific information on data sources used, data formatting, and data conflation methods. This
task also prepared the code scripts to apply the proposed GRF models.

RESULTS AND DISCUSSION
Data Collection and Preparation

Three datasets were created for developing and analyzing GRF models for this study.
One was the dataset aggregated at the hourly level; the summary statistics are given in Table 2.
The other two were datasets aggregated at the whole-period level using the type 1 and type 2
aggregation approaches described in the “Methods” section. In each of the three datasets, four
sets of work zone variables (options C, P, L, and LP) were included.

Performance of Phase | GRF Models With NPMRDS Data

The Phase | study trained GRF models using data for 2017 and 2018 to predict the
percentile of travel times on INRIX TMC segments for weekday peak traffic periods (6 AM to
10 AM, 4 PM to 8 PM). The models trained in the Phase I study were directly used to predict
the 50th, 80th, and 90th percentiles of travel times for INRIX TMC and NPMRDS segments in
2019. The work zone variables used here are the number of work zone lane closures and the
number of work zone shoulder closures (work zone option C).



Table 2. Summary of Variables Aggregated at the Hourly Level

Freeway Segments Interchange Segments
Std. Std.
Variable Mean Dev. Min. Max. Mean Dev. Min. Max.
Segment length (miles) 2.219 2.003 0.100 9.034 0.488 0.249 0.100 2.074
Number of through lanes (count) | 2.571 0.770 1.000 5.000 2.566 0.757 1.000 5.000
Frozen precipitation (inches) 0.000 0.005 0.000 5.090 0.000 0.005 0.000 5.090
Rain precipitation (inches) 0.004 | 0.040 0.000 8.470 0.004 0.040 0.000 8.470

Frequency of fatal and severe 0.000 0.010 0.000 3.000 0.000 0.006 0.000 1.000
injury crashes (count)

Frequency of visible injury 0.000 0.022 0.000 4.000 0.000 0.016 0.000 3.000
crashes (count)

Frequency of nonvisible injury 0.000 0.008 0.000 2.000 0.000 0.006 0.000 2.000
crashes (count)

Frequency of property damage 0.002 0.044 0.000 5.000 0.001 0.031 0.000 4.000
only crashes (count)

Number of shoulder closure 0.058 0.235 0.000 1.000 0.044 0.205 0.000 1.000
work zones (count, option C)

Fraction of time when there was | 0.058 0.231 0.000 1.000 0.044 0.202 0.000 1.000
work zone shoulder closure
(decimal, option P)

Number of lane closure work 0.020 0.142 0.000 1.000 0.016 0.126 0.000 1.000
zones (count, option C)

Fraction of time when there was | 0.020 0.138 0.000 1.000 0.016 0.123 0.000 1.000
work zone lane closure (decimal,

option P)

Number of lanes affected (count, | 0.161 0.725 0.000 13.000 | 0.127 0.657 0.000 13.000
option L)

Fraction of lanes affected 0.019 0.083 0.000 1.000 0.014 0.075 0.000 1.000

(decimal, option LP)

Frequency of vehicle breakdown | 0.008 0.091 0.000 5.000 0.002 0.046 0.000 3.000
incidents (count)

Frequency of hazard incidents 0.000 0.012 0.000 2.000 0.000 0.007 0.000 2.000
(fire related) (count)

Avrea type (urban=0, rural=1) 0.373 0.484 0.000 1.000 0.355 0.478 0.000 1.000
VVolume-to-capacity ratio 0.430 0.226 0.013 2.714 0.439 0.230 0.014 2.859
(decimal)

Presence of parallel managed 0.070 0.255 0.000 1.000 0.072 0.258 0.000 1.000
lanes (present=1, otherwise=0)

Percentage of heavy vehicles 0.128 0.049 0.001 0.546 0.127 0.046 0.004 0.534
(decimal)

Presence of Safety Service Patrol | 0.619 0.486 0.000 1.000 0.625 0.484 0.000 1.000
(present=1, otherwise=0)

Table 3 shows the prediction performance of the Phase | GRF models using input data
assembled for INRIX TMC segments in the Phase | study and the input data for NPMRDS
segments aggregated at the whole-period level (type 1) for peak traffic periods. As shown in
Table 3, the model trained in Phase I performed better for INRIX TMC segments than for
NPMRDS segments. This was not surprising as the two datasets had differences in roadway
segmentation and travel time data. Although both networks have data coverage on all interstates,
the roadways may be separated into TMCs differently on the NPMRDS and INRIX TMC
networks. Figure 1 shows examples of TMC segments on these two networks in 2017.




Table 3. Performance of Phase | Models for Peak Traffic Periods

Freeway Segments Interchange Segments

Segment Type | INRIX TMC | NPMRDS TMC | INRIX TMC | NPMRDS TMC

50th Percentile Travel Time
MAE 6.15 10.48 2.31 35.13
MSE 140.83 737.16 33.61 6668.70
MAPE 6.73 9.06 7.65 20.81
Bias -0.48 -8.22 -0.78 -33.22

80th Percentile Travel Time
MAE 14.22 16.73 7.48 39.07
MSE 886.5 1187.77 345.89 6987.77
MAPE 14.68 19.07 17.34 32.99
Bias -0.11 1.64 -1.95 -27.18

90th Percentile Travel Time
MAE 22.14 30.54 11.73 45.32
MSE 1555.32 2158.01 496.10 7162.83
MAPE 25.21 38.24 33.83 56.99
Bias 7.17 16.85 2.59 -16.32

MAE = mean absolute error; MSE = mean squared error; MAPE = mean absolute percentage error.

@

@ (b)
Figure 1. Example of NPMRDS (Blue Lines) and INRIX (Orange Lines) Segments: (a) NPMRDS segment
shorter than overlapping INRIX segment; (b) NPMRDS segment longer than overlapping INRIX segment.

In Figure 1a, the INRIX TMC segment (orange line) is longer than the NPMRDS
segment (blue line) and it includes the merging area; in Figure 1b, the NPMRDS segment is
longer. The NPMRDS network included fewer segments than the INRIX TMC network for
interstates in Virginia in the studied years. The travel times for NPMRDS and INRIX networks
were generated from the same probe data sources, but the NPMRDS dataset did not use imputed
data. In general, a model would be expected to perform better on the population for which it was
trained than on a different population.

The GRF models trained in the Phase | study for peak traffic periods were also used to
predict the 50th, 80th, and 90th travel time percentiles for other periods for the NPMRDS
segments. The MAPEs of the predictions are shown in Figure 2. Generally, the MAPE was
lower for the AM period, indicating relatively higher accuracy.
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The MAPEs for freeway segments were lower than for interchange segments. For
freeway segments, the differences in MAPE were within 10% of one another across all analysis
periods. For interchange segments, the MAPEs of the 50th and 80th percentile travel times were
much higher for the weekend and PM periods than for other periods. For the 90th percentile
travel time on interchange segments, the MAPESs were higher for the AM and midday periods.
Other performance measures showed similar trends. The values of other performance measures
are provided in Appendix A. As with the Phase I study, the prediction accuracy for the 50th
percentile travel time was higher than for the 80th and 90th percentile travel times. The Phase |
models performed reasonably well in predicting the 50th percentile travel time for freeway
segments. However, for interchange segments, the prediction performance was relatively poorn
even for the 50th percentile. Therefore, it was decided that there was value in developing new
models using the NPMRDS network.

GRF Models for NPMRDS Data

A new set of GRF models was developed to predict TTR on the NPMRDS network using
NPMRDS data to train the models. Different data aggregation and variable definition options for
capturing the potential effects of work zone lane/shoulder closures on TTR were also explored.

Model Development

GRF models were developed using three datasets assembled using different aggregation
approaches for the NPMRDS segments discussed earlier. The data for 2017 and 2018 were used
for training, and the data for 2019 were used for testing. Based on the results of the Phase |
study and preliminary analysis using the NPMRDS dataset, the GRF model parameter mtry, the
number of variables tried for each split, was set to the total number of variables. Although there
are other model tuning parameters, such as the minimum number of observations in a leaf node
and the number of total trees, they contribute a minimal amount to prediction changes (Probst et
al., 2019). For these parameters, the commonly used values were adopted. The minimum node
size was set to 10, and the number of trees was 2,000 for all models.

Separate GRF models were created for freeway mainline segments and interchange
segments. The GRF models trained included the following:

e Period-specific models for each of the four analysis periods. For each analysis
period, GRF models were separately trained with three datasets aggregated at the
hourly level (data aggregation type 0) and the whole-period level (data aggregation
type 1 and type 2, respectively). With each dataset, four models were trained for each
period using input data with different work zone variables (options C, P, L, and LP).

e Asingle model for all analysis periods combined together, with each period specified
as an indicator variable. Similar to the models for individual periods, different single
models were separately trained with datasets aggregated using the three different
approaches. With each dataset, four models were trained using input data with
different work zone variables.
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Model Performance

The set of GRF models were tested using data for 2019. For each model, the 50th, 80th,
and 90th percentile travel times were estimated, and the LOTTR was calculated as the ratio of
the 80th percentile over the 50th percentile. Performance measures, including MAE, MAPE,
MSE, and bias, were calculated for each model and for each predicted percentile. The values of
the performance measures are provided in Appendix B. Due to the large model size and long
computing time, the single model using hourly data was deemed to be inappropriate for
implementation by VDOT, and the results of that model are not included in this report.

Comparison With Phase | Models

The performance of Phase | models and the period-specific models developed in the
current study is compared in Figure 3. The left side of the figure shows the MAPEs of the 50th,
80th, and 90th percentile travel times on NPMRDS segments predicted using GRF models
developed using INRIX data in Phase I, and the right side shows the MAPEs of predictions using
period-specific models trained using NPMRDS data aggregated at the whole-period level (type
1). The work zone variables in the period-specific models are the same as the Phase | model
(work zone option C), and data were aggregated at the hourly level (type 0). The NPMRDS
period-specific models performed much better than the Phase | models. The prediction accuracy
was significantly improved (by as much as 50% in some cases) for all three predicted travel time
percentiles. This was consistent with expectations and supports the belief stated earlier that there
may be value in training the GRF with data assembled for NPMRDS if TTR predictions are to be
made for the NPMRDS network.

The accuracy of PM period models was relatively lower than for models for the other
three periods, and the PM period is also the period that probably exhibits the most variability in
travel times. Nevertheless, the results were generally better than with the Phase | models, even
for the PM period. In particular, when PM models built from INRIX training data (from 2017-
2018) in Phase | were applied to testing data (using 2019 NPMRDS data), the MAPE for the
50th percentile travel time was roughly 10% for freeway segments and 31% for interchange
segments. The new period-specific GRF models—trained from NPMRDS data (from 2017-
2018) and applied to 2019 NPMRDS data—yielded comparable performance for freeway
segments and significant improvement for interchange segments. They had an average MAPE of
9% for freeway segments and 10% for interchange segments, depending on how work zones
were characterized and how data were aggregated in the new models (see details in Appendix B).
In addition, the new GRF models showed significant improvement when the 90th percentile
travel time was considered. Whereas the INRIX models showed an average MAPE of 37% and
51% for freeway and interchange segments, respectively, for the PM peak hours, the new GRF
models showed an average MAPE of 34% for freeway segments and 38% for interchange
segments. Because operational improvements are often evaluated based on how they improve
reliability, with reliability commonly based on how the 90th percentile travel time is affected, the
new GRF models can be valuable for planning operational investments.
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Results from Models Trained with NPMRDS (work zone option C)

Results from Phase 1 Models
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Model Selection

More than 200 models were tested. Models were evaluated based on how well they
performed on the testing dataset in predicting the 50th, 80th, and 90th percentile travel times. To
select the best-performing models, GRF models were ranked by MAE, MAPE, MSE, and bias
for each segment type (freeway and interchange) and analysis period. A model’s performance in
predicting a specific travel time percentile (e.g., the 50th percentile) was determined by the
average ranking based on all four performance measures. An aggregate ranking for each model
was obtained by averaging across the three predicted percentiles.

The top five ranked period-specific models for each segment type and analysis period are
shown in Table 4. For single models that predict the 50th, 80th, 90th percentile travel times for
all analysis periods at the same time, the models were ranked for each period based on the
aggregated rankings of each model. The top four ranked single models for each analysis period
are listed in Table 5.

Table 4. Top 5 Period-Specific Models for Each Analysis Period

Freeway Segments | Interchange Segments
Work Zone Data Work Zone Data
Predicted Variable Aggregation Variable Aggregation
Period Ranking Option Type Rank Option Type

AM 1 C 0 1 P 0

2 LP 0 2 LP 0

3 L 2 3 C 2

4 P 0 4 C 0

5 C 2 5 P 2
Midday 1 C 1 1 C 2

2 P 0 2 P 1

3 C 0 3 LP 0

4 C 2 4 C 1

5 LP 0 5 P 0
Weekend |1 P 0 1 C 0

2 LP 0 2 P 1

3 L 0 3 P 0

4 C 1 4 L 0

5 L 1 5 LP 1
PM 1 C 0 1 P 2

2 L 0 2 P 0

3 LP 0 3 L 1

4 LP 1 4 P 1

5 P 0 5 C 0

Work zone variable option: C = count of work zone lane/shoulder closures; L= number of lanes affected; LP =
fraction of lanes affected; P = fraction of time when there was a lane/shoulder closure due to the work zone. Data
aggregation type: 0 = data were aggregated at the hourly level; 1 = data were aggregated at the whole-period level
for each of the four analysis periods with the Safety Service Patrol (SSP) and parallel managed lanes indicator
variables set to 1 if SSP and parallel managed lanes were present in any hour of the analysis period; 2 = data were
aggregated at the whole-period level as with type 1 aggregation but the fraction of time when SSP / parallel
managed lanes were in operation was calculated.
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Table 5. Top 4 Single GRF Models for Each Analysis Period

Freeway Segments Interchange Segments
Work Zone Data Work Zone Data
Predicted Variable Aggregation Variable Aggregation
Period Ranking Option Type Rank Option Type

AM 1 LP 2 1 L 1
2 L 2 2 P 2

3 C 2 3 P 1

4 P 2 4 C 1

Midday 1 LP 2 1 L 1
2 P 2 2 C 2

3 L 2 3 LP 2

4 C 1 4 LP 1

Weekend 1 L 2 1 L 1
2 LP 2 2 C 2

3 C 2 3 LP 2

4 P 2 4 P 2

PM 1 LP 2 1 L 2
2 L 2 2 C 2

3 P 2 3 LP 2

4 C 2 4 P 2

Work zone variable option: C = count of work zone lane/shoulder closures; L= number of lanes affected; LP =
fraction of lanes affected; P = fraction of time when there was a lane/shoulder closure due to the work zone. Data
aggregation type: 0 = data were aggregated at the hourly level; 1 = data were aggregated at the whole-period level
for each of the four analysis periods with the Safety Service Patrol (SSP) and parallel managed lanes indicator
variables set to 1 if SSP and parallel managed lanes were present in any hour of the analysis period; 2 = data were
aggregated at the whole-period level as with type 1 aggregation but the fraction of time when SSP / parallel
managed lanes were in operation was calculated.

From Table 4, the period-specific models trained using the hourly datasets (data
aggregation type 0) with the work zone variables defined by fraction of lanes affected (option
LP) or fraction of time when there was a work zone lane/shoulder closure (option P) had
relatively higher rankings for all analysis periods. The differences in prediction accuracy
between the period-specific models trained using work zone variable options LP and P were not
considerable. As shown in Figure 4, the differences in MAPE for models trained with work zone
variables option LP and P were around 1% for all analysis periods and all three predicted travel
time percentiles. Differences in other performance measures (see Appendix B) showed similar
trends.

From Table 5, for all analysis periods, the single GRF models trained with the dataset
created using type 2 aggregation (whole-period level aggregation; SSP and managed lanes
variables are set equal to the fraction of time present in the analysis period) ranked relatively
higher than models trained with datasets of other aggregation types. Similar to the period-
specific models, single models using work zone variables defined by fraction of lanes affected
(option LP) or fraction of time when there was work zone lane/shoulder closure (option P)
ranked relatively higher than models using other work zone variables, and the prediction
performance was similar for the single models trained with work zone variable options LP and P.
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Overall, GRF models with the work zone variable defined by the fraction of lanes
affected (option LP) or the fraction of time the lane or shoulder is closed (option P) occurred
more frequently in the top five and may be more desirable. Using the fraction of lanes affected
variable may be especially appealing as it is readily obtained from VDOT’s work zone database
(by dividing the number of lanes affected by the total number of lanes) and less data preparation
effort is required compared to using the fraction of time the lane/shoulder is closed.

With regard to the data aggregation approach, the period-specific models frequently
performed better when an hourly level aggregation was used with the indicator variables of SSP
and parallel managed lanes set equal to 1 if present at any time within the hour (data aggregation
type 0). For the single models, aggregating data over the constituent analysis periods with the
SSP and parallel managed lanes variables set equal to the fraction of time present in the analysis
period (data aggregation type 2) tended to give better performance.

Figures 5 and 6 show the MAPEs for predictions of the 50th, 80th, and 90th percentile
travel times using the period-specific models trained with hourly data and the single models
trained with data aggregated at the whole-period level (data aggregation type 2). For both
figures, the work zone variable is modeled by the fraction of lanes affected (type LP).
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Figure 6. Mean Absolute Percent Error (MAPE) of Models for Interchange Segments

From Figures 5 and 6 it can be seen that the differences between the MAPEs of
predictions from the period-specific models and the single models were within 5% in most cases,
with the maximum being 7%. The MAE, MSE, and bias (see Appendix B) also indicated a
similar prediction performance for the two forms of models. The distributions of errors of the
two forms of models, as shown in Figures 7 through 10, were also similar. The difference in
median errors of the predictions for corresponding travel time percentiles were within 1 second.
These results suggest that using either (1) four period-specific models or (2) a single model with
period level data aggregation results in reasonable predictions of travel time percentiles.

Because the difference in prediction accuracy is generally low, the choice of one model
form over the other may be based on implementation considerations rather than accuracy. For
example, the size of each individual period-specific model is smaller than for the combined
model, but taken together, the period-specific models may be larger than the single model. The
total computing time for the single model is also shorter than for the four periodic-specific
models. In addition, because data are aggregated at the hourly level, the overall data input size is
larger for the period-specific models than for the single model.
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It is worth noting that the difference in computing times and overall model size of the two
forms of models were not significant for the dataset used in this study. One advantage of the
periodic-specific models is that they avoid the additional data aggregation step required for the
combined model. They may also be more amenable to future changes because of the use of
hourly aggregation. The period-specific models were also preferred from an implementation
perspective by several TRP members. Therefore, the period-specific models trained with hourly
data with work zone variables defined by the fraction of lanes affected were finalized and
archived for VDOT and OIPI analysts to use to predict TTR metrics.

Based on the evaluation results using the testing dataset, the period-specific GRF models
are expected to produce credible TTR predictions. However, it is important that the inputs used
when predictions are made do not deviate significantly from the range of inputs used for model
development. When there are significant changes in the NPMRDS and/or changes in conditions
that may not be reflected by the model variables, the proposed GRF models may need to be
retrained with new information. One way to assess the need to retrain the models is to compare
model predictions for a future year to actual values when future year data are available; an
update is recommended if the realized values differ significantly from the predicted values in
terms of error metrics such as MAE, MSE, MAPE, and bias.

50th 80th 90th
60 120 120
. .
50 . . . .

100 ° 100 H
.
40 . s ©

: H

: . . : |

30 . 80 . . . 80 e 3 : {
e

20 H :

60 60

40
i
i
l
l

10

-y
jif

40 —— 8
20 — 1 -

SREEEY

-30

Errors(s) ¥
Errors(s) ¥
\

\

\

\

Errors(s) ¥
|
|

-40

-20
-50

-60 -40 .40

......--_.._.._HH_
ot w .......,.__H.H... .

-70

em o emee
.-

-60 . -60 -
. .
-80 . R H s

.
-90 -80 L . . -80 .
. . . ' M 3
H ]
-100 ' i
. -100 . ¢ -100 . . . .
-110 . . :
. . . .
-120 . -120 . -120 '] . .
AM Midday Weekend PM AM Midday Weekend PM AM Midday Weekend PM

Figure 9. Box Plots of Prediction Errors of the Single Model for Freeway Segments. Note that, for clarity, the
y-axes were limited between -120 and 60 for the 50th percentile travel time and between -120 and 120 for the
80th and 90th percentile travel times since the distributions had longer tails.

21



50th 80th 90th
60 120 120

50

100 100
40 . N

30 80 80
.

!
T

20
.

.
[ ]
]
-90 . -80 o ¢ -80

L]
[ . . H . ¢

-100 .
-100 ] -100

.
60 60
10

1]

40 40

s
.
.
]
-10
20 20
-20
[}
]
i
H
'
i

rrors (s) ¥

wnhe -..........HH_.... of o

-30 0 0

Errors(s) ¥

. opm om ...._H.H..

Errors(s) ¥

-40
20 -20

-50

L
. -.._HH...
et

...__.HH_......
- __..HH_. -

_._..__.HH__. -

.
-60 ! H -40 -40

H
L]
-70 .

-60 -60

-80

.
s
-110

. . ¢
-120 . . -120 -120 -
AM Midday Weekend PM AM Midday Weekend PM AM Midday Weekend PM

Figure 10. Box Plots of Prediction Errors of the Single Model for Interchange Segments. Note that, for
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Data Preparation and Modeling Guide

A step-by-step data preparation and modeling guide was prepared for VDOT and OIPI
analysts for the use of the period-specific GRF models to predict TTR on interstates. The guide
is included as Appendix C. Code scripts to apply the GRF models for prediction are available to
VDOT and OIPI users. The instruction and technical specifications of computational resources
needed to run the codes were enclosed in the code scripts.

CONCLUSIONS

e GRF models developed using the NPMRDS network performed better than the Phase |
(INRIX) models for predicting TTR on the NPMRDS network. The performance of GRF
models trained with data for the INRIX TMC network for peak traffic periods in the Phase |
study was generally poor for predicting TTR on the NPMRDS network, especially for the
80th and 90th percentile travel times. The GRF models trained with data assembled for the
NPMRDS network significantly improved prediction performance (by as much as 50% in
some cases).

e For GRF models trained with the NPMRDS network, using either the fraction of lanes
affected (option LP) or the fraction of time the lane/shoulder is closed (option P) as work
zone variables resulted in better prediction performance. The fraction of lanes affected is
preferred, as it is readily obtained from VDOT’s work zone database. Four different options
to represent work zone variables were tested to identify the variables that could better capture
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the potential effects of work zones on TTR. For both the period-specific models and the
single models, the models where the work zone variable was defined by the fraction of lanes
affected (option LP) or the fraction of time the lane or shoulder was closed (option P)
generally ranked higher among all models based on an aggregated ranking calculated for
each model.

e The period-specific models developed using hourly data with the work zone variable defined
by the fraction of lanes affected were selected for implementation. Based on performance
measures, including MAE, MAPE, MSE, and bias, the prediction performance is similar
(e.g., within 5% for MAPE in most cases) for the period-specific models trained using hourly
data with SSP and managed lane indicator variables set to 1 if present in any time in the hour
and the single model trained using data aggregated at the whole-period level with SSP and
managed lane variables defined by the fraction of time SSP/managed lanes are present. The
period-specific models were preferred for implementation considering the prediction
accuracy, the computing resources needed, the amount of data preparation efforts required,
and the flexibility to adapt to future data changes.

RECOMMENDATIONS

1. VDOT'’s Traffic Operations Division, V'DOT'’s Transportation Mobility and Planning
Division, and the Office of Intermodal Planning and Investment (OIPI) should use the GRF
models developed in this study to predict travel time reliability on the NPMRDS network.
The data preparation and modeling guidance should be followed to prepare model input data
and make predictions.

IMPLEMENTATION AND BENEFITS
Implementation

VTRC provided the step-by-step guidance document, trained GRF models, and the code
scripts to run the models to VDOT divisions and the OIPI. The users will check model accuracy
when future year data are available and retrain the GFR models, following the instructions in the
code scripts, if the desired accuracy, in terms of error metrics such as MAE, MSE, MAPE, and
bias, is not met.

Benefits

This implementation study provides VDOT and the OIPI with a set of machine learning
models to predict TTR on statewide interstate highways. The GRF models developed for all
MAP-21 analysis periods could be used to help VDOT set more reasonable TTR targets and
better track the progress toward meeting the targets. The data preparation and modeling guide
along with the code scripts developed in this study will help VDOT and OIPI analysts use the
GRF models to predict TTR for various applications such as setting federal performance targets,
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prioritizing project sites for reliability improvement, and conducting before-after studies.
Further, the datasets and codes for data preparation and analysis could be used for future research
and implementation projects.
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APPENDIX C
DATA PREPARATION AND MODELING GUIDE

This appendix describes data preparation and modeling guidance for using the period-
specific GRF models developed in this study. The intent is to facilitate the use of these models
for TTR prediction by analysts within VDOT and OIPI. The procedure involves five steps:

Determine spatial and temporal level of data aggregation.
Identify relevant data elements and data sources.

Obtain data for the study period.

Combine and conflate the data.

Estimate the predictive model.

agkrownE

Step 1: Determine Spatial and Temporal Level of Data Aggregation

Probe vehicle sources generally measure travel times on segments shorter than typical
VDOT sources. The data may also be available at different temporal resolutions. This step is
intended to establish a common spatial framework and temporal resolution that will be used for
all subsequent modeling tasks. In addition, this task identifies the MAP-21 analysis periods
(weekday AM, weekday midday, weekday PM, and weekend). The GRF models developed in
this study were spatially referenced to the NPMRDS network at a temporal resolution of 1 hour.
This appendix describes the scenario where a separate model is desired for each analysis period.

Step 2: Identify Relevant Data Elements and Data Sources

The data needed to predict the travel time percentiles discussed in this study include
several geometric, traffic, weather, and incident variables. Most of these may be obtained from
internal VDOT databases such as the Roadway Network System (RNS), Traffic Monitoring
System (TMS), Highway Traffic Records Inventory System (HTRIS), and the Virginia Traffic
Information Management System (VaTraffic) or via the VDOT Traffic Operations Division’s
Oracle database (COTEDOP) frontend. A summary of relevant data elements and potential
sources is provided in Table C1. The list of potential sources in Table C1 is intended to be
illustrative, not exhaustive. Other non-VDOT sources and non—Oracle-based VDOT sources are
available for some of the data elements.

Step 3: Obtain Data for the Study Period
A dataset consisting of the data elements identified in Step 2 is assembled for each hour
of the analysis period (weekday AM, weekday midday, weekday PM, and weekend) for the

intended study duration (e.g., 1 year). The following are examples of how the different data
elements may be obtained from some of the sources identified in Table C1.
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Table C1. Data Elements and Sources

Data Element

| Potential Source

Geometric Data

Segment length

Number of through lanes

COTEDOP, HTRIS, NPMRDS

Incident Data

Crash incidents by severity

COTEDOP, RNS

National Performance Management Research Data Set (NPMRDS)

Breakdown incidents VaTraffic

Hazard incidents VaTraffic
Traffic Data

AADT COTEDOP, TMS

Traffic volume profile COTEDOP

Heavy vehicle percentage COTEDOP

Capacity Calculated using Highway Capacity Manual methodology
Weather

Rain precipitation amount National Centers for Environmental Information

Frozen precipitation amount National Centers for Environmental Information

Other
Number of lanes affected by work zone | VaTraffic
activity
Availability of Safety Service Patrol VDOT Traffic Operations Division
(SSP)

Presence of HOV/HOT lane COTEDOP, VDOT Traffic Operations Division

Area type (rural or urban) COTEDOP, HTRIS

Travel time NPMRDS

NPMRDS = National Performance Management Research Dataset; COTEDOP = VDOT Traffic Operations
Division’s Oracle database; HTRIS = Highway Traffic Records Inventory System; RNS = Roadway Network
System; AADT = annual average daily traffic; VaTraffic = Virginia Traffic Information Management System; TMS
= Traffic Monitoring System.

TMC Travel Time and Segment Length Data

Probe travel time data at the desired temporal aggregation (e.g., 1 hour) may be obtained
for all relevant TMC segments (identified by unique IDs) by direct download from the Regional
Integrated Transportation Information System (RITIS). Alternatively, the travel times may be
derived from the TMC segment length and speed data that are also available in NPMRDS.
Relevant metadata such as TMC location (indicated by the start and end GPS coordinates) may
be retrieved for use in the data conflation step.

AADT and Roadway Attribute Data

The COTEDOP database is a good source of annual average daily traffic (AADT) and
roadway attribute data including number of lanes and area type. These data elements may be
obtained by querying the HTRIS.EYROAD tables of this Oracle database. Roadway segments
in this database are demarcated by a start mile post and an end mile post, unlike TMC segments
where latitude and longitude coordinates are used to demarcate the start and end points.
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Traffic Volume Profiles and Heavy Vehicle Percentage

The COTEDOP database contains tables that may be used to translate the AADT data for
a given roadway segment to an equivalent hourly volume for every hour of the day, every day of
the week, and every month of the year.

First, the table TMS.FACTORVALUE is queried to obtain values that serve as seasonal
adjustment factors for converting the AADT to equivalent average daily traffic (ADT) volumes
for every day of the week and every month of the year. Second, Replicate. TMSRawData is
queried to obtain the average hourly percentage distribution of traffic for every hour of a
weekday and every hour of a weekend. Third, the percentage distribution is multiplied by the
ADT values to obtain the hourly volume profile.

The heavy vehicle volume profile (and hence the percentage of heavy vehicles) is
obtained in a similar fashion except that hourly distributions of heavy vehicles for weekdays and
for weekends are queried from Replicate. TMSRawDataClassified (R. Jones, personal
communication, 2021).

Work Zone and Non-Crash Incident Data

The VaTraffic database contains information on traffic incidents and roadway
maintenance activities. This database may be queried for the location (route number, route
prefix, route suffix, mile post) and start/end time of vehicle breakdown events (e.g., disabled
vehicle on the shoulder), hazard or non-crash disruptive events such as vehicle fires, and work
zone activity. Work zone location, start and end time, and number of lanes affected by work
zone activity may be retrieved directly from the ORCIDEV_DBA.V_WORK_ZONES table in
VaTraffic.

Crash Data

The CRASHDATA.CRASHDOCUMENT table in the COTEDOP database may be
queried for the location (route number, route prefix, route suffix, and mile post), date/time, and
unique ID (document number) of all crash events that occurred during the study period. The
KABCO severity of the crash events may then be retrieved from the
RNS_CRASH.TBL_CRASH table of the RNS database via the “documentnumber” field, which
iIs common to both tables.

Weather Data

Local climatological data consisting of more than 20 types of weather conditions
including rain, snow, drizzle, hail, and so on by location (weather station) and date/time are
available for direct download from the website of the National Centers for Environmental
Information. For the purposes of applying the GRF models developed in this study, the total
amount of liquid precipitation at a station during a specified time interval is the sum of the
drizzle, rain, and thunderstorm amounts. Likewise, the total amount of frozen precipitation for a
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time interval is the sum of snow, snow grains, snow pellets, ice pellets, and hail amounts during
that interval.

Because weather data are available at a limited number of weather stations rather than at
individual TMC locations, a reasonable approximation is to assign every TMC the same weather
data as that of the nearest weather station based on its GPS coordinates. This assignment may be
inaccurate as there are only approximately 57 weather stations statewide and not all of these
stations provide data at an hourly or more granular level for the desired study periods. However,
these are the best known data currently available. In this study, the TMCs were associated with
the nearest weather station using a spatial join based on the GPS coordinates of the weather
stations and the coordinates of the start/end points of the TMCs.

Step 4: Combine and Conflate the Data

The assembled data are combined and spatially conflated to the NPMRDS TMC network
in this step. It is worth noting that at the start of this step, the NPMRDS and weather data
elements are spatially indexed by the start and end longitude-latitude coordinate pairs of the
associated TMC segments. All other data elements are spatially indexed by the start and end
mile posts of the VDOT TMS network.

Data from these two versions of network segmentation may be combined by identifying
start/end mile posts for the TMC segments, identifying start/end longitude-latitude coordinates
for the TMS segments, or both. Three possible options for establishing such a connection
include the following:

1. TMC length and order from NPMRDS. The metadata associated with the NPMRDS
travel time data include TMC length and order. By finding the very first TMC
segment of each route and setting its start mile post to zero, the start and end mile
posts could be calculated consecutively using TMC length and order.

2. VDOT linear referencing system (LRS). The LRS network contains longitude-latitude
information and m-values (mile posts) corresponding to the vertices in the polyline
along a route. The availability of both longitude-latitude and mile post information in
the LRS makes it a good candidate for merging the TMC and TMS datasets.

3. Navigation data from commercial/private sources. Navigation data including
distances and GPS location for several points along a route may be obtained from
sources such as Google Maps. These may be used as in the previous example to
establish a connection between the TMC and TMS networks.

Option 3 was adopted for this study. Essentially, with a line traced along a route from the
start point (origin) to the end point (destination), the mile post corresponding to the start/end
point of a TMC was obtained by projecting its coordinates to the line and then measuring the
distance from the origin.
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Step 5: Predict TTR Using the GRF Models

The period-specific GRF models developed in this study, the R codes for using these
models for prediction, and sample input data are made available to VDOT users by VTRC.
Follow the instructions in the R codes to load the input data prepared in previous steps and make
predictions.
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