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ABSTRACT 

 

The Moving Ahead for Progress in the 21st Century Act (MAP-21) defined requirements 

for system reliability performance measures.  Under MAP-21, state departments of transportation 

are responsible for reporting travel time reliability and for setting targets and showing progress 

toward those targets.  In order to know how to improve travel time reliability and what to expect 

from investments in transportation infrastructure, these agencies need a better understanding of 

the factors that affect travel time reliability and methods to predict future travel time reliability.  

The purpose of this study was to quantify the factors influencing travel time reliability and 

investigate how to account for these factors in setting reliability targets and communicating 

progress. 

 

To achieve these objectives, this study developed models to estimate quantiles (the 50th, 

80th, and 90th) of travel time distributions to quantify the effects of travel time reliability impact 

factors and predict select reliability measures.  First, linear quantile mixed models (LQMMs) 

were built using both data maintained by the Virginia Department of Transportation (VDOT) and 

crowdsourced event data.  Model results using the crowdsourced data were unstable and difficult 

to interpret because of data quality issues such as unbalanced spatial density, duplicate reporting, 

and inconsistent event classification because of individual observer bias.  The results using 

VDOT-maintained data were more reliable and interpretable.  Those models showed that 

frequencies of non-recurrent events, such as incidents and weather, were correlated with higher 

travel time percentiles.  The LQMM was compared with the trend line approach, a common 

prediction method used in practice, and the results showed that LQMMs significantly improved 

the accuracy of predictions over the trend line approach based on mean absolute percent error.  

Generalized random forest (GRF) models were also tested as an alternative prediction method.  

GRF models improved the prediction accuracy over LQMMs for the 50th and 80th percentiles, 

but the accuracy was slightly worse for the 90th percentile.  In addition, the GRF models could 

also reflect the impact of variables that were removed from LQMMs because of insignificance, 

such as the presence of safety service patrols. 

 

Before-after studies were conducted to illustrate the application of LQMMs and GRF 

models.  LQMMs captured the changes in the 90th percentile travel times better, and GRF 

models captured the changes of level of travel time reliability better in most cases.  GRF models 

were more sensitive to the reliability changes caused by non-recurrent events, such as incidents 

or work zones, and could reflect the impact of variables that were removed from LQMMs 

because of insignificance.   

 

The study recommends that VDOT use the GRF model for predicting travel time 

reliability on interstate highways.  In addition, further research is recommended to extend the 

GRF models to meet the requirements of MAP-21 federal target setting.   
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INTRODUCTION 

 

Increasing congestion levels have become a major concern for roadway users.  In the 

past, many measures, such as delay, volume-to-capacity ratio (v/c ratio), and level of service, 

were developed to reflect the magnitude of congestion (Aftabuzzaman, 2007).  The Federal 

Highway Administration (FHWA) has established that meaningful congestion performance 

measures must be based on travel times because they are easily understood by practitioners and 

the public and are applicable from both the user and facility perspectives of performance 

(Cambridge Systematics, 2005).  Although average travel times are widely used in traffic 

operations and planning, they represent only typical situations and do not show the entire breadth 

of user experiences.  Unexpected interruptions, including those caused by incidents, inclement 

weather, special events, and work zones, cause deviations from average travel times.  This 

variability is also extremely important to roadway users and transportation agencies.  The 

concept of travel time reliability was developed to quantify the variability in travel times and has 

become a critical factor in the evaluation of transportation networks.  Travel time reliability has 

been defined by FHWA (2006) as “the consistency or dependability in travel times, as measured 

from day-to-day and/or across different times of the day.” This reliability definition was used for 

this study.   

 

Transportation professionals widely acknowledge that although capacity expansion is an 

obvious solution for congestion, it is extremely difficult and expensive to implement.  As a 

result, improvement strategies incorporating transportation systems management and operations 
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(TSM&O) are often preferred alternatives since they may optimize traffic flow through better 

management of existing capacity.  These TSM&O approaches often impact extreme values of the 

travel time distribution differently than average travel time.  Travel time reliability measures are 

capable of capturing how much unexpected events influence traffic.  These measures will help 

transportation professionals (1) identify the needs and related strategies that would address those 

needs (e.g., incident management); (2) quantify the benefits of TSM&O strategies that may be 

obscured by using average congestion measures; and (3) promote better project prioritization and 

decision making.   

 

Travel time reliability is also critical to various roadway users, including drivers, transit 

riders, and freight shippers, influencing decisions about where, when, and how travel is made 

(Abdel-Aty et al., 1995; Cambridge Systematics, 2013; Elefteriadou et al., 2008; Van Lint and 

Van Zuylen, 2005).  Since unexpected events can create unreliable travel times, travelers and 

shipping agencies need to plan extra time to arrive on time.  However, early arrivals are also a 

waste of time that could have been spent on other activities.  From an economic perspective, this 

extra time has values beyond the average travel time used in traditional economic analyses 

(Cambridge Systematics, 2013).   

 

The Moving Ahead for Progress in the 21st Century Act (MAP-21) features the 

establishment of a performance- and outcome-based program that requires states to invest 

resources to achieve targets that facilitate the progress toward national goals.  One of the six 

national goals is “System reliability—To improve the efficiency of the surface transportation 

systems.”  To assess progress toward national goals, FHWA issued a set of rulemakings to 

establish performance measures, specify related data requirements and calculation 

methodologies, and set target requirements.  The performance measures adopted to address the 

system reliability goals for the National Highway System (NHS) were as follows:  

 

● Interstate travel time reliability measure: percent of person-miles traveled on the 

interstate that is reliable. 

  

● Non-interstate travel time reliability measure: percent of person-miles traveled on the 

non-interstate NHS that is reliable. 

  

● Freight reliability measure: truck travel time reliability index. 

To comply with the rulemaking, state departments of transportation (DOTs) and 

metropolitan planning organizations need to establish 2- or 4-year targets for the travel time 

reliability performance measures and report progress toward those targets.  It is essential to have 

an effective analytical framework for travel time reliability as a prerequisite to set proper targets.  

Currently, targets are set based on either historic trend lines or change rates of other congestion 

measures.  Prediction models that explicitly account for changes in underlying impact factors are 

not available (The National Capital Region Transportation Planning Board [TPB], 2018).  The 

trend line method cannot predict reliability changes in the opposite direction of the fitted lines, 

and it also is not sensitive to changes in reliability impact factors.  Adopting the change rates of 

other congestion measures could be biased since there is no guarantee that reliability would 

change in the same way as other measures.  As a result, there is a need to develop improved 
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target setting methods that can account for the variety of factors that could influence future travel 

time reliability. 

 

 

PURPOSE AND SCOPE 

 

The purpose of this study was to develop methods to predict travel time reliability that 

account for important factors influencing recurring and nonrecurring congestion for interstate 

highways.  Such methods could be used to improve the target setting process required by MAP-

21 and to assess potential impacts of future projects.   

 

The objectives were as follows: 

 

● Develop practical models that could be used (1) to predict travel time reliability at an 

acceptable accuracy level and (2) to analyze the importance and quantify the 

influence of impact factors. 

 

● Compare and contrast the value of VDOT-maintained and private crowdsourced 

event data sources and evaluate how various factors and data sources affect travel 

time reliability modeling and prediction.   

 

● Demonstrate model application through before-after case studies. 

Travel time reliability and its influencing factors were studied for all interstate highways 

in Virginia using data from 2017-2019.  The reliability metrics used were level of travel time 

reliability (LOTTR) and the 90th percentiles of travel time distributions.  LOTTR is required in 

23 CFR Part 490 (Federal Register, 2017), and the 90th percentile is frequently used by 

practitioners and researchers to reflect extreme situations.   

 

 

METHODS 

 

The following tasks were conducted to meet the study objectives: 

 

1. Review the literature. 

2. Collect and prepare data. 

3. Develop models for travel time reliability analysis and prediction. 

4. Perform before-after studies to demonstrate model application. 

 

 

Task 1.  Review the Literature 

 

A review of the literature was conducted to summarize the latest developments on travel 

time reliability measures, metrics, and influencing factors.  Relevant databases such as the 

Transportation Research International Documentation (TRID) and Transport databases were 

used to identify sources for the literature review.  This task produced a summary of travel time 
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reliability metrics and measures and documented the findings on reliability modeling approaches, 

influencing factors, and operational countermeasures. 

 

 

Task 2.  Collect and Prepare Data 

 

This study considered various factors that could impact reliability, including geometric 

features, weather, incidents, work zones, traffic demand, parallel managed lanes, and safety 

service patrols (SSPs).  Factors were selected for consideration based on the results of the 

literature review and discussions with the study’s technical review panel (TRP). 

 

Data Types and Sources 

 

The following sections introduce the data sources, the data formats of each factor 

examined, and the preparation process.   

 

Travel Time 

 

Probe travel time data from INRIX were used in this study.  VDOT uses probe vehicle 

data frequently to measure highway system performance and to provide traveler information.  

INRIX uses the traffic message channel (TMC) standard to define roadway segments spatially.  

The TMC network used for this analysis is shown in Figure 1.  Two segment types are defined: 

internal and external.  Internal segments represent a stretch of road within an interchange (e.g., 

between an exit ramp and an entrance ramp) and are defined as interchange segments in this 

study.  External segments represent a stretch of road between interchanges, referred to as 

freeway segments in this study.   

 

 
Figure 1.  Traffic Message Channel Probe Vehicle Data Coverage in the Study Area 
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Figure 2 shows an example of the difference between internal and external TMCs.  In the 

figure, internal segments are prefixed with the letters “P” or “N” for the positive and negative 

directions, respectively, and external segments are prefixed with a “+” or a “-” sign. 

 

Travel time data were collected from January 2017 to December 2019 for all interstate 

highways.  For this study, only travel times during the AM peak (6 to 10) and PM peak (4 to 8) 

periods on weekdays were considered since those are the time periods with the greatest travel 

time variability.  There were 40,512 hours (about 0.34%) with missing data points across all 

TMCs.  Since these hours represented a small portion of overall data, they were not used in the 

analysis.  TMC segments less than 0.1 miles long (about 8.5% of total TMCs) were also removed 

since those segments had noisier data.  This screening produced a total of 1,853 TMC segments 

across both directions that were used in the analysis.   
 

 
Figure 2.  Traffic Message Channel Segments With Internal and External Segments.  Adapted from RITIS 

(2021). 

Geometric Features 

 

The geometric factors considered in this study were as follows: 

 

● TMC segment length.  The metadata associated with each TMC include TMC length 

information. 

 

● Number of through lanes. 

 

● Urban/rural designation.  The number of through lanes and area types were obtained 

from the VDOT roadway inventory. 

 

● Presence of parallel high occupancy vehicle (HOV), high occupancy toll (HOT), or 

express lanes. VDOT’s Roadway Network System was used for collecting this 

information.   

 

Weather 

 

The Local Climatological Data (LCD) from the National Centers for Environmental 

Information were used for hourly weather conditions.  The LCD identify more than 20 types of 

weather conditions, including rain, snow, drizzle, hail, fog, storm, and so on.  Although they all 

could have some impact on travel time reliability, this study selected and categorized weather 

factors using two variables:  
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1. Accumulated hourly rain (liquid) precipitation volume: the amount of drizzle, rain, 

and thunderstorm precipitation in inches to hundredths. 

 

2. Accumulated hourly snow (frozen) precipitation volume: the amount of snow, snow 

grains, snow pellets, ice pellets, and hail precipitation in inches to hundredths. 

 

Incidents and Crashes 

 

The impacts of incidents and crashes were counted using the event frequencies.  These 

data were derived from two sources: VDOT-maintained data, and crowdsourced data.  VDOT-

maintained data are verified data generated through official mechanisms.  Two VDOT-

maintained incident and crash data sources were used: 

 

1. Crash data.  VDOT has a crash data query tool, named the Crash Analysis Tool 

(VDOT, 2021a), which provides crash information such as crash severity, location, 

and time.  Crashes with different severity types (e.g., severe injury, visible injury, 

non-visible injury, and property damage only [PDO]) are counted separately to create 

four independent variables.  These data are derived from police crash reports and are 

verified. 

 

2. Non-crash incidents.  Non-crash incident events were collected using VaTraffic.  

VaTraffic is a VDOT operations and incident management database that provides 

information on various activities such as traffic incidents and roadway maintenance.  

These data include information on vehicle breakdowns and hazards.  For VaTraffic, 

breakdown events typically involve disabled vehicles on the shoulder, and hazards 

represent non-crash disruptive events such as vehicle fires. 

 

Crowdsourced crash and incident data generated from the traveler information 

application Waze were also evaluated.  Waze provides information on travel times and 

unexpected events to users and allows users to report crashes, incidents, work zones, and other 

unusual events.  These data may include minor incidents not recorded in VDOT databases, and 

they are not quality controlled or verified by VDOT.  Further, it is possible that they could 

contain erroneous reports or duplicate reports of a single crash with different locations and 

timestamps.  Waze provides crash information similar to that provided by VaTraffic except that 

there is no severity information.  As a result, all types of crashes are counted in one independent 

variable.  Unlike VaTraffic, which includes only police-reported crashes, the Waze dataset may 

include minor PDO crashes not reported to the police.  Non-crash incident event definitions in 

Waze may also differ from those used in VaTraffic.   

 

Figure 3 shows the event report interface from Waze.  It can be seen that there are three 

categories under hazard events: On road, Shoulder, and Weather.  Under each category, more 

specific event types could be chosen.  The descriptions of hazard events in VaTraffic have 

mainly involved objects (usually vehicles) that are on fire.  The hazard events in Waze data 

include more situations than in the VaTraffic data.  Both data sources provide event attributes 

such as event type, location, and timestamps.   
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Figure 3.  Waze Report Interface 

Work Zones 

 

Work zone event data were also collected from VaTraffic.  Event attributes available are 

work zone type, location, start time, and duration.  In addition, each event has a text description 

of work details such as what will be done, route information, scheduled times, and possible 

impacts to traffic (e.g., lane/shoulder closures or potential delays).  Since lane and shoulder 

closures are expected to have more detectable effects on reliability, the frequencies of such 

events are used to reflect work zone impacts.  Although Waze also provides work zone event 

data, these data are presented as point events.  As a result, they could not be mapped spatially to 

the network, so Waze information was not used. 

 

Traffic Demand 

 

Previous research (Cambridge Systematics, 2013) has shown that the v/c ratio plays a 

vital role in determining travel time reliability, and thus it was considered in this study.  Capacity 

was calculated in accordance with the Highway Capacity Manual, Sixth Edition (HCM-6) 

(Transportation Research Board, 2016) using Equation 1: 

 

 
𝐵𝑎𝑠𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 2,200 + 10 × (𝐹𝐹𝑆 − 50) 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝐵𝑎𝑠𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 × 𝐿𝑎𝑛𝑒𝑠 × 𝑓ℎ𝑣 × 𝑃𝐻𝐹 × 𝑓𝑝 × 𝑓𝑔 
[Eq. 1] 
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where 

 

FFS = free-flow speed 

 

𝑓ℎ𝑣 = the heavy vehicle adjustment factor depending on facility type, vehicle mix, and 

grade 

 

PHF = the peak hour factor, calculated by the ratio of the peak 15-minute flow rate to the 

average hourly flow rate 

 

𝑓𝑝 and 𝑓𝑔 = adjustment factors for driver population and grades provided by VDOT’s 

Traffic Engineering Division.   

 

The capacity obtained is in vehicles per hour.  Accordingly, the traffic volume was also 

aggregated at an hourly interval.  VDOT’s Traffic Engineering Division provided annual average 

daily traffic (AADT) estimated from continuous and short-term count stations.  These values 

needed to be broken down to an hourly basis by different seasons, which was achieved by 

applying an hourly volume profile to the AADT.  This volume profile was built using volume 

data collected at continuous count stations at 5- or 15-minute intervals and then assigned to 

nearby segments.  The locations of the stations are shown in Figure 4.  Missing data were filled 

in with the value from the previous time interval when they were less than 1 hour.  When more 

than 1 hour of missing data needed to be filled in, the average value for the same hour for the 

same day of the week was used.  To reflect traffic volume better, the percent of heavy vehicles 

(buses, single unit trucks, and tractor-trailer combinations) was also considered an impact factor.  

These data could be found from the AADT files.   

 

 
Figure 4.  Continuous Count Station Location Map 
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Safety Service Patrol (SSP) Presence 

 

SSPs are incident management trucks with personnel who can assist disabled vehicles, 

provide traffic control for crashes and incidents, and otherwise seek to reduce the impact of 

nonrecurring events on safety and mobility.  This program provides benefits such as faster 

detection of incidents, scene management through temporary traffic control, and clearance of 

obstructions and debris on roadways.  SSPs help minimize incident durations and reduce 

secondary crashes.  The SSP schedules were obtained through VDOT.  An SSP indicator 

variable was created to denote the presence of SSP service during the AM or PM peak period.  

As long as SSP service was available during any hour within the AM or PM peak period, the 

SSP variable was assigned a value of 1.   

 

Data Combination and Conflation 

 

 After the data were assembled, they were combined following the data fusion process 

shown in Figure 5 and described here. 

 

1. Travel times were provided using the TMC network, but other VDOT data were 

provided using different spatial reference systems.  For example, traffic volume was 

recorded using VDOT’s Traffic Monitoring System (TMS) segments.  All data 

collected from or calculated based on VDOT datasets, including geometric features, 

v/c ratio, percentage of heavy vehicles, and SSP presence, were mapped to TMS 

segments.  These two versions of network segmentation (TMC and TMS) were 

matched such that all data attributes could be linked to the TMCs.  The matching 

process was adapted from the conflation approach developed by Schrank et al. (2018) 

and conducted through the spatial join function in ArcGIS. 

 

2. The LCD weather data were collected from weather stations.  Each station was 

matched with nearby TMC segments using the method proposed by Lan et al. (2019).  

The use of these weather station data to represent roadway weather conditions was 

based on the assumption that the weather conditions were the same on the roadways 

near the weather stations.  This assumption could be inaccurate and potentially bias 

modeling results since there are only approximately 20 weather stations to cover more 

than 1,800 segments statewide.  The farthest distance between TMC segments and 

their weather stations could be more than 40 miles.  However, these were the best 

available data.   

 

3. After the TMS and TMC segments were matched in Step 1, each TMC was provided 

with start and end mileposts.  The collected incident and work zone data have the 

event locations presented as mileposts, which could be used to match the impacted 

TMC segments.  Then, the timestamps of the events were used to count the frequency 

of the events during the AM and PM peak periods.   
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Figure 5.  Data Conflation Overview 

 

Task 3.  Develop Models for Travel Time Reliability Analysis and Prediction 

 

This study used two advanced statistical modeling techniques for travel time reliability 

analysis and prediction: linear quantile mixed models, and random forest models.   

 

Linear Quantile Mixed Models (LQMMs) 

 

After frequently used travel time reliability measures were reviewed, it was found that 

most of them rely on travel time distributions, especially upper tails such as the 80th, 90th, or 

95th percentile.  In studies focused on estimating travel time distributions, the authors often had 

difficulty choosing among different distributions or deriving a closed-form expression for the 

probability density functions.  Quantile regression provides a convenient way to characterize any 

type of distribution with feasible estimation techniques.  Since this method estimates quantiles 

rather than specific travel time reliability measures, it is flexible enough to obtain almost any 

measure from the estimated quantiles.   

 

Target setting requires that travel time reliability is analyzed at the TMC segment level.  

As a result, the input data are prepared as a repeated measures dataset from different times of the 

day and days of the week on each TMC segment.  Two correlations exist in this data structure: 

one from the observations of travel time within each TMC, and the other from the fact that the 

data represent all interstate highways.  LQMMs are suitable for estimating quantile regression on 

such a data structure.  They include TMC-level (subject-specific) characteristics through both 

random effects and fixed effects to reflect the relationship between the travel time reliability and 

its impact factors for interstate highways.  Independent variables representing various factors that 

affect reliability are considered fixed effects, and their coefficients are estimated as part of the 

modeling. 

 

To facilitate practical use, LQMMs with only location-shift random effects were 

considered in this study.  To account for location differences and shape variations in the travel 

time distributions of different TMC segments, they were first clustered into homogenous groups, 

as discussed in the next section.  Then, LQMM was applied to each cluster, where all 

independent variables were included as fixed effects and intercepts were included as random 

effects to distinguish individual TMCs.  The clustering process is described here. 

 

Travel Time Distribution Clustering 

 

Clustering travel time distributions was done to identify similarity among travel time 

distributions and group homogeneous TMCs into clusters, allowing TMCs within the same 

 



11 

 

cluster to be represented by one distribution shape.  Weijermars and Van Berkum (2005) 

recommended some pre-classification to improve clustering results.  For this study, the facility 

type (freeway segments or interchange) was used as a pre-classification factor, with the 

assumption that frequent traffic interactions because of merging and diverging at interchanges 

play an important role in distinguishing distributions.  Thus, data were divided into freeway and 

interchange groups before clustering. 

 

The main question to answer before applying any clustering algorithm is how to measure 

the similarity between cumulative distribution functions (CDFs) without knowing the exact 

functional expressions, which leads to the consideration of non-parametric methods of 

comparing distributions.  Two non-parametric approaches were adopted in this study: the 

Kolmogorov-Smirnov (KS) test, and the Anderson-Darling (AD) test.  They both quantify the 

differences between CDFs using defined statistical values.  For any two TMCs with CDFs 𝐹𝑛(𝑥) 

and 𝐹𝑚(𝑥), the two-sample KS statistic is defined as 𝐷𝑛,𝑚, which is the maximum distance 

between two distributions (Eq. 2): 

 

 𝐷𝑛,𝑚 = √
𝑛𝑚

𝑛 + 𝑚
𝑠𝑢𝑝𝑡∈ℝ|𝐹𝑛(𝑥)̂ − 𝐹𝑚(𝑥)̂ | 

  

[Eq. 2] 

 

where 

 

m and n = the size of the two samples, respectively. 

 

As mentioned, as an alternative option, the AD test was also adopted for this study 

because it is particularly sensitive to the differences at the tails of distributions by assigning 

larger weights (Thas, 2010).  The two-sample AD statistic is defined in Equation 3: 

 

 𝐴𝑛𝑚
2 =

𝑛𝑚

𝑛 + 𝑚
∫ [𝐹𝑛(𝑥) − 𝐹𝑚(𝑥)]2𝜓(𝐻𝑛+𝑚(𝑥))𝑑𝐻𝑛+𝑚(𝑥)

+∞

−∞

 [Eq. 3] 

 

where 

 

𝜓(𝑢) =
1

𝑢(𝑢−1)
, 0 ≤ 𝑢 ≤ 1 = the weight function 

𝐻𝑛+𝑚(𝑥) =
𝑛

𝑛+𝑚
𝐹𝑛(𝑥) +

𝑚

𝑛+𝑚
𝐹𝑚(𝑥) = the empirical function of joint samples.   

 

The KS and AD statistics were calculated between each pair of TMC segments to form a 

dissimilarity matrix.  Each row of this matrix presented the dissimilarity between one TMC and 

the rest.  An agglomerative hierarchical clustering method was then applied to rearrange rows in 

the KS and AD matrices so that similar rows could be paired together into clusters.  The process 

starts with singleton clusters at the bottom level and continues to merge two clusters at a time to 

build a bottom-up hierarchy.  There are several widely used methods to measure cluster 

distances: single linkage (McQuitty, 1964), complete linkage (King, 1967), group average 

(Bailey, 1994), and Ward’s criterion (Sokal, 1966).  After a thorough consideration of the 

advantages and disadvantages of those methods, the complete linkage and Ward’s criterion 

methods were selected to use for this study.   
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Another technique for clustering travel time distributions is model-based functional data 

clustering.  With this technique, the CDFs of travel times can be treated as functional data so that 

they can be approximated using dimension reduction techniques and represented by a set of finite 

parameters.  Model-based clustering algorithms are then applied based on these parameters 

(Bouveyron et al., 2015).  

 

Both the non-parametric and model-based clustering methods are considered data-driven.  

There are also non–data-driven ways to cluster TMC segments, such as by geometric features.  

In order to evaluate the benefit and necessity of data-driven approaches, clustering by the 

geometric features of TMC segments was also conducted for comparison.  Figure 6 summarizes 

the methods used. 

 

The goal of clustering travel time distributions was to find homogeneous clusters that 

could be represented by unique distributions to improve models built in the next task for 

reliability analysis.  For this study, the performance of optimal clusters resulting from the 

different methods was evaluated by how close the 50th, 80th, and 90th percentile travel times 

within each cluster were using the Silhouette width, a weighted average of each observation’s 

Silhouette value (Rousseeuw, 1987).  The Silhouette value measures the degree of confidence in 

a particular clustering assignment on a scale of -1 to +1, with well-clustered observations having 

values near +1 and poorly clustered observations having values near -1.  The three percentiles 

were selected as target variables of the reliability models because (1) the 50th and 80th 

percentiles are the two components of the federally mandated LOTTR measure (FHWA, 2017) 

and (2) the 90th percentile is preferred over the 95th percentile to reflect the benefit of 

operational improvements (Cambridge Systematics, 2013).   

 
Figure 6.  Clustering Method Summary.  CDF = cumulative distribution function; KS = Kolmogorov-

Smirnov; AD = Anderson-Darling.   
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Development of LQMMs  

 

Classic linear regression estimates conditional means by minimizing the residual sum of 

squares.  Similarly, quantile regression (Koenker and Bassett, 1978) estimates conditional 

quantiles by minimizing a sum of asymmetrically weighted absolute residuals.   

 

Suppose a dataset (𝑥𝑖
𝑇 , 𝑦𝑖), where 𝑖 = 1, …; N, 𝑥𝑖

𝑇 are row vectors of a known design 

matrix X with p elements; and 𝑦𝑖 are observations of the dependent variable.  The linear 

conditional quantile functions (𝜏th quantile) are defined as shown in Equation 4: 

 

 𝐺𝑦𝑖
(𝑥𝑖) = 𝑥𝑖

𝑇𝛽, 𝑖 = 1, … , 𝑁, [Eq. 4] 

 

where 

 

𝐺𝑦𝑖
 = the inverse of a continuous distribution function 𝐹𝑦𝑖

 

 

𝛽, specified to 𝜏, = a column vector of length p estimated through solving the 

optimization problem shown in Equation 5 (Koenker and Bassett, 1978):   

 

 𝛽̂𝜏 = argmin
𝛽∈ℜ𝑝

{∑ 𝜌𝜏(𝑦𝑖 − 𝐱𝑖
𝑇𝛽)}      [Eq. 5] 

where 

 

𝜌𝜏(𝑟) = {(1 − 𝜏)𝑟, 𝑟 < 0; 𝜏𝑟, 𝑟 ≥ 0 } = the asymmetrically weighted 𝐿1 loss function.   

 

The linear mixed quantile functions with random intercepts are defined as shown in 

Equation 6: 

 

 𝐺𝑦𝑖𝑗|𝑢𝑖
(𝑥𝑖𝑗, 𝑢𝑖) = 𝑥𝑖𝑗

𝑇 𝛽 +  𝑢𝑖 , 𝑖 = 1, … , 𝑁, 𝑗 = 1, … , 𝑛𝑖 [Eq. 6] 

where 

 

𝑖 = the 𝑖-th subject 

𝑗 = the size of observations of a given subject.   

 

 Comparing Equation 6 to Equation 4, Equation 6 includes the location-shift random 

effect 𝑢𝑖.  The objective function to estimate 𝛽 is then defined as indicated in Equation 7:  

 

 𝛽̂𝜏 = argmin
𝛽∈ℜ𝑝

{∑ 𝜌𝜏(𝑦𝑖𝑗 − 𝐱𝑖𝑗
𝑇 𝛽 − 𝑢𝑖)} [Eq. 7] 

Geraci and Bottai (2007) developed a likelihood-based approach using an asymmetric 

Laplace distribution to estimate 𝛽̂𝜏 by minimizing the objective function.  This study used the R 
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package “lqmm” (Geraci, 2014) to estimate the parameters of interest (𝜂) and the random effects 

(𝑢) using a method based on Gaussian quadrature developed by Geraci and Bottai (2014). 

 

Modeling Strategy and Evaluation 

 

The incident data were collected from two data sources: VDOT-maintained (VaTraffic) 

and crowdsourced (Waze) datasets.  Although they convey similar information, VDOT-

maintained data are expected to be more accurate but may be more limited in their coverage area 

since they depend on police crash reports and incident detection by official sources.  On the other 

hand, crowdsourcing data do not go through any cleaning and validation.  These data may have 

better coverage, but their accuracy is unknown.  It was of great interest to compare the reliability 

models built with the traditional data source that has been used by most previous studies and 

those built with the emerging crowdsourced data source.  As illustrated in Figure 7, depending 

on the incident data source, the input dataset was termed the “VaTraffic” or the “Waze” dataset.   

 

 
Figure 7.  Linear Quantile Mixed Model Development 
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It is worth mentioning that the spatial definition of TMC segments changes periodically.  

Such changes could result in the same TMC code referring to different segment endpoints or 

even completely different locations at different times.  The data used for this study were from 

2017 to 2019, during which the TMC update in December 2018 caused about 30% of TMC 

segments to have more than a 0.5-mile length or location difference.  To simplify data conflation, 

the training data and testing data were divided based on these two versions of the TMC map.  

Data from January 1, 2017, to December 3, 2018, were used as training data, and data from 

December 4, 2018, to December 31, 2019, were used as testing data. 

 

Freeway and interchange segments were clustered into homogeneous groups according to 

the shapes of their travel time distributions in the previous step.  LQMMs were then built for 

each cluster using VaTraffic and Waze training data, referred to as the VaTraffic and Waze 

models.  The estimated coefficients from these models were used to investigate and quantify the 

contribution of impact factors on travel time reliability using different percentiles of travel times.  

Comparing the results from the VaTraffic and Waze models provided insights into the impacts of 

different input data sources.   

 

To validate the prediction performance, variables with a significance level of more than 

0.1 were eliminated from the input dataset to avoid potential overfitting issues.  LQMMs were 

estimated again using the subset of significant variables (p < 0.1).  The training error and testing 

error were both quantified using the following four measures, where training error was estimated 

using 5-fold cross-validation:  

 

1. mean absolute error (MAE) 

2. mean absolute percentage error (MAPE) 

3. mean square error (MSE) 

4. bias. 

 

Random Forest Models 

 

When the number of independent variables is relatively large, application of linear 

regression risks overfitting the data.  With the popularity of machine learning methods, previous 

studies (Breiman, 2001; Meinshausen and Ridgeway, 2006) have demonstrated their capability 

to outperform linear regression models.  Random forests, first introduced by Breiman (2001), is 

one of the most commonly used machine learning techniques with a reputation for good 

prediction accuracy and stability.  It is nonparametric, so the linear assumption is relaxed.  The 

interactive impacts among variables are considered during the model construction process 

without increasing the risk of overfitting.  Meinshausen and Ridgeway (2006) compared the 

performance of linear quantile regression models with and without interaction terms and random 

forest models using various popular datasets.  They found that random forest models showed 

better prediction accuracy than traditional quantile regression, especially for higher quantiles.  

These advantages fit the needs of this study since the travel time reliability measures often 

involved quantiles toward the tail portion of the travel time distribution.  As a result, random 

forest models were built using the same set of input data as LQMMs.  The prediction accuracy of 

LQMMs and random forests were then compared to assess their suitability for travel time 

reliability prediction.   
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Algorithm  

 

The essential idea of random forests is to grow an ensemble of trees that consists of B 

single trees, {𝑇𝑏}1
𝐵.  For each tree, the following steps are taken: 

 

1. Draw a bootstrap sample from the training data. 

 

2. Using these bootstrapped data, conduct the following steps at each node until a leaf is 

created:  

 

a. Select a random subset of independent variables, denoted 𝑚𝑡𝑟𝑦, as the split 

variable candidates at each node.  Often, 𝑚𝑡𝑟𝑦 is set as one-third of the total 

number of independent variables for regression models, and it will stay constant 

during the tree growing process.  Also, independent variables can be selected 

multiple times at different nodes.  It is worth mentioning that the choice of 𝑚𝑡𝑟𝑦 

is the main parameter that needs tuning for random forests, even though results 

are typically nearly optimal over a wide range of this parameter (Breiman, 2001).  

The value of 𝑚𝑡𝑟𝑦 can be optimized using out-of-bag (OOB) errors.   

 

b. Determine the splitting variable and the threshold.  The sum squared residuals 

(SSRs) using different values of each variable are calculated, and the value with 

the smallest SSR becomes the threshold.  Then, the variable with the smallest 

SSR at its threshold becomes the split variable at that node.  This partition is 

known as the Classification and Regression Tree (CART) rules.   

 

c. Repeat Steps 2a and 2b for continuing to grow the tree until some terminal criteria 

are met, which can be a minimum number of observations in a leaf or a 

predefined number of nodes.   

 

3. Repeat Steps 1 and 2 for B times.  In practice, at least 200 trees are recommended.  

More details of random forests are provided in Breiman (2001) and Meinshausen and 

Ridgeway (2006). 

 

Athey et al. (2019) extended the algorithm for quantile estimation based on the work of 

Breiman (2001) and Meinshausen and Ridgeway (2006).  Instead of using SSRs to measure the 

quality of a split, the authors used moment conditions in the form of Equation 8 to identify the 

best split that maximizes the heterogeneity of quantiles of interest. 

 

 𝜓𝜃(𝑌𝑖) = 𝑞𝟏({𝑌𝑖 > 𝜃}) − (1 − 𝑞)𝟏({𝑌𝑖 ≤ 𝜃})     [Eq. 8] 

where 

 

q = the estimated quantile 

θ = the estimation at Xi 

Yi = the observation at Xi. 
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Tuning Parameters 

 

The parameter 𝑚𝑡𝑟𝑦, which refers to the number of randomly selected variable 

candidates used for node splitting, has a significant impact on prediction performance and 

variable importance ranking.  Often, forests built with a lower 𝑚𝑡𝑟𝑦 value provide a better 

opportunity for exploiting variables with moderate effects on the targeted quantiles.  Because the 

chance of such variables being selected simultaneously with variables having strong effects is 

also lower, they have a higher possibility to be used as the variable for node splitting.  On the 

contrary, if the value of 𝑚𝑡𝑟𝑦 is set high, the variables with moderate effects will most likely be 

masked by the variables with strong effects.  The disadvantage of selecting a lower 𝑚𝑡𝑟𝑦 value 

is that some trees are constructed by variables that actually do not have a significant impact on 

the targeted quantiles, which reduces the prediction accuracy after the results of all trees are 

averaged.  In order to balance these two aspects, models using different values of 𝑚𝑡𝑟𝑦 were 

compared to obtain the optimal results.  Most previous studies recommended using one-third of 

the total number of independent variables as the optimal 𝑚𝑡𝑟𝑦 for prediction accuracy.  Bernard 

et al. (2009) also pointed out that the optimal 𝑚𝑡𝑟𝑦 value is highly related to the number of 

variables that significantly impact the response variable.  In order to capture the performance 

trend along with the increased value of 𝑚𝑡𝑟𝑦, it was decided to use 5, 8, 11, 14, and 17 (the total 

number of variables) as the 𝑚𝑡𝑟𝑦 options in this study. 

 

Although there are other tuning parameters, such as the minimum number of observations 

in a leaf node or number of total trees, they contribute a minimal amount to prediction changes 

(Probst et al., 2019).  These parameters were set to commonly used values.  The minimum node 

size was set to 10, and the number of trees was set to 2,000 for all models.   

 

Model Evaluation and Comparison 

Because the purpose of the splitting rule of random forests is to maximize the 

heterogeneity of the quantiles of interest, it should automatically separate samples with different 

travel time distributions.  As a result, it is expected that clustering TMC segments into 

homogeneous groups with similar shapes of distributions might not be necessary when random 

forests are used.  To test this hypothesis, random forest models were built for both the freeway 

and interchange TMC datasets and their clustered groups.  The performance of these models was 

compared using the method described here to determine if the preferred models needed 

clustering as a prerequisite.  Then, the performance of the preferred models using random forests 

was compared to the performance of LQMMs using the same method.   

The method to compare performance was as follows.  For LQMMs, cross-validation was 

used to evaluate and compare model performance.  For random forests, no matter the bagging 

version or fraction of the full input data sampled, there are always data that are not selected to 

construct trees, called OOB observations.  These data could be used the same way as testing data 

in the cross-validation method and establish the OOB predictions during tree growing.  This is 

considered a preferred validation method to compare modeling results and goodness-of-fit over 

cross-validation since the process takes less time.  The measures adopted to quantify model 

performance were the same as the ones used by LQMMs, i.e., MAE, MSE, MAPE, and bias. 
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Task 4. Perform Before-After Studies to Demonstrate Model Application 

 

Overview of Selected Projects 

 

In this task, before-after studies were conducted to evaluate the impacts of improvement 

projects on travel time reliability.  The impacts were evaluated using the models developed in 

Task 3 to illustrate their application and effectiveness.  The scope of this task was limited to 

several project types selected in conjunction with the TRP.  Specifically, the three projects 

selected were as follows: 

 

1. I-81 Safety Service Patrols (before-after operational improvement). As part of the 

safety improvement project along I-81, SSP coverage was extended temporally and 

spatially to cover more segments and for longer periods.  There are 23 TMC segments 

(27 miles), as shown in Figure 8, with extended service areas or service periods.  This 

project was selected by VDOT since the benefits of SSPs are of high interest.  The 

changes started on July 1, 2019.   

 

 
Figure 8.  Traffic Message Channel Locations With New Safety Service Patrol Coverage or Extended 

Schedule 

 

2. I-64 Widening in Richmond (before-after capacity expansion).  To reduce congestion 

along I-64 in the Richmond area, the section of I-64 between Exit 200 (I-295 

interchange) and Exit 205 (Bottoms Bridge) was widened from four to six lanes.  The 

location of this section is shown in Figure 9.  The construction of this project began in 

August 2017 and was completed in August 2019.  Because of the impact of COVID-

19 on traffic, data from 2020 were not considered.  As a result, the “after” period was 
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set as August 2019 to December 2019.  Accordingly, the “before” period was set 

from March 2017 to July 2017, resulting in 5 months for both periods.  Since the data 

during the construction period were available, travel time reliability of the “during” 

period, from January 2018 to December 2018, was also included in the analysis.   

 

 
Figure 9.  I-64 Widening Location (VDOT, 2021b) 

3. I-64/I-264 Interchange Improvements—Phase II (before-during work zone impacts). 

To optimize the traffic operations of the I-64/I-264 interchange, this project will 

reconfigure the roadway connections and add a new flyover.  The project location is 

shown in Figure 10.  The construction began in February 2018.  As a result, the 

before period was set from February 2017 to February 2018, and the during period 

was set from March 2018 to March 2019.   
 

 
Figure 10.  I-64/I-264 Interchange Improvement Project Location (VDOT, 2021c) 
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Evaluation Methodology  

 

The optimal models using LQMMs and random forests were applied to the selected 

projects to demonstrate model application.  Each model used two sets of input data for the 

after/during periods to predict travel time reliability.  One set was the actual data, and the other 

was projected data based on the expected changes mapped to certain impact factors resulting 

from the implementation of the three projects.  Using the actual data provides a way to show how 

well the models predicted reliability changes vs. actual observed data.  Use of the projected data 

provides an example of how the models could be used in practice to assess proposed future 

projects that do not yet have any available after data.   

 

The methods used for calculating the projected values of impact factors were as follows:  

 

● Geometric features.  These include TMC length, number of through lanes, presence 

of HOV/HOT/express lanes, and area type.  Unless the studied projects create 

geometric changes, such as the addition of a lane to expand capacity or the 

conversion of general purpose lanes to HOV/HOT/express lanes, all factors remain 

the same as in the before period. 

 

● Weather factors.  The rain and frozen precipitation variables are assumed to have the 

same values as those on the same day of the month from the previous year. 

 

● Incidents and crashes.  The factors included in this category include the crash 

frequency with four severity levels, the frequency of breakdowns, and the frequency 

of hazards.  A common method to project crash changes is to use safety performance 

functions (SPFs).  According to SPFs, crash frequency is proportional to AADT and 

segment length, as shown in Equation 9: 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑟𝑎𝑠ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 𝑓𝑜𝑟 𝑓𝑟𝑒𝑒𝑤𝑎𝑦 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

= 𝑒𝛼 × 𝐴𝐴𝐷𝑇𝑜𝑛𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝛽1 × 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ𝑜𝑛𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  

 [Eq. 9] 

 

Using the AADT and Virginia-specific parameters shown in Table 1 (Kweon and 

Lim, 2014), the ratio of SPF-predicted crash frequency between the before and after 

periods could be obtained.  This ratio could then be multiplied by the observed crash 

frequency to get the projected values of all crashes.  SPFs are applicable only to 

crashes.  For projecting the frequency of breakdown and hazard events, it is assumed 

that they are directly proportional to AADT.  The growth rate of AADT was applied 

to calculate the projected frequency of breakdowns and hazards.   

 

● Work zones.  Because of the different traffic environments for work zones, crash 

modification factors (CMFs) are applied to account for work zone effects.  The two 

projects considered for the work zone study involved large-scale construction.  The 

CMF was used under the scenario of daytime work zones with one or more lanes 

closed for freeways and expressways.  According to Ullman et al. (2018), the CMFs 

under this condition are 1.66 for the total crash and 1.46 for the injury-related crash.   
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     Table 1.  SPF Virginia-Specific Parameters 
 

Site Type 

Total Crash Fatal and Injury 

𝜶 𝜷𝟏 𝜶 𝜷𝟏 

Urban freeway, 4 lanes -18.05 1.98 -18.27 1.88 

Urban freeway, 6 lanes -12.85 1.45 -15.64 1.6 

Urban freeway segments within an 

interchange area, 4 lanes 

-12.05 1.43 -12.53 1.35 

SPF = safety performance function. 

 

● It is assumed that the work zone lane closure information is uncertain at the time of 

conducting the before-after study when projected data are used.  As a result, the two 

factors directly related to work zones, the frequency of lane closures and the 

frequency of shoulder closures, in the projected after-period data are set to zero, and 

the impact of work zones is reflected only through crash variables. 

 

● Traffic demand.  This includes the v/c ratio and heavy vehicle percentage.  The after-

period volumes are extrapolated by the ratio of AADT changes between the previous 

2 years.  Induced demands by capacity expansion are not considered.  Capacity 

remains the same unless there are changes in the number of through lanes.  It should 

be noted that the capacity reduction because of lane closures cannot be accounted for 

in the projected after-period data since, as mentioned previously, the work zone 

impact was considered only through crash changes.   

 

● SSP.  SSP schedules are planned in advance.  So, the projected values of the SSP 

variable are assumed to be the same as the actual after-period data. 

 

The actual and projected data for the after/during periods are then input into the proposed 

LQMMs and random forest models to predict the 50th, 80th, and 90th percentiles of travel time 

distributions.  The corresponding values of LOTTR are also calculated.  The before-after study is 

conducted by comparing the actual and predicted changes of travel time reliability (e.g., the 

LOTTR and the 90th percentile).   

 

 

RESULTS AND DISCUSSION 

 

Literature Review 

 

Travel Time Reliability Measures 

 

As there are multiple definitions of travel time reliability, various metrics and measures 

have been created to represent different aspects of reliability.  The following section provides a 

summary of these metrics and measures and their applications and suitability under certain 

circumstances.   
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Travel Time Percentiles 

 

Percentiles are well-known statistical measures and are easy to calculate, but different 

percentiles might be suitable for different reliability applications.  The SHRP 2 Project L03 study 

(Cambridge Systematics, 2013) pointed out that the 95th percentile travel time may be too 

extreme to reflect improvements created by certain operational strategies.  Instead, the 80th 

percentile may be a better performance measure for understanding the effects of operational 

improvements.  A similar study by Zhang and Chen (2019) to quantify the impact of inclement 

weather and incidents on reliability suggested that the 95th percentile is more sensitive to 

weather and the 90th percentile is more sensitive to incidents.  Lam and Small (2001) found that 

the difference between the 90th percentile and the median travel time is a good measure to assess 

the value of travel time reliability in a value pricing case study. 

 

LOTTR 

 

LOTTR is the reliability metric required by FHWA rulemaking (FHWA, 2017) to be 

reported periodically.  It is calculated as the ratio of the 80th percentile to 50th percentile travel 

time of each reporting segment during four time periods (6 to 10 AM weekdays; 10 AM to 4 PM 

weekdays; 4 to 8 PM weekdays; 6 AM to 8 PM weekends) of the entire year.  Segments with 

LOTTR values below 1.5 for all four time periods are classified as reliable.  Otherwise, they are 

classified as unreliable if the threshold is exceeded for one or more periods.  The travel time 

reliability measures are derived using Equation 10 for the interstate and non-interstate NHS:  

 

 𝑇𝑇𝑅𝑀 = 100 ×
∑ 𝑆𝐿𝑖 × 𝐴𝑉𝑖 × 𝑂𝐹𝑗

𝑅
𝑖=1

∑ 𝑆𝐿𝑖 × 𝐴𝑉𝑖 × 𝑂𝐹𝑗
𝑇
𝑖=1

 [Eq. 10] 

where 

 

TTRM = travel time reliability measure 

  

𝑆𝐿𝑖 = the segment length of interstate (or non-interstate) NHS reporting segment 𝑖 
 

𝐴𝑉𝑖 = annual traffic volume of reporting segment 𝑖, calculated as 𝐴𝐴DT × Directional 

factor × 365 (366 for leap year), where the directional factor is the factor for splitting 

AADT by direction with the default value of 0.5 

 

𝑂𝐹𝑗 = occupancy factor for vehicles on the NHS within a specified geographic area j 

within the state/metropolitan planning area 

 

R= total number of interstate (or non-interstate) reporting segments with an LOTTR value 

below 1.50 for all four time periods 

 

T = total number of interstate (or non-interstate) NHS reporting segments. 
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Variance and Standard Deviation 

 

 Both variance and standard deviation measures represent how spread out travel time 

distributions are.  These are widely used in the transportation field because they are convenient 

to calculate (Dong and Mahmassani, 2009).  Dowling et al. (2009) explored the correlation 

between standard deviation and other reliability measures, such as the buffer time index (BTI), 

misery index, planning index, and failure/on-time.  The authors used 1 year’s worth of 5-minute 

speed and volume data collected from four detector locations on two freeways in the San 

Francisco Bay Area.  They concluded that standard deviation could be used as a proxy for other 

measures.  The California DOT (1998) also adopted standard deviation to evaluate the travel 

time reliability of roadway links.   

 

Buffer Time Index 

 

The BTI is the ratio of the difference between the 95th percentile travel time and the 

average travel time over the mean travel time.  It measures the extra time above the average 

travel time required to arrive on time 95% of the time, as shown in Equation 11.  In the SHRP 2 

Project L03 study (Cambridge Systematics, 2013), a thorough empirical analysis was conducted 

to find suitable reliability measures for highway improvement evaluations.  The authors found 

that when travel time distributions were highly skewed, the median was a more robust estimation 

of central tendency than the mean.  Pu (2011) confirmed this conclusion that median-based BTI 

is preferred over average-based BTI (see Eq. 11). 

 

BTI =  
95th percentile travel time − Average or median travel time 

Average or median travel time 
 [Eq. 11] 

Planning Time Index 

 

The planning time index (PTI) is calculated using the 95th percentile travel time divided 

by the free-flow travel time.  It represents the extra time travelers should budget in addition to 

free-flow travel time to have a 95% probability of arriving on time.  For example, a PTI value of 

1.2 means that a 10-minute free-flow trip requires 12 minutes during the heaviest traffic.  

Although the BTI shows the additional travel time that needs to be budgeted, the PTI shows the 

total travel time required for on-time arrivals.  List et al. (2014 a) concluded that PTI is 

recommended to measure reliability for daily, constrained trips.  Such trips refer to those “for 

which the user experiences day-to-day variability in travel time (because of recurring congestion 

and incident or nonrecurring congestion) and desires to arrive at the destination at a fixed time 

(or within a small time window)” (see Eq. 12). 

 

 PTI =  
95th percentile travel time 

  Free − flow travel time 
 [Eq. 12] 

Travel Time Index 

 

Travel time index (TTI) is the ratio of peak-period travel time to the time required to 

make the same trip at free-flow speed.  A TTI of 1.2 means that the travel time during the peak 

period is 20% longer than the free-flow travel time.  The SHRP 2 Project L02 study (List et al., 
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2014b) recommended using the TTI to measure travel time reliability for occasional, constrained 

trips for passenger travelers.  “Occasional, constrained trips” are defined as trips “for which the 

user does not experience day-to-day variability but does have temporal constraints on arrival 

time.”  SHRP 2 Project L08 (Zegeer et al., 2014) used a TTI of 1.33 for freeways and 2.50 for 

urban streets as the thresholds of congestion.  When used for measuring multiple periods, the 

TTI can be used to compare measured travel time to free-flow travel time.  In this case, TTI is 

treated as a congestion measure rather than a reliability performance metric (see Eq. 13). 

 

 TTI =  
Mean peak period travel time

Free − flow travel time
 [Eq. 13] 

Percent On-Time Travel and Misery Index 

 

   Percent on-time travel is the percentage of trips with travel times less than a particular 

threshold.  Past thresholds have been set at 110% to 130% of average travel time (Cambridge 

Systematics, 2013).  Depending on various contexts and use case scenarios, the Florida DOT 

(2000) adopted four levels of thresholds (greater than 5%, 10%, 15%, 20% over the average 

travel times) to define unreliable trips.  Slightly different from on-time arrival and the Florida 

DOT’s method, the misery index emphasizes how bad the worst days are by comparing the 

longest 20% trips to the average. 

 

Factors Affecting Reliability 

 

A National Cooperative Highway Research Program study (2003) identified seven factors 

that contribute to unreliable travel times: traffic incidents, inclement weather, work zones, 

special events, traffic control devices, fluctuations in demand, and inadequate base capacity.  

This study considered only freeways, so the impact of traffic control devices (e.g., traffic signals) 

was not included.  Table 2 summarizes selected studies that attempted to estimate the impact of 

the other six factors.  In most cases, previous studies examined the effect of only one or two of 

these factors and did not consider the impact of multiple factors present simultaneously. 
 

Reliability Modeling Approaches 

 

Although many studies have investigated the impacts of various factors on reliability, no 

models suitable for reliability prediction using all these factors simultaneously have been 

developed.  The current state of the practice relies on historical trend lines or assumptions of 

relationships between reliability and traditional congestion measures.  The TPB, which is the 

metropolitan planning organization for metropolitan Washington, summarized the current 

forecast methods used by VDOT, the Maryland DOT, and the District of Columbia DOT (TPB, 

2018).  Three methods were mentioned and used to analyze travel time data in the Washington, 

D.C., area and are illustrated in Figure 11: 

 

1. Extrapolation of measured performance.  DOTs set targets for future years through 

fitting travel time reliability of past years into trend lines (linear or exponential), as 

shown in Figure 11(a). 
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2. The use of travel demand model data.  Travel demand models project future traffic 

conditions and produce changes in congestion-related measures.  Although reliability 

is not included in these measures, forecasting could be achieved through using the 

change rate of percentage of congested AM peak hour vehicle miles traveled, as 

shown in Figure 11(b).  The impact of nonrecurring congestion is not explicitly 

modeled using this method. 

 

3. The average of the two.  The results of the previous methods are averaged, as 

illustrated in Figure 11(c). 

These methods are relatively simple and provide estimates at a highly aggregated level.  

The benefits of operational and capacity improvement projects are not included in the target 

setting process in the aforementioned methods, and negative impacts from planned disruptive 

events such as work zones are also not included.  Effects of factors impacting reliability are 

considered only through the use of observed historical trends and do not explicitly model the 

impact of items such as work zones, incidents, and weather. 

 

It is noticeable that most reliability measures introduced earlier rely on travel time 

distributions.  The starting point of estimating travel time distributions could be fitting travel 

time data through single-mode probability distributions. 

 

 
Figure 11.  Performance Target Setting Methods.  TTR = travel time reliability.  Adapted From The National 

Capital Region Transportation Planning Board (2018).   
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A variety of distributions have been tested in previous studies, such as normal and 

lognormal (Pu, 2011); gamma and compound gamma (Kim and Mahmassani, 2015); Weibull 

(Arroyo and Kornhauser, 2005); generalized beta (Castillo et al., 2012); Halphen distribution 

(Delhome et al., 2017); and Burr distributions (Taylor, 2017).  Emam and Al-Deek (2006) 

employed the AD goodness-of-fit statistics and 90th percentile of absolute error to evaluate the 

performance of four distribution types: Weibull, exponential, lognormal, and normal.  The 

modeling results indicated that the lognormal distribution provided the best model fit.  In 

addition, data from the same day of the week fit better than data collected across multiple 

weekdays because of the significant differences between traffic patterns across days.  Li et al. 

(2006) suggested that a lognormal distribution best characterized the distribution of travel time 

when a large time window (e.g., more than 1 hour) was under consideration with the presence of 

congestion.   

 

Little agreement could be found in previous studies on the type of probability distribution 

most appropriate for modeling travel times.  One main reason behind this is the heterogeneity of 

the traffic environment.  Authors developed more complex modeling methodologies to overcome 

the limitation of single-mode distributions, such as mixture/multi-state and non-parametric 

models.  These models can better capture the heterogeneity by associating travel time 

distribution with different traffic conditions both temporally and spatially.  Specifically, two 

levels of uncertainty can be considered here: (1) the probability of a given traffic condition (such 

as free flow, congestion onset, congestion, and congestion dissipation), and (2) travel time 

variation within each traffic condition (Park et al., 2011; Van Lint and Van Zuylen, 2005).  

However, unpredictable factors (e.g., weather, work zones, incidents) further complicate the 

classification of traffic states.  In addition, adopting different goodness-of-fit measures to 

determine the best fit distribution types also contributes to the lack of consistent results.  Plötz et 

al. (2017) demonstrated that different goodness-of-fit measures might lead to different 

conclusions with regard to the best fit distribution types even when the same travel time dataset 

is used.  Several studies have used different multi-state models, such as the normal mixture 

model (Guo et al., 2015); gamma mixture model (Yang and Wu, 2016); and kernel density 

estimation using the Hasofer-Lind-Rackwitz-Fiessler algorithm (Yang et al., 2014).  Yang and 

Wu (2016) believed that the selection of single-mode distribution types has little impact on 

measuring travel time reliability if a mixture model is used.   

  

Guo et al. (2015) introduced two approaches to incorporate the influence of traffic 

volume on travel time reliability: (1) Bayesian mixed-effect travel time regression models, and 

(2) hidden Markov models.  The Bayesian mixed-effect travel time regression model advanced 

the multi-state travel time reliability model of Park et al. (2011) by developing regressions on the 

proportions and distribution parameters for underlying traffic states using field data collected 

along a section on I-35 in San Antonio, Texas.  The modeling results indicated a negative 

relationship between the proportion of free-flow state and traffic volume.  There might exist only 

one travel time state for low traffic volume conditions, in which case single-state models would 

be sufficient.  The estimation for the congested state indicated that the travel time under such 

conditions had substantial variability and is positively related to traffic volume.  The hidden 

Markov model considered the interactions of consecutive segments compared to the former 

model that assumes all observations are independent.  The modeling results showed that the 

traffic volume has a positive effect on the proportion of congested state and the mean parameters 
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of such state.  In terms of the model fitting, it was concluded that the hidden Markov model is 

superior with regard to interpreting the data without sacrificing model simplicity.  Although the 

non-parametric and mixture models can provide a better fitting, it is not always practical to 

derive travel time reliability measures from these complex models, limiting their applications.   

 

The HCM-6 provides a probability-based method to incorporate the impact factors in 

reliability analysis at a freeway facility or corridor level.  The core element of this method is the 

scenario generator, which provides a large set of different combinations of impact factors (e.g., 

demand, weather, incidents) with their corresponding probabilities.  Then, travel times are 

inferred for each scenario through the HCM FREEVAL tool to construct the travel time 

distribution.  According to Tufuor et al. (2020), the HCM-6 method was validated only through 

simulations without calibration with empirical travel time data.  Tufuor and Rilett (2020) 

compared the travel time distribution built by the HCM-6 method and the empirical distribution 

using data on a 1.16-mile testbed in Lincoln, Nebraska.  The results indicated that these two 

distributions were statistically different, with the standard deviation of travel time distribution by 

the HCM-6 method being 67% less than that of the empirical distribution.  

 

In Virginia, the SMART SCALE Technical Guide (Office of Intermodal Planning and 

Investment, 2021) provides guidance on how to evaluate travel time reliability at a corridor level 

five using factors: BTI, incident impact, incident frequency, weather impact, and weather 

frequency.  The incident frequency and weather frequency are assigned scores from 0 to 5 and 0 

to 2, respectively, depending on the actual times the events happened.  The incident impact and 

weather impact are also defined using scores ranging from 0 to 2, which are determined from 

Table 10.9 in the SMART SCALE Technical Guide.  To compute travel time reliability, the 

product of the incident impact and the incident frequency is added to the product of the weather 

impact and the weather frequency.  This result is then multiplied by the BTI. 

 

 

Data Collection and Preparation 

 

 The data used in this study were assembled from VDOT-maintained and crowdsourced 

sources, as discussed previously.  Tables 3 and 4 list relevant variables and their factor categories 

for the VDOT-maintained (VaTraffic) and crowdsourced (Waze) datasets, respectively.  The 

incident variables distinguish these two sets of input variables and their resulting models.  The 

VDOT-maintained crash data provide the severity level of crashes so that each type of crash is 

counted separately; crowdsourced data count only the frequency of crashes with no indication of 

severity.   

 

Cluster Analysis 

 

Three quantiles, the 50th, 80th, and 90th, were set as the target variables.  Table 5 shows 

a comparison of the efficiency of different clustering methods for the 80th percentile.  The 

average Silhouette value by geometric feature was -0.47 and -0.75 for freeway and interchange 

segments, respectively, which indicated that this was not a preferable clustering method.  For 

freeway segments, hierarchical clustering using the KS dissimilarity matrix and complete linkage 

had the best performance, and the optimal cluster size was 2.   
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Table 3.  Variable Summary for VaTraffic Models  

Factor Category Factor Variable Name 

Geometric features Traffic Message Channel length (miles) miles 

Number of through lanes (count) throu_lane 

Presence of parallel managed lanes (presence=1, 

otherwise=0) 

Par_lane 

Area type (urban=0, rural=1) rural 

Weather Frozen precipitation (inches to hundredths) frozen_precip 

Rain precipitation (inches to hundredths) rain_precip 

Incident Crash frequency by severity level (count) Severe_Injury 

Visible_Injury 

Nonvisible_Injury 

PDO 

Frequency of breakdown (disabled vehicles) (count) breakdown 

Frequency of hazard (fire related) (count) hazard 

Work zone Shoulder closure (count) shoulder_closure 

Lane closure (count) lane_closure 

Traffic demand Volume-to-capacity ratio vc_ratio 

Percentage of heavy vehicles heavy_percent 

Safety Service Patrol 

(SSP) 

Presence of safety service patrol (SSP present=1, 

otherwise=0) 

ssp 

 
Table 4.  Variable Summary for Waze Models  

Factor Category Factor Variable Name 

Geometric features Traffic message channel length (miles) miles 

Number of through lanes (count) throu_lane 

Presence of parallel managed lanes (presence=1, 

otherwise=0) 

Par_lane 

Area type (rural=0, urban=1) rural 

Weather Frozen precipitation (inches to hundredths) frozen_precip 

Rain precipitation (inches to hundredths) rain_precip 

Incident Frequency of crashes (count) WAZE_crashes 

Frequency of breakdown (count) WAZE_breakdown 

Frequency of hazard (count) WAZE_hazard 

Work zone Shoulder closure (count) shoulder_closure 

Lane closure (count) lane_closure 

Traffic demand Volume-to-capacity ratio vc_ratio 

Percentage of heavy vehicles heavy_percent 

Safety Service Patrol 

(SSP) 

Presence of safety service patrol (SSP present=1, 

otherwise=0) 

ssp 

 

For interchange segments, hierarchical clustering using the AD dissimilarity matrix and 

Ward’s linkage had the best performance, and the optimal cluster size was also 2.  The average 

Silhouette values of the 50th and 90th percentiles were also computed since the optimal cluster 

results might change.  For this study, the highest average Silhouette value was from hierarchical 

clustering using a KS matrix with a cluster size of 2 for all three percentiles of freeway segments.  

For interchange segments, hierarchical clustering using an AD matrix with a cluster size of 6 had 

the highest value for the 50th percentile, and a KS matrix with a cluster size of 5 had the highest 

value for the 90th percentile.  Since the Silhouette values did not differ too much from each 

other, it was decided to adopt the smallest cluster size to reduce the complexity of the next step.   
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Table 5.  Average Silhouette Width of the 80th Percentiles of Travel Time   
 

Clustering Approach 

 

Linkage Method 

Average Silhouette 

Freeway Segment Interchange Segment 

Hierarchical: 

Kolmogorov-Smirnov 

Ward’s 0.27 0.13 

Complete 0.49 0.20 

Hierarchical:  

Anderson-Darling 

Ward’s 0.36 0.23 

Complete -0.04 0.21 

Model-Based N/A 0.34 -0.21 

Geometric Feature N/A -0.47 -0.75 

Bold font indicates the best performing method.  N/A = not applicable. 

 

The travel time distribution of freeway segments overall had a less curved shape than 

distributions of interchange segments.  The model-based functional data clustering did not offer 

better results since typical applications of this type of clustering are often curves with peaks or 

time-series data.  Theoretically, clustering using the AD matrix is expected to have better results 

than with the KS matrix.  However, it was observed from the TMC distribution plots that the 

maximum distances were most likely to occur toward the tail of the distribution, which could be 

captured by the KS statistics.  As a result, the theoretical advantage of AD statistics did not 

materialize.   

 

Figures 12 and 13 show the distribution of each cluster for the final clustering results of 

freeway and interchange segments, respectively.  Below the distribution plots, clustered 

segments are shown geographically in a map, which demonstrates reliability patterns by location.   

 
Figure 12.  Final Clustering Results for Freeway Segments 
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Figure 13.  Final Clustering Results for Interchange Segments 

For freeway segments, most segments in rural areas fell into clusters with relatively 

reliable travel times (Group 1), and segments along urban areas were likely to be in clusters with 

lower reliability levels (Group 2).  For interchange segments, the urban/rural division was not as 

apparent as with freeway segments.  Figure 14 summarizes the overall distribution of each 

cluster.  It was observed that each cluster had a unique overall distribution shape, especially in 

the tails.  Distributions with shorter tails indicated that travel times from those clusters were 

more reliable than distributions with longer tails.  To quantify the reliability trends better, tables 

in Figure 14 also summarize the average and standard deviation of the 80th percentile travel 

times and the LOTTR of each cluster.   
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Figure 14.  Overall Distributions and Reliability Comparison: left, freeway; right, interchange.  LOTTR = 

level of travel time reliability; SD = standard deviation. 

 

Reliability Analysis Using LQMMs 

 

The assembled data were used to develop separate LQMMs for freeway segments and 

interchange segments based on the clusters from the previous step.  Separate models were also 

developed using VaTraffic data and Waze data.  The variables listed in Tables 3 and 4 were 

considered inputs.  Also, interaction terms were considered between v/c ratio and non-recurrent 

events, such as weather, incidents, and work zones.  The impact of influencing factors was 

interpreted through the estimated coefficients resulting from the LQMMs.   

 

Freeway Segment Models 

 

 For freeway segments, two groups were defined by the cluster analysis.  As discussed 

previously, Group 1 is more reliable with longer TMC segments in rural areas and Group 2 is 

less reliable with shorter segments in urban or suburban areas.  Before quantile models were 

developed, a descriptive analysis was conducted to provide an overview of each input dataset, as 

shown in Tables 6 and 7.   

 

To make the coefficients comparable and more easily interpretable, standardized values 

of coefficients were also calculated.  These were calculated by multiplying the coefficient (𝑏𝑖) by 

the standard deviation of its corresponding independent variable and dividing it by the standard 

deviation of the dependent variable.  They represent the expected change in 𝑌 (in standardized 

units of 𝑌 where each “unit” is a statistical unit equal to 1 standard deviation) because of an 

increase in 𝑋𝑖 of one of its standardized units with all other 𝑋 variables unchanged.  The model 

results are summarized in Table A1 in the Appendix.   
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Table 6.  Input Data Summary for VaTraffic Freeway Models  

 

Group 

TMC No. 

(Miles) 

 

Variable Name (Units) 

 

Mean 

Std.  

Dev. 

 

Minimum 

 

Maximum 

Freeway- 

Group 1 

475 

(1548.77) 

Miles (mile) 3.4571 1.8527 0.60 8.97 

throu_lane (count) 2.3884 0.6689 2.00 5.00 

frozen_precip (inches to 

hundredths) 

0.0008 0.0180 0.00 1.44 

rain_precip (inches to hundredths) 0.0382 0.3003 0.00 20.13 

Severe_Injury (count) 0.0007 0.0259 0.00 2.00 

Visible_Injury (count) 0.0043 0.0675 0.00 3.00 

Nonvisible_Injury (count) 0.0006 0.0253 0.00 1.00 

PDO (count) 0.0159 0.1352 0.00 6.00 

shoulder_closure (count) 0.0075 0.0883 0.00 5.00 

lane_closure (count) 0.0052 0.0739 0.00 4.00 

Breakdown (count) 0.0419 0.2209 0.00 5.00 

Hazard (count) 0.0006 0.0246 0.00 2.00 

Rural (0/1) 0.5223 0.4995 0.00 1.00 

vc_ratio (number) 0.3167 0.1871 0.03 1.10 

Par_lane (0/1) 0.0413 0.1990 0.00 1.00 

heavy_percent (percent) 16.2440 8.3276 0.00 33.15 

SSP (0/1) 0.4845 0.4998 0.00 1.00 

Freeway- 

Group 2 

 

 

467 

(231.25) 

Miles (mile) 0.6331 0.3814 0.10 1.56 

throu_lane (count) 2.8894 0.8314 2.00 6.00 

frozen_precip (inches to 

hundredths) 

0.0009 0.0226 0.00 1.44 

rain_precip (inches to hundredths) 0.0500 0.3970 0.00 20.13 

Severe_Injury (count) 0.0002 0.0144 0.00 1.00 

Visible_Injury (count) 0.0018 0.0424 0.00 2.00 

Nonvisible_Injury (count) 0.0003 0.0160 0.00 1.00 

PDO (count) 0.0059 0.0803 0.00 5.00 

shoulder_closure (count) 0.0022 0.0475 0.00 3.00 

lane_closure (count) 0.0017 0.0424 0.00 3.00 

Breakdown (count) 0.0125 0.1162 0.00 4.00 

Hazard (count) 0.0003 0.0167 0.00 2.00 

Rural (0/1) 0.1155 0.3196 0.00 1.00 

vc_ratio (number) 0.4271 0.1887 0.04 1.04 

Par_lane (0/1) 0.0902 0.2865 0.00 1.00 

heavy_percent (percent) 8.6772 7.3104 0.30 33.15 

SSP (0/1) 0.5316 0.4990 0.00 1.00 

TMC = Traffic Message Channel; PDO = property damage only crash; SSP = safety service patrol. 

 

To compare the magnitude of impacts, variables with significance levels higher than 90% 

for each model were plotted in Figures 15 and 16, with the standardized coefficients ordered 

from highest to lowest.  The overall trends for both the VaTraffic and Waze models were that (1) 

the 50th, 80th, and 90th percentile travel times of Group 1 (more reliable) were impacted by 

more factors than Group 2 (less reliable), but each factor contributed almost equally in the two 

groups; and (2) when the same variable appeared in all three percentile models, the values of 

standardized coefficients increased toward the upper tail percentages.  The first trend could be 

explained by the difference in the segment length of the two clusters.  Group 1 had an average 

TMC length of 3.5 miles, providing a spatial opportunity for different events to occur at the same 

time.  On the contrary, Group 2 had an average TMC length of only 0.63 miles, and impact 

factors were more likely to contribute separately on different TMC segments.   
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Table 7.  Input Data Summary of Waze Freeway Model  

 

Group 

TMC No. 

(Miles) 

 

Variable Name (Units) 

 

Mean 

Std.  

Dev. 

 

Minimum 

 

Maximum 

Freeway- 

Group 1 

 

 

475 

(1548.77) 

Miles (mile) 3.4571 1.8527 0.60 8.97 

throu_lane (count) 2.3884 0.6689 2.00 5.00 

frozen_precip (inches to 

hundredths) 

0.0008 0.0180 0.00 1.44 

rain_precip (inches to hundredths) 0.0382 0.3003 0.00 20.13 

WAZE_crashes (count) 0.0720 0.4041 0.00 15.00 

WAZE_breakdown (count) 1.2197 1.8501 0.00 48.00 

WAZE_hazard (count) 0.2092 1.0275 0.00 322.00 

shoulder_closure (count) 0.0075 0.0883 0.00 5.00 

lane_closure (count) 0.0052 0.0739 0.00 4.00 

Rural (0/1) 0.5223 0.4995 0.00 1.00 

vc_ratio (number) 0.3167 0.1871 0.03 1.10 

Par_lane (0/1) 0.0413 0.1990 0.00 1.00 

heavy_percent (percent) 16.2440 8.3276 0.00 33.15 

SSP (0/1) 0.4845 0.4998 0.00 1.00 

Freeway- 

Group 2 

467 

(231.25) 

Miles (mile) 0.6331 0.3814 0.10 1.56 

throu_lane (count) 2.8894 0.8314 2.00 6.00 

frozen_precip (inches to 

hundredths) 

0.0009 0.0226 0.00 1.44 

rain_precip (inches to hundredths) 0.0500 0.3970 0.00 20.13 

WAZE_crashes (count) 0.0348 0.2516 0.00 12.00 

WAZE_breakdown (count) 0.3405 0.7738 0.00 12.00 

WAZE_hazard (count) 0.0583 0.3424 0.00 39.00 

shoulder_closure (0/1) 0.0022 0.0475 0.00 3.00 

lane_closure (0/1) 0.0017 0.0424 0.00 3.00 

Rural (0/1) 0.1155 0.3196 0.00 1.00 

vc_ratio (number) 0.4271 0.1887 0.04 1.04 

Par_lane (0/1) 0.0902 0.2865 0.00 1.00 

heavy_percent (percent) 8.6772 7.3104 0.30 33.15 

SSP (0/1) 0.5316 0.4990 0.00 1.00 

TMC = Traffic Message Channel; SSP = safety service patrol. 

 

In terms of interpreting the modeling results for impact factors, the key findings were as 

follows: 

 

● For the VaTraffic models, for both Group 1 and Group 2, the impacts of non-

recurrent events such as incidents and weather changed from being significant only as 

interaction terms with v/c ratio to the impact factors alone being significant as the 

percentile being modeled increased.   

 

● Non-recurrent events have a higher impact on Group 2 than Group 1 because the 

freeways near urban/suburban areas are already more congested than in rural areas 

and are more vulnerable to these random interruptions.  This finding could also be 

supported by the fact that traffic demand variables, including v/c ratio and heavy 

vehicle percentage, are all significant and have a higher impact ranking in Group 1 

but not in Group 2.   

 

 



35 

 

 
Figure 15.  VaTraffic Freeway Segment Variable Coefficients Rankings.  X-axis = Standardized Coefficients. 

 

 
Figure 16.  Waze Freeway Segment Variable Coefficients Rankings.  X-axis = Standardized Coefficients. 
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Interchange Segment Models 

 

The interchange segments were also clustered into two groups.  There was no clear 

urban/rural division as seen in freeway segments.  Similar to freeway segments, descriptive 

statistics are provided for interchange segments, as shown in Tables 8 and 9.  Modeling results 

are summarized in Table A2 in the Appendix.   

 
Table 8.  Input Data Summary of VaTraffic Interchange Models  

 

Group 

TMC 

No. (Miles) 

 

Variable 

 

Mean 

Std.  

Dev. 

 

Minimum 

 

Maximum 

Interchange- 

Group 1 

 

 

345 

(163.23) 

Miles (mile) 0.4784 0.2742 0.11 2.02 

throu_lane (count) 2.9360 0.8362 2.00 6.00 

frozen_precip (inches to 

hundredths) 

0.0011 0.0260 0.00 1.44 

rain_precip (inches to 

hundredths) 

0.0506 0.3827 0.00 20.13 

Severe_Injury (count) 0.0002 0.0142 0.00 1.00 

Visible_Injury (count) 0.0022 0.0475 0.00 3.00 

Nonvisible_Injury (count) 0.0003 0.0185 0.00 2.00 

PDO (count) 0.0072 0.0867 0.00 2.00 

shoulder_closure (count) 0.0024 0.0510 0.00 3.00 

lane_closure (count) 0.0018 0.0444 0.00 3.00 

Breakdown (count) 0.0166 0.1359 0.00 4.00 

Hazard (count) 0.0002 0.0133 0.00 1.00 

Rural (0/1) 0.0400 0.1960 0.00 1.00 

vc_ratio (number) 0.4855 0.1997 0.03 1.62 

Par_lane (0/1) 0.1304 0.3368 0.00 1.00 

heavy_percent (percent) 6.5769 6.0541 0.30 33.15 

SSP (0/1) 0.6162 0.4863 0.00 1.00 

Interchange- 

Group 2 

566 

(244.93) 

Miles (mile) 0.5184 0.2221 0.11 1.73 

throu_lane (count) 2.3731 0.6351 2.00 5.00 

frozen_precip (inches to 

hundredths) 

0.0007 0.0150 0.00 1.36 

rain_precip(inches to 

hundredths) 

0.0380 0.3109 0.00 20.13 

Severe_Injury (count) 0.0001 0.0112 0.00 1.00 

Visible_Injury (count) 0.0006 0.0250 0.00 2.00 

Nonvisible_Injury (count) 0.0001 0.0090 0.00 2.00 

PDO (count) 0.0026 0.0527 0.00 3.00 

shoulder_closure (count) 0.0016 0.0408 0.00 2.00 

lane_closure (count) 0.0009 0.0306 0.00 2.00 

Breakdown (count) 0.0064 0.0826 0.00 4.00 

Hazard (count) 0.0001 0.0106 0.00 1.00 

Rural (0/1) 0.5083 0.4999 0.00 1.00 

vc_ratio (number) 0.2815 0.1460 0.03 0.99 

Par_lane (0/1) 0.0169 0.1291 0.00 1.00 

heavy_percent (percent) 17.2953 7.7183 2.20 33.15 

SSP (0/1) 0.4507 0.4976 0.00 1.00 

TMC = Traffic Message Channel; PDO = property damage only crash; SSP = safety service patrol. 
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Table 9.  Input Data Summary for Waze Interchange Model  

 

Group 

TMC No. 

(Miles) 

 

Variable 

 

Mean 

Std.  

Dev. 

 

Minimum 

 

Maximum 

Interchange- 

Group 1 

 

345 (163.23) Miles (mile) 0.4784 0.2742 0.11 2.02 

throu_lane (count) 2.9360 0.8362 2.00 6.00 

frozen_precip (inches to 

hundredths) 

0.0011 0.0260 0.00 1.44 

rain_precip (inches to 

hundredths) 

0.0506 0.3827 0.00 20.13 

WAZE_crashes (count) 0.0508 0.3107 0.00 15.00 

WAZE_breakdown (count) 0.3867 0.9190 0.00 19.00 

WAZE_hazard (count) 0.0677 0.3909 0.00 64.00 

shoulder_closure (count) 0.0024 0.0510 0.00 3.00 

lane_closure (count) 0.0018 0.0444 0.00 3.00 

Rural (0/1) 0.0400 0.1960 0.00 1.00 

vc_ratio (number) 0.4855 0.1997 0.03 1.62 

Par_lane (0/1) 0.1304 0.3368 0.00 1.00 

heavy_percent (percent) 6.5769 6.0541 0.30 33.15 

SSP (0/1) 0.6162 0.4863 0.00 1.00 

Interchange- 

Group 2 

566 (244.93) Miles (mile) 0.5184 0.2221 0.11 1.73 

throu_lane (count) 2.3731 0.6351 2.00 5.00 

frozen_precip (inches to 

hundredths) 

0.0007 0.0150 0.00 1.36 

rain_precip (inches to 

hundredths) 

0.0380 0.3109 0.00 20.13 

WAZE_crashes (count) 0.0112 0.1448 0.00 7.00 

WAZE_breakdown (count) 0.2226 0.6549 0.00 15.00 

WAZE_hazard (count) 0.0380 0.3655 0.00 64.00 

shoulder_closure (count) 0.0016 0.0408 0.00 2.00 

lane_closure (count) 0.0009 0.0306 0.00 2.00 

Rural (0/1) 0.5083 0.4999 0.00 1.00 

vc_ratio (number) 0.2815 0.1460 0.03 0.99 

Par_lane (0/1) 0.0169 0.1291 0.00 1.00 

heavy_percent (percent) 17.2953 7.7183 2.20 33.15 

SSP (0/1) 0.4507 0.4976 0.00 1.00 

TMC = Traffic Message Channel; SSP = safety service patrol. 

 

Variables with p-value < 0.1 for each model were ranked from highest to lowest 

according to the values of standardized coefficients, as shown in Figures 17 and 18.  In contrast 

to the trend for freeway segments, the three percentiles of travel time distributions of Group 1 

interchange segments (more reliable) were impacted by fewer factors than Group 2 (less 

reliable).  Because there was not much length difference between the two groups and interchange 

segments are much shorter than freeway segments, there was less of a smoothing effect.  More 

significant impact factors contribute to less reliable segments.  This also further explains why 

segment length is included as one of the independent variables and travel times instead of travel 

rates are used as the target values.  For example, if two crashes happened on each of a one-half-

mile interchange and a 5-mile freeway segment, the maximum distance between the respective 

crashes could be 10 times longer for the freeway than the interchange segment.  Hence, the 

impacts on travel times are most likely to be more significant for the latter.   
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Figure 17.  VaTraffic Interchange Variable Coefficient Ranking.  X-axis = Standardized Coefficients. 

 

 
Figure 18.  Waze Interchange Variable Coefficient Ranking.  X-axis = Standardized Coefficients. 
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The longer the segments, the better ability they have to absorb some of the impacts.  A 

similar trend previously mentioned about how the magnitude of the same variables increased 

with percentiles was also observed for both the VaTraffic and Waze models.   

 

Comparing the VaTraffic models of different clusters, it was found that Group 1 was 

impacted mostly by more common, lower severity events, such as PDO crashes or rain.  Traffic 

demand variables were also significant only as interaction terms.  However, for Group 2, in 

addition to the influencing factors mentioned for Group 1, more extreme events (e.g., crashes 

with severe injury and snow) also showed significant impacts.  Traffic demand variables were 

not only included as significant variables, but they were also among the highest coefficients as 

main factors.  It is worth mentioning that the presence of SSP reduced 50th and 80th percentile 

travel times, indicating the reliability benefits of such service on unreliable interchange 

segments.  Similarly, with freeway VaTraffic models, incident variables still had more impact 

than weather, and work zone variables were not included in any models.  This observation could 

also be due to the relatively low frequency of these variables.  The results from the Waze models 

were mostly intuitive but less interpretable than those from the VaTraffic models, especially for 

Group 2. 

 

A comparison of the VaTraffic and Waze models showed that VaTraffic models provided 

more consistent interpretations of factors than Waze models.  The main reasons that could 

explain such an observation are as follows:  

 

● The Waze data used for modeling here were raw data that had not been validated or 

cleaned.  They were collected directly from drivers’ reports.  Depending on different 

surrounding situations (e.g., duration of events, traffic volume, speeds, number of 

Waze users), the number of duplicate reports could vary significantly.  Also, it is 

difficult to know if two events that happened on adjacent but separate TMC segments 

were duplicated.  Although such duplication could be a potential way to reflect effects 

beyond segments where events actually occurred, without further studies on data 

validation, they were treated as individual events that might lead to an exaggeration 

of the impacts.   

 

● The definitions of the non-recurrent incident/hazard events are different for VaTraffic 

and Waze data as discussed in the “Methods” section.  Specifically, breakdown 

events in VaTraffic data refer to disabled vehicles, and hazard events usually involve 

objects (vehicle / roadside vegetation) on fire.  These data are collected by people 

with proper training, whereas crowdsourcing data come from drivers' or passengers’ 

subjective judgment. 

  

● The number of Waze reports and users is not necessarily constant spatially.  It could 

be proportional to traffic volume, number of Waze users, level of congestion, or 

population, which could impact the model results since the variable coefficients 

increase when the corresponding events occur more frequently.   

 

Although the prediction accuracy of the VaTraffic and Waze models was similar, the 

VaTraffic models were selected as the preferred models because VaTraffic data are more stable 
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over time.  The number of Waze reports could increase as more users adopt the application, 

which may create additional requirements for re-estimation of the models as the data quality 

changes over time.  The following sections provide the analysis of only VaTraffic models.  

Because the clustering results of freeway and interchange segments are both separated into the 

more/less reliable categories, models combining reliable and less reliable segments (regardless of 

freeway segment / interchange classification) were also analyzed.  However, the prediction 

accuracy decreased in these unified models, and it was also difficult to identify patterns to 

explain impact factors.  As a result, the models were kept separate as freeway segments and 

interchange segments in subsequent analyses. 

 

Model Performance and Validation 

 

The VaTraffic models were estimated again using only significant variables for 

prediction performance validation.  Four measures were used to quantify the prediction accuracy: 

MAE, MSE, MAPE, and bias.  Table 10 summarizes these measures using both testing data 

(2019) and training data (2017-2018) by 5-fold cross-validation.  The resulting models often 

overestimated at a constant value, so bias was subtracted from predictions to correct the 

overestimation.  Values in Table 10 with an asterisk indicates that the predicted values were 

adjusted by bias.  In general, predictions using cross-validation training data performed better 

than those using testing data.  This was a common observation since the training data used for 

prediction were drawn from the same dataset, thus drawing from the same distribution, to build 

the models.   
Table 10.  Linear Quantile Mixed Model Performance Validation   

2019  2018 Cross-Validation 

 50th Percentile   50th Percentile 

Freeway Interchange  Freeway Interchange 

Group 1 Group 2 Group 1 Group 2  Group 1 Group 2 Group 1 Group 2 

MAE 9.25 6.99* 10.16 3.7  MAE 6.79 2.82 5.46 1 

MSE 318.41 197.82* 316.94 48.48  MSE 237.85 38.53 144.62 9.57 

MAPE 6.63 26.88* 33.67 13.43  MAPE 5.04 9.09 15.1 3.4 

Bias 5.37 3.21 3.76 -0.97  Bias 6.76 2.68 5.32 0.99 

 80th Percentile   80th Percentile 

Freeway Interchange  Freeway Interchange 

Group 1 Group 2 Group 1 Group 2  Group 1 Group 2 Group 1 Group 2 

MAE 13.94* 9.3* 12.96* 4.43  MAE 10.35* 4.95* 10.12* 1.30* 

MSE 631.51* 268.33* 448.67* 62.39  MSE 428.49* 84.53* 291.37* 16.11* 

MAPE 7.95* 28.47* 37.68* 15.28  MAPE 5.58* 12.70* 28.03* 3.50* 

Bias 15.55 6.93 6.66 0.94  Bias 16.57 6.23 8.47 2.98 

 90th Percentile   90th Percentile 

Freeway Interchange  Freeway Interchange 

Group 1 Group 2 Group 1 Group 2  Group 1 Group 2 Group 1 Group 2 

MAE 22.50* 12.07* 19.32* 5.52*  MAE 19.81* 8.18* 16.65* 6.43* 

MSE 1610.6* 402.53* 992.73* 155.68*  MSE 1370.36* 193.04* 770.67* 152.79* 

MAPE 11.47* 33.60* 52.58* 16.28*  MAPE 9.78* 20.40* 43.94* 21.03* 

Bias 28.81 11.23 12.14 -13.9  Bias 29.89 10.41 13.07 10.27 

Asterisks indicate results where models were adjusted to correct for bias.  MAE = mean absolute error; MSE = mean 

square error; MAPE = mean absolute percent error. 
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Also, predictions of lower percentiles had better accuracy than those of higher percentiles 

since the data at higher percentiles became less stable.  Models of freeway segments provided 

better predictions than those of interchange segments.  This was also as expected since 

interchange segments have shorter lengths than freeway segments.  They are more vulnerable to 

input data inaccuracy such as mismatched non-recurrent events.  Alternatively, the traffic 

conditions are often more complicated at interchange segments than freeway segments.  It is 

possible that other factors or events happening on adjacent ramps could also impact interchange 

segments, which were not included in the models.  Especially, factors representing the traffic 

conditions of the adjacent ramps are expected to have impacts on interchange reliability.  

However, ramp volumes and other ramp event data are not available.  The worse performance 

for interchange segments may be primarily due to the inability to account fully for ramp flows.   

 

Trend line prediction is a common method used by agencies for performance measure 

prediction.  Trend line predictions were created using the 2-year data from 2017 to 2018 to build 

a fitted line through linear regression for the 50th, 80th, and 90th percentiles for each TMC.  

Predictions of these three percentiles in 2019 were made using the fitted lines.  To illustrate the 

improvements the estimated models provide, the prediction performance was also compared with 

trend line predictions.  Two measures were used to quantify the prediction errors.  One was the 

actual time differences between actual values and predictions, and the other was the time 

differences divided by the actual percentile to obtain the prediction errors as a percentage.  

Figures 19 and 20 show the histogram comparison of these two measures from LQMMs and the 

trend line method.  The red bars are the distribution of prediction errors using the developed 

models, and the green bars show the trend line method.  The histograms of the prediction errors 

from the developed models have a narrower deviation and higher peaked values around 0, 

meaning a better prediction performance than the trend line method.  Figures 21 and 22 compare 

the predicted values with the actual values.  The y-axis of figures on the upper row is Predicted 

50th, 80th, and 90th Percentiles Using LQMM, and the y-axis of figures on the lower row is 

Predicted 50th, 80th, and 90th Percentiles Using the Trend Line Approach.  The closer these 

points are to the 45-degree line, the closer the prediction values to the actual ones.  Overall, the 

points on the upper row figures are obviously closer to that line, indicating a better match 

between actual values and predicted values with the developed models than the trend lines. 

  

 

Random Forest Models for Travel Time Reliability Predictions 

 

Clustering Necessity Analysis 
 

It was speculated earlier that clustering TMC segments into homogeneous groups with 

similar shapes of distributions might not be necessary when using random forests.  To test this 

speculation, an initial step in this study was to develop, and compare the results for, random 

forest models based on both the entire freeway and interchange TMC segment groups and their 

respective clustered groups.  The input data and division of the training and testing datasets were 

the same as for the LQMMs using VaTraffic data introduced previously.  Generalized random 

forest (GRF) models were built using the R package “GRF” (Tibshirani et al., 2021).  The 

trained models consisting of 2,000 trees were saved as quantile forest objects in R and were 

ready to make predictions using new input data.  It was decided to use 5, 8, 11, 14, and 17 (the 

total number of variables) as the 𝑚𝑡𝑟𝑦 options discussed previously.     



42 

 

 
Figure 19.  Freeway Prediction Error Comparison Between Linear Quantile Mixed Models and Trend Line.  

From top to bottom: 50th, 80th, and 90th percentile of travel times.  The red bars are the distribution of 

prediction errors using the developed models, and the green bars show the trend line method.   

The results of 𝑚𝑡𝑟𝑦 values of 5 and 8 have minimal differences, as do values of 11 and 

14.  Therefore, only the results of mtry values 5, 11, and 17 are included in Tables 11 and 12 for 

the sake of brevity.  These two tables summarize the prediction performance for the 50th, 80th, 

and 90th percentiles of travel times for freeway and interchange segments, respectively.  The 

highlighted cells indicate the best performance of models with different 𝑚𝑡𝑟𝑦 values, which was 

used for comparison with other groups. 

 

For freeway segments, the model of the entire group had a performance similar to that of 

clustering Group 2 and better than that of clustering Group 1.  For interchange segments, the 

trend was the opposite.  This phenomenon indicated that clustering TMCs into homogeneous 

distribution shapes did not significantly impact the prediction performance of random forest 

models.   
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Figure 20.  Interchange Prediction Error Comparison Between Linear Quantile Mixed Models and Trend 

Line.  From top to bottom: 50th, 80th, and 90th percentile of travel times.  The red bars are the distribution 

of prediction errors using the developed models, and the green bars show the trend line method.   

It could either improve prediction when the models of the entire group and clustering 

Group 2 of both freeway and interchange segments were compared or decrease accuracy 

significantly when the models of the entire group and clustering Group 1 were compared.  As a 

result, the clustering process is not necessary when the random forest models.   

 

GRF Analysis Results 

 

GRF models were built using mtry values of 5, 11, and 17 to predict the 50th, 80th, and 

90th percentiles of travel times for all freeway and interchange segments.  The prediction 

performance is shown in Table 13.     
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Figure 21.  Predicted vs. Observed Travel Time Percentiles for Freeways: top, linear quantile mixed models; 

bottom, trend line. 

Almost all four performance measures indicated that with the increase of 𝑚𝑡𝑟𝑦 values, 

the accuracy also increases.  The same trend could be observed for both OOB and testing data.  It 

was noticed that the OOB predictions sometimes had lower accuracy than the testing data.  This 

is not uncommon for random forests using the “honest” method, which uses a portion of the 

sample obtained from the previous step for node splits and populates the remaining portion as 

observations in the leaf nodes.  The bias of OOB predictions is reduced through this process.  It 

also should be mentioned that since the value of 𝑚𝑡𝑟𝑦 used by GRF is drawn from a Poisson 

distribution with a mean equal to 𝑚𝑡𝑟𝑦, it is likely to change for each node splitting.  As a result, 

even when set to the maximum number 17, the models should still maintain a certain level of 

stability. 

 

After the optimal GRF models with 𝑚𝑡𝑟𝑦 equal to 17 were selected, the prediction 

results were compared to LQMMs.  A similar comparison used previously was also used here, 

which is the histogram of the difference between predicted and actual values and the percentage 

of such difference.  Figures 23 and 24 summarize the prediction errors using these two measures 

for freeway and interchange segments.  It is clearly shown that GRF models reduced the 

prediction errors as compared to LQMMs.  The histograms in green (GRF) are narrower, and 

their peaks are closer to zero than the red ones (LQMM), indicating a smaller deviation of errors 

and a lower value of mean errors.   
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Figure 22.  Predicted vs. Observed Travel Time Percentiles for Interchanges: top, linear quantile mixed 

models; bottom: trend line. 

Table 11.  Model Performance Comparison of Entire Dataset and Clustered Groups of Freeway Segments   
 Freeway Freeway-Group 1 Freeway-Group 2 

50th 

𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 

MAE 14.53 6.18 6.15 17.77 9.51 9.61 5.66 3.77 3.69 

MSE 922.63 143.23 140.83 936.20 226.35 262.01 168.56 113.76 110.88 

MAPE 21.39 7.28 6.73 15.45 9.64 10.49 20.10 9.91 9.39 

Bias -6.43 -0.35 -0.48 -2.09 5.39 5.07 -1.53 -0.82 -1.08 

 80th 

𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 

MAE 45.34 16.35 14.22 52.48 17.81 16.40 15.43 9.15 9.11 

MSE 2848.02 885.64 886.50 3685.52 1001.58 982.33 495.33 357.00 379.04 

MAPE 85.19 18.83 14.68 40.03 13.25 12.68 56.15 22.36 21.56 

Bias 34.70 3.62 -0.11 40.94 7.02 4.18 7.44 -0.64 -1.16 

 90th 

𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 

MAE 92.76 28.34 22.14 102.42 27.74 23.48 24.95 14.19 13.80 

MSE 10496.43 1779.16 1555.32 12605.24 1899.52 1833.35 968.73 573.06 606.38 

MAPE 164.43 33.68 25.21 74.20 18.62 16.32 89.58 37.21 34.91 

Bias 84.46 16.02 7.17 91.69 16.02 9.43 16.34 3.85 2.89 

Orange highlighted cells represent the best performing value of mtry.  MAE = mean absolute error; MSE = mean 

square error; MAPE = mean absolute percent error. 
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Table 12.  Model Performance Comparison of Entire Dataset and Clustered Groups of Interchange Segments   
 Interchange Interchange-Group 1 Interchange-Group 2 

50th 

𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 

MAE 3.40 2.32 2.31 6.18 4.02 4.18 3.04 1.15 1.02 

MSE 54.17 29.29 33.61 122.70 62.63 69.88 43.96 3.75 3.85 

MAPE 13.86 8.28 7.65 25.27 13.18 12.81 14.89 5.02 4.12 

Bias -0.72 -0.20 -0.78 -1.61 -0.68 -0.63 0.24 0.74 0.55 

 80th 

𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 

MAE 10.35 7.23 7.48 20.36 14.00 15.18 6.49 2.35 2.06 

MSE 369.43 275.40 345.89 896.79 555.90 694.36 79.66 31.45 34.22 

MAPE 38.28 19.55 17.34 74.99 37.20 37.16 32.34 8.30 6.34 

Bias 1.86 -0.69 -1.95 2.52 -1.01 -0.98 4.55 0.98 0.32 

 90th 

𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 

MAE 16.87 11.19 11.73 30.75 22.24 23.73 11.66 3.77 3.27 

MSE 586.75 455.37 496.10 1416.72 1023.58 1271.65 195.80 63.18 69.08 

MAPE 64.37 34.56 33.83 119.70 69.34 68.61 53.39 13.39 9.49 

Bias 8.97 3.29 2.59 14.92 8.15 7.94 9.79 1.90 0.90 

Orange highlighted cells represent the best performing value of mtry.  MAE = mean absolute error; MSE = mean 

square error; MAPE = mean absolute percent error. 

 

 

Before-After Studies to Demonstrate Model Application 
 

The main purpose of the developed models is to assist in target setting, which requires 

that the models have the ability to predict reliability considering any changes in the impact 

factors of interest.  Three projects encompassing different types of transportation improvement 

projects suggested and selected by the TRP were used for before-after case studies of model 

application. 

 

Project 1: I-81 Corridor Safety Service Patrol (SSP) 

 

Starting July 1, 2019, there was increased SSP coverage on I-81 both temporally and 

spatially.  Ideally, at least 1 year of data from the before and the after periods are needed for 

evaluation since LQMMs were built based on clusters of homogenous shapes of distributions 

constructed using a full year’s data.  However, the traffic demand reduced significantly because 

of the COVID stay home order after March 2020.  Assuming travel times on interstate highways 

would most likely be reliable following COVID-induced traffic reductions, including data from 

2020 would not provide many valuable insights.  The after period was then selected as July 2019 

to December 2019, for a total of 6 months.  To keep the duration similar, the before period was 

selected as January 2019 to June 2019.   
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Table 13.  Prediction Performance of GRF Models  

OOB 
50th Percentile 

 Freeway Interchange 
𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 

MAE 15.53 5.90 5.78 3.77 2.82 2.69 
MSE 1038.68 168.95 157.18 77.24 52.28 52.75 
MAPE 22.60 7.33 6.81 12.21 8.15 7.50 
Bias -8.23 -2.46 -2.56 -1.76 -0.79 -1.45 

80th Percentile 

 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 

MAE 46.51 17.91 15.63 10.67 8.30 8.55 
MSE 2916.21 1004.39 987.24 440.60 370.49 460.19 
MAPE 90.83 21.09 16.86 32.88 18.70 17.38 
Bias 34.60 3.01 -1.00 1.07 -1.21 -2.52 

90th Percentile 

 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 

MAE 93.89 31.15 24.58 17.62 13.09 13.53 
MSE 10637.82 2089.17 1829.77 788.35 754.10 782.34 
MAPE 173.72 37.82 29.35 56.02 31.54 31.42 
Bias 83.94 15.85 6.98 8.26 2.70 2.17 

Test Data 
50th Percentile 

 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 

MAE 14.53 6.18 6.15 3.40 2.32 2.31 
MSE 922.63 143.23 140.83 54.17 29.29 33.61 
MAPE 21.39 7.28 6.73 13.86 8.28 7.65 
Bias -6.43 -0.35 -0.48 -0.72 -0.20 -0.78 

80th Percentile 

 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 

MAE 45.34 16.35 14.22 10.35 7.23 7.48 
MSE 2848.02 885.64 886.50 369.43 275.40 345.89 
MAPE 85.19 18.83 14.68 38.28 19.55 17.34 
Bias 34.70 3.62 -0.11 1.86 -0.69 -1.95 

90th Percentile 

 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 𝑚𝑡𝑟𝑦=5 𝑚𝑡𝑟𝑦=11 𝑚𝑡𝑟𝑦=17 

MAE 92.76 28.34 22.14 16.87 11.19 11.73 
MSE 10496.43 1779.16 1555.32 586.75 455.37 496.10 
MAPE 164.43 33.68 25.21 64.37 34.56 33.83 
Bias 84.46 16.02 7.17 8.97 3.29 2.59 

Red font indicates the value of mtry with the best results.  OOB = out-of-bag sample; MAE = mean absolute error; 

MSE = mean square error; MAPE = mean absolute percent error. 
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Figure 23.  Comparison of Generalized Random Forests and Linear Quantile Mixed Models for Freeways.  

From top to bottom: 50th, 80th, and 90th percentiles.   

Since SSP presence was not a significant variable in LQMMs, only GRF models were 

applicable.  Also, since the changes in SSP coverage and schedule are planned in advance and 

the before and after periods are within the same year, there is no significant difference between 

actual and projected after-period data.  So, the analysis of the after period used only the actual 

data as input for predictions and was then compared with that of the before period.   

 

It was found by comparing the observed reliability measures of the before and after 

periods that the differences in reliability created by this project were very small in terms of 

LOTTR and the 90th percentile travel times.  Specifically, for freeway segments, the average 

“after” LOTTR increased 0.001 (about 0.1%) and the average 90th percentile decreased 13.4 

seconds (about 5.5%).  For interchange segments, the average “after” LOTTR increased 0.002 

(about 0.2%) and the average 90th percentile decreased 1.0 second (about 4.9%).   
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Figure 24.  Comparison of Generalized Random Forests and Linear Quantile Mixed Models for Interchanges.  

From top to bottom: 50th, 80th, and 90th percentiles. 

 

After the GRF models were applied, the changes between predicted reliability measures 

for the after period and the actual values of the before period were as follows:  
 

1. Freeway segments.  The predicted LOTTR of the after period was 0.06 higher than 

the actual value of the before period; the predicted 90th percentile was 22.80 seconds 

higher than the actual value of the before period.   

 

2. Interchange segments.  The predicted LOTTR of the after period was 0.04 higher 

than the actual value of the before period; the predicted 90th percentile was 1.36 

seconds higher than the actual value of the before period.   
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The prediction accuracy is summarized in Table 14.  The predicted difference in LOTTR 

for freeway and interchange segments was also minimal, aligning with the actual observation.  

There was not much change in the 90th percentile on interchange segments, and the model 

predictions indicated the same trend.  Although the predicted difference in the 90th percentile for 

freeway segments was the opposite of the observations, if the bias of an average overestimation 

of 36.174 seconds listed in Table 14 is considered, the model could still capture a slight decrease 

in the after period.   

 

Overall, the reliability did not improve much between the before and after periods, and 

the proposed models drew a similar conclusion.  It should be noted that although this project did 

not create major changes in reliability, the benefits of SSP might lay in some other aspects, such 

as reduced secondary crashes or clearance durations that are outside the impact factors of this 

study.  
Table 14.  Model Prediction Accuracy of I-81 Safety Service Patrol Project 

 Freeway Interchange 
LOTTR 90th Percentile LOTTR 90th Percentile 

MAE 0.058 36.174 0.038 2.397 
MSE 0.005 1769.575 0.002 6.050 
MAPE 5.770 17.483 3.747 12.967 
Bias 0.058 36.174 0.038 2.397 
Actual Difference 0.001 -13.400 0.002 -1.000 
Predicted Difference 0.060 22.800 0.040 1.360 

LOTTR = level of travel time reliability; MAE = mean absolute error; MSE = mean square error; MAPE = mean 

absolute percent error. 

 

Project 2: Capacity Expansion on I-64 
 

The widened section on I-64 was between Exit 200 (I-295 interchange) and Exit 205 

(Bottoms Bridge).  For the before-after analysis, interchanges at both ends were also considered 

in the analysis, as shown in Figure 25.  Table 15 lists the six segments and the cluster group to 

which they belonged for the LQMM analysis.  Freeway segments in Group 1 were more reliable, 

and interchange segments in Group 2 were less reliable. 

 

The projected input data for the after and during construction periods were prepared in 

accordance with to the method discussed previously.  Both the LQMMs and GRF models were 

applied for freeway and interchange segments.  The prediction accuracy of the LQMMs and 

GRF models is summarized in Table 16.  Predictions using the actual data of the after and during 

(work zone) periods were evaluated separately along with predictions using the projected data.  

The accuracy measures are the average of the after and during periods in this table.  It could be 

concluded from the results that predictions of LOTTRs have better accuracy than the 90th 

percentile for both the LQMMs and GRF models.   
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Figure 25.  Traffic Message Channel Segments Used for I-64 Capacity Expansion Project 

Table 15.  Traffic Message Channel (TMC) Segment Summary for I-64 Capacity Expansion Project 
TMC Direction Intersection Cluster Group 

110N04903 EASTBOUND US-60/EXIT 200 interchange-2 

110-04902 EASTBOUND VA-33/VA-249/EXIT 205 freeway-1 

110N04902 EASTBOUND VA-33/VA-249/EXIT 205 interchange-2 

110P04903 WESTBOUND US-60/EXIT 200 interchange-2 

110+04903 WESTBOUND US-60/EXIT 200 freeway-1 

110P04902 WESTBOUND VA-33/VA-249/EXIT 205 interchange-2 

 
Table 16.  Prediction Accuracy Summary of Linear Quantile Mixed Models and Generalized Random Forest 

Models (I-64) 

 I-64 Capacity Expansion LQMM 

Freeway Interchange 

 

 

LOTTR 

 

90th 

Percentile 

 

Projected 

LOTTR 

Projected 

90th 

Percentile 

 

 

LOTTR 

 

90th 

Percentile 

 

Projected 

LOTTR 

Projected 

90th 

Percentile 

MAE 0.016 14.860 0.014 15.836 0.064 6.245 0.072 5.587 

MSE 0.000 289.672 0.000 337.708 0.005 46.212 0.007 42.936 

MAPE 1.530 6.985 1.404 7.536 6.256 13.654 7.028 12.190 

Bias 0.016 1.489 0.014 4.193 0.064 6.245 0.072 2.787 

 I-64 Capacity Expansion GRF 

MAE 0.033 15.778 0.044 17.022 0.077 14.548 0.105 17.161 

MSE 0.001 355.006 0.002 395.511 0.009 258.439 0.015 333.097 

MAPE 3.259 7.566 4.253 8.286 7.572 30.045 10.297 37.404 

Bias 0.033 5.195 0.044 9.896 0.077 14.548 0.105 17.161 

LQMM = linear quantile mixed model; LOTTR = level of travel time reliability; GRF = generalized random forest; 

MAE = mean absolute error; MSE = mean square error; MAPE = mean absolute percent error. 

 

Interchange segments were shorter than freeway segments, so the non-scaled error 

measures (e.g., MAE, MSE, and bias) had higher values for freeway segments.  The prediction 

accuracy was similar when the actual and the projected after/during input data were used.  

Although the GRF models showed better prediction accuracy across all interstate highways (both 

freeway and interchange segments), the LQMMs provided better predictions for this project.  In 
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addition to the accuracy comparison, it is necessary to examine the reliability changes predicted 

by the models to determine a model preference.   

 

Tables 17 and 18 summarize the changes of actual (observed), predicted (model predicted 

using actual after data), and projected predicted (model predicted using projected input data 

based on methods discussed earlier) reliability metrics, including LOTTR and 90th percentile, 

for the before, during, and after periods.  Table 17 shows the comparisons between the before 

and after periods, and Table 18 shows the comparisons between the before and during periods.  

Each section provides the actual (Rows 1 and 6), predicted (Rows 2, 3, 7, and 8), and projected 

predicted (Rows 4, 5, 9, and 10) reliability changes.  The predicted (and projected predicted) 

differences between the before and after and the before and during periods were evaluated in two 

ways: (1) the changes between predicted (projected predicted) values of the after/during period 

and the actual observations of the before period; (2) the changes between predicted (projected 

predicted) values of the after/during period and the predicted values of the before period.  The 

purpose of using two evaluations was to accommodate different application scenarios.  For 

example, for evaluation of operational projects, the comparison between the actual values and 

predictions is commonly used, whereas for planning projects, the comparison between both 

predicted values may be more appropriate.   

 

The main findings were as follows: 

 

● When the results of prediction and projected prediction were compared, there was not 

much difference in the overall reliability trends.  This observation means even when 

using extrapolation of input variables using the existing data, both the LQMMs and 

GRF models could still provide results similar to knowing the exact future values of 

these variables.   

 

● As mentioned previously, the proposed models for interchange segments were less 

accurate than for freeway segments, directly impacting the before and after study 

results.  Similarly, the prediction accuracy of the 90th percentile was lower than the 

50th and 80th percentiles, so the LOTTR evaluation performed better.   

 

● Both models overestimated the after/during period values, with GRF models having 

larger errors.  It was noticed that most cases had minimal reliability change (less than 

5.5%).  In these cases, LQMMs reflected the trend that traffic was less reliable for the 

after/during periods closer than GRF models, especially for the 90th percentile.  

However, if the predicted before and after/during difference was used, the GRF 

models provided closer results to the actual trend.   
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Table 17.  Before-After Changes in Reliability Metrics (I-64) 

 I-64 Freeway I-64 Interchange 

LOTTR 90th Percentile LOTTR 90th Percentile 

LQMM GRF LQMM GRF LQMM GRF LQMM GRF 

(1) Actual 

Difference %  

(before - after) 

0.006 

(0.609%) 

3.541 

(1.808%) 

0.007 

(0.782%) 

-3.261 

(-5.453%) 

(2) Predicted 

Difference %  

(actual before-

predict after) 

0.026 

(2.57%) 

0.031 

(3.10%) 

19.890 

(10.16%) 

22.939 

(11.72%) 

0.072 

(7.11%) 

0.075 

(7.45%) 

5.022 

(8.34%) 

13.459 

(22.51%) 

(3) Predicted 

Difference %  

(predict before-

predict after) 

0.004 

(0.40%) 

-0.025 

(-2.51%) 

0.307 

(0.16%) 

-3.693 

(-1.89%) 

-0.003 

(-0.32%) 

-0.028 

(-2.76%) 

-2.214 

(-3.70%) 

-3.063 

(-5.12%) 

(4) Projected 

Difference %  

(actual before-

projected 

predicted after) 

0.024 

(2.40%) 

0.043 

(4.28%) 

23.570 

(12.04%) 

27.424 

(14.01%) 

0.083 

(8.22%) 

0.115 

(11.38%) 

5.113 

(8.55%) 

17.061 

(28.54%) 

(5) Projected 

Difference %  

(predict before- 

projected 

predicted after) 

0.002 

(0.23%) 

-0.014 

(-1.34%) 

3.987 

(2.04%) 

0.791 

(0.40%) 

0.008 

(0.79%) 

0.012 

(1.17%) 

-2.124 

(-3.55%) 

0.539 

(0.90%) 

LQMM = linear quantile mixed model; LOTTR = level of travel time reliability; GRF = generalized random forest. 

 

Table 18.  Before-During Changes in Reliability Metric (I-64) 

 I-64 Freeway I-64 Interchange 

LOTTR 90th Percentile LOTTR 90th Percentile 

LQMM GRF LQMM GRF LQMM GRF LQMM GRF 

(6) Actual 

Difference %  

(before - during) 

0.013 

(1.327%) 

33.059 

(16.883%) 

0.008 

(0.776%) 

3.097 

(5.180%) 

(7) Predict 

Difference %  

(actual before-

predicted during) 

0.025 

(2.45%) 

0.055 

(5.42%) 

19.688 

(10.06%) 

24.049 

(12.28%) 

0.072 

(7.09%) 

0.094 

(9.36%) 

7.304 

(12.22%) 

15.474 

(25.88%) 

(8) Predict 

Difference %  

(predicted before-

predicted during) 

0.003 

(0.28%) 

-0.002 

(-1.90%) 

0.105 

(0.05%) 

-2.583 

(-1.32%) 

-0.003 

(-0.34%) 

-0.009 

(-0.85%) 

0.067 

(0.11%) 

-1.048 

(-1.75%) 

(9) Project 

Difference %  

(actual before-

projected 

predicted during) 

0.024 

(2.37%) 

0.063 

(6.25%) 

21.416 

(10.94%) 

28.968 

(14.79%) 

0.076 

(7.55%) 

0.111 

(10.94%) 

7.287 

(12.19%) 

17.098 

(28.60%) 

(10) Project 

Difference %  

(predicted before-

projected 

predicted during) 

0.002 

(1.93%) 

0.006 

(0.64%) 

1.832 

(0.94%) 

2.335 

(1.19%) 

0.001 

(0.12%) 

0.007 

(0.74%) 

0.049 

(0.83%) 

0.576 

(0.96%) 

LQMM = linear quantile mixed model; LOTTR = level of travel time reliability; GRF = generalized random forest. 
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Project 3: Work Zone Impact: I-64/I-264 Interchange Improvements—Phase II 

 

 The project location is shown in Figure 10, and the TMC segments used for comparison 

are shown in Figure 26.  Table 19 summarizes the location information of the relevant TMC 

segments.  All freeway segments belong to cluster Group 2, and all interchange segments belong 

to cluster Group 1. 

 

The analysis method was the same as for the previous case study.  LQMMs of 

appropriate groups and GRF models were applied respectively using actual and projected data 

from the during period.  The prediction accuracy of these models is summarized in Table 20.  

For both freeway and interchange segments, GRF models performed better in predicting 

LOTTR, and LQMMs performed better in predicting the 90th percentile.  Again, the before-

during reliability changes are shown in Table 21.  The interchange segments had a much higher 

degradation of reliability than freeway segments in the during period.  GRF models correctly 

predicted this trend for LOTTR, whereas LQMMs successfully captured the changes of the 90th 

percentile.   

 

 
Figure 26.  Traffic Message Channel Segments Considered for I-64/I-264 Interchange Improvements  

Table 19.  Summary of Traffic Message Channel (TMC) Segments for I-64/I-264 Interchange Improvement 

TMC Direction Intersection Cluster Group 

110P04702 EASTBOUND I-64/EXIT 14 interchange-1 

110+04703 EASTBOUND GREENWICH RD/NEWTOWN RD freeway-2 

110P04703 EASTBOUND GREENWICH RD/NEWTOWN RD interchange-1 

110+04704 EASTBOUND VA-190/WITCHDUCK RD/EXIT 16 freeway-2 

110N04702 WESTBOUND I-64/EXIT 14 interchange-1 

110-04702 WESTBOUND I-64/EXIT 14 freeway-2 

110N04703 WESTBOUND GREENWICH RD/NEWTOWN RD interchange-1 

110-04703 WESTBOUND GREENWICH RD/NEWTOWN RD freeway-2 

110N04704 WESTBOUND VA-190/WITCHDUCK RD/EXIT 16 interchange-1 
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Table 20.  Summary of Prediction Accuracy of LQMMs and GRF Models (I-264) 

 I-264 Capacity Expansion LQMM 
Freeway Interchange 

 

 

LOTTR 

 

90th 

Percentile 

 

Projected 

LOTTR 

Projected 

90th 

Percentile 

 

 

LOTTR 

 

90th 

Percentile 

 

Projected 

LOTTR 

Projected 

90th 

Percentile 
MAE 0.115 3.482 0.121 3.167 0.278 5.268 0.334 6.569 
MSE 0.014 18.285 0.016 15.603 0.126 55.901 0.151 70.993 
MAPE 9.967 7.740 10.547 7.094 23.641 13.323 26.633 15.429 
Bias 0.056 -1.645 0.064 -1.294 0.232 5.175 0.314 3.348 

 I-264 Capacity Expansion GRF 

MAE 0.044 9.752 0.046 9.363 0.222 21.366 0.210 16.103 
MSE 0.002 135.811 0.002 125.508 0.064 492.691 0.070 381.527 
MAPE 3.774 24.144 3.930 23.210 16.879 44.304 15.410 32.087 
Bias 0.044 9.752 0.046 9.363 0.009 21.366 -0.002 16.103 

LQMM = linear quantile mixed model; LOTTR = level of travel time reliability; GRF = generalized random forest; 

MAE = mean absolute error; MSE = mean square error; MAPE = mean absolute percent error. 

 

Table 21.  Before-During Changes in Reliability Metric (I-264) 

 I-264 Freeway I-264 Interchange 
LOTTR 90th Percentile LOTTR 90th Percentile 

LQMM GRF LQMM GRF LQMM GRF LQMM GRF 
Actual 

Difference %  

(before - 

during) 

0.044 

(3.939%) 
0.615 

(1.429%) 
0.280 

(24.868%) 
7.338 

(17.583%) 

Predicted 

Difference %  

(actual before-

predicted 

during) 

0.100 

(8.93%) 
0.088 

(7.84%) 
-1.030 

(-2.39%) 
10.367 

(24.10%) 
0.513 

(45.49%) 
0.289 

(25.66%) 
12.514 

(29.98%) 
28.704 

(68.78%) 

Predicted 

Difference %  

(predicted 

before-

predicted 

during) 

-0.003 

(-0.30%) 
-0.002 

(-0.17%) 
-0.081 

(-0.19%) 
0.387 

(0.89%) 
-0.095 

(-8.42%) 
0.011 

(1.01%) 
2.111 

(5.06%) 
5.263 

(12.61%) 

Projected 

Difference %  

(actual before-

projected 

predicted 

during) 

0.108 

(9.66%) 
0.090 

(8.00%) 
-0.679 

(-1.58%) 
9.978 

(23.19%) 
0.595 

(52.77%) 
0.278 

(24.65%) 
10.687 

(25.61%) 
23.442 

(56.17%) 

Projected 

Difference %  

(predicted 

before-

projected 

predicted 

during) 

0.004 

(0.42%) 
0 

(0%) 
0.270 

(0.63%) 
-0.001 

(0%) 
-0.013 

(-1.14%) 
0 

(0%) 
0.284 

(0.68%) 
0 

(0%) 

LQMM = linear quantile mixed model; LOTTR = level of travel time reliability; GRF = generalized random forest. 
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Summary 

 

The results of the case studies suggest that the effects of operational projects, capacity 

expansion, and work zones are reasonably modeled using the approaches developed in this study.  

The LQMMs captured changes in the 90th percentile better than the GRF models, whereas the 

GRF models captured changes in LOTTR better in most cases.  GRF models were also better at 

capturing the reliability changes caused by non-recurrent events, such as incidents or work 

zones.  They also could assess impact factors that were not significant in LQMMs, such as SSP 

presence.   

 

The reliability changes predicted using projected input data were similar (less than 5%) to 

those using actual after data, demonstrating how the models could be used in practice to assess 

proposed future projects that do not yet have any available after data.   

 

 

CONCLUSIONS 

 

● Clustering segments into homogenous groups based on travel time distribution can improve 

the efficiency of further travel time reliability modeling.  Hierarchical clustering techniques 

were successfully used to consolidate the information contained in a multitude of statewide 

TMCs into four homogeneous clusters.  This greatly enhances efficiency and facilitates 

efforts aimed at (1) understanding travel time reliability and its influencing factors; (2) 

predicting reliability; and (3) setting appropriate targets for the future. 

 

● Overall, VDOT-maintained data sources such as VaTraffic are currently better suited for 

reliability modeling than crowdsourced event data on interstates.  The prediction accuracies 

of VaTraffic and Waze models were similar.  However, the incident data in Waze models 

suffer from issues such as unbalanced spatial density, duplicated reporting, and inconsistent 

event classification because of individual observer bias, which significantly impacts the 

modeling results, making them unstable and difficult to interpret.  As a consequence, 

VaTraffic models are the preferred models because VaTraffic data are more stable over time. 

 

● LQMMs are significantly more effective for predicting the 50th, 80th, and 90th percentile 

travel times than the commonly used trend line method.  For freeway segments, the 

improvements in MAPE were 82%, 74%, and 68% for the 50th, 80th, and 90th percentiles, 

respectively.  The prediction improvements for interchange segments were relatively modest 

at 15% (50th), 12% (80th), and 5% (90th). 

 

● The LQMMs and GRF models were able to reflect accurately actual changes in reliability 

created by improvement projects.  Effects of operations projects, capacity expansion, and 

work zones were successfully modeled using the approaches developed in this study. 

 

● The GRF approach is preferred over LQMM for reliability prediction.  GRF models 

performed better than LQMMs at predicting the federally mandated LOTTR measure (also 

80th and 50th percentiles of travel times) and performed only slightly worse at predicting the 

90th percentile.  The GRF approach could also reflect the impact of variables that were 
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removed from LQMMs because of insignificance, such as the presence of SSPs.  Further, it 

does not require clustering of travel time distributions into homogeneous groups prior to 

model building, helping to reduce the work required to format data prior to modeling. 

 

 

RECOMMENDATIONS 

 

1. The Virginia Transportation Research Council (VTRC) should develop detailed step-by-step 

guidance for VDOT’s Traffic Engineering Division (TED), Operations Division (OD), and 

Transportation Mobility and Planning Division (TMPD) and the Office of Intermodal 

Planning and Investment (OIPI) so that they can use the data-driven models developed in 

this study for travel time reliability prediction on interstates.  This guidance will include 

detailed, specific information on data sources used, data formatting, conflation methods, 

technical specifications of computational resources, and programming code used to develop 

the models.  This document will also include guidance on how practitioners can apply these 

models. 

 

2. VTRC should conduct additional research to adapt directly the preferred reliability 

prediction methods identified in this study to meet the requirements of MAP-21 federal target 

setting.  This will include expansion of the existing models to use the National Performance 

Management Research Data Set (NPMRDS) instead of INRIX commercial data; extension to 

weekday midday and weekend periods; and expansion of this analysis to cover non-interstate 

NHS routes.  Any developed models should include the reliability impact factors that were 

identified as significant in this study. 

 

3. VDOT’s TED and OD should explore new data sources that could augment or improve 

existing data sources that were identified as having limitations, such as weather data and 

work zone information.  Improved reliability predictions could be generated if the underlying 

data were further improved.   

 

 

IMPLEMENTATION AND BENEFITS 

 

Implementation 

 

With regard to Recommendation 1, VTRC will work with VDOT’s TED, OD, and 

TMPD, as well as the OIPI to develop the guidance document that will allow VDOT to 

incorporate the models into travel time reliability target setting procedures for interstates.  VTRC 

will consult with these groups to determine the timeline for federal target setting and initiate a 

project to develop the “how to” document.  This will occur no later than 6 months after the 

publication of this report but may occur sooner depending on the timeline for target setting. 

 

With regard to Recommendation 2, VTRC will initiate two research projects.  The first 

will expand the approaches in this study to other time periods on the interstates using the 

NPMRDS and will occur within 6 months of the publication of this report.  The second will 
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produce target setting approaches for non-interstate NHS routes and is already in the planned 

FY22 VTRC Work Program. 

 

With regard to Recommendation 3, VTRC and VDOT’s TED and OD will engage with 

emerging connected vehicle data providers to assess the feasibility of using data from on-road 

probes to determine weather conditions.  Several providers are now selling connected car data 

that include factors such as windshield wiper usage and antilock brake activation that could 

provide microscopic level weather condition data, potentially eliminating the need for spatial 

extrapolation.  The feasibility of using these sources will be determined within 1 year of the 

publication of this report.  VDOT is already involved with the Work Zone Data Exchange 

(WZDx) initiative, which should improve the quality of available work zone data. 

 

 

Benefits 

 

Implementing the recommendations will ensure that the impacts of transportation 

improvement projects could be reflected by projecting related impact variables as illustrated in 

the before-after case studies.  Predicting travel time reliability and capturing the expected 

changes in reliability more precisely will facilitate (1) setting more reasonable targets and 

tracking the progress toward their achievement; (2) identifying and prioritizing sites with high 

potential for reliability improvements; and (3) selecting cost-effective projects on interstates for 

funding through the SMART SCALE program.   

 

The three study recommendations all directly support these benefits.  Specifically, the 

benefits of implementing Recommendation 1 would be clear, direct information that VDOT 

divisions and OIPI could immediately use to implement the models developed in this study.  The 

benefits of implementing Recommendation 2 would be methods that could be applied statewide 

for federal target setting.  The benefits of implementing Recommendation 3 would be improved 

overall data quality for these data elements, supporting higher accuracy of the reliability models 

and a number of other applications. 
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