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ABSTRACT 

   

This project focused on developing and evaluating methods for estimating demand 

volume for oversaturated corridors. Measuring demand directly with vehicle sensors is not 

possible when demand is larger than capacity for an extended period, as the queue grows beyond 

the sensor, and the flow measurements at a given point cannot exceed the capacity of the section. 

The main objective of the study was to identify and develop methods that could be implemented 

in practice based on readily available data. To this end, two methods were proposed: an 

innovative method based on shockwave theory; and the volume delay function adapted from the 

Highway Capacity Manual. Both methods primarily rely on probe vehicle speeds (e.g., from 

INRIX) as the input data and the capacity of the segment or bottleneck being analyzed. The 

proposed methods were tested with simulation data and validated based on volume data from the 

field. The results show that both methods are effective for estimating the demand volume and 

produce less than 4% error when tested with field data.  
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INTRODUCTION 

 

Quantifying travel demand is an essential element in both transportation planning and 

operations since key performance measures (e.g., benefit-cost ratios, travel delays, emissions) 

depend heavily on the demand level. To select and prioritize transportation projects for 

investment, the Virginia Department of Transportation (VDOT) uses an outcome-based process 

called System Management and Allocation of Resources for Transportation: Safety, Congestion, 

Accessibility, Land Use, Economic Development and Environment (SMART SCALE) for 

project screening, scoring, and evaluation. SMART SCALE requires certain evaluation measures 

to quantify the benefits of each potential project. Some of the calculated measures include person 

throughput, person hours of delay, travel time reliability, crash rates, and air quality and 

environmental effects. To calculate or estimate these measures, VDOT employs established 

models and methods that require various types of input data. While demand is one of the key 

inputs to these methods, VDOT currently does not have a common approach for measuring 

demand when traffic volume exceeds the capacity of the roadway facilities. Hence, there is a 

strong need to identify the best practices and solutions for determining the demand volume (DV) 

to be used in the SMART SCALE project prioritization process and other VDOT applications. 
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This report uses “DV” to refer to demand volume or demand rate (e.g., measured in vehicles per 

hour) when it exceeds capacity.  

 

In general, when demand is less than the capacity of a facility, the flow rate measured by 

traffic detectors (i.e., volume counters) at the subject facility will be identical to the demand. 

However, when demand is greater than the capacity, measuring or estimating DV becomes very 

challenging, resulting in oversaturated conditions and long queues spread over the network. 

Under such conditions, measuring demand with the commonly available sensors (e.g., loop 

detectors) in the field is generally not possible. While more advanced sensing technologies (e.g., 

cameras, aerial videos, vehicle tracking and identification) would help capture queuing and 

origin-destination movements, these technologies are costly and not commonly deployed for 

demand estimation.  

 

To address this challenge, researchers have proposed several approaches such as 

incorporating observed queueing dynamics into demand prediction and capitalizing on and 

calibrating the volume-delay functions or speed-flow equations. More details about these studies 

are provided in the Literature Review section. This study proposes two potential methods for 

estimating DV for oversaturated conditions. Both methods rely primarily on commonly available 

speed data generated by probe vehicles or vehicle-tracking technologies, such as INRIX probe 

data.  

 

The first method makes use of shockwave theory and involves determining the critical 

times when the queue reaches the end or beginning of a road segment. INRIX data are available 

for Traffic Message Channel (TMC) and eXtreme Definition (XD) segments. Both refer to 

defined road segments for reporting and aggregating traffic data, and XD segments are generally 

shorter than TMC segments. By analyzing the speed profiles of given TMC or XD segments, one 

can infer the evolution of queuing over the congested corridor. This report describes how INRIX 

data alone can be used to estimate a v/c ratio for the oversaturated segment. This innovative 

method allows estimating the DV when the capacity of the segment or bottleneck is known. The 

second method relies on the volume delay function (VDF) from the Highway Capacity Manual 

(HCM) for oversaturated conditions. The delay value for the VDF is extracted from INRIX 

speed data for a given TMC or XD segment. The VDF is then solved for the unknown demand 

for the defined conditions.  

 

The rest of the report presents the scope of this project, literature review, the 

methodologies followed, data collection process, the application of the methods on simulation 

and field data, conclusions, recommendations, and implementation and benefits of the study.  

 

PURPOSE AND SCOPE 

 

The overall goal of this proposed project was to identify an effective way to estimate 

arterial demand when its capacity is exceeded. Given a congested arterial, the demand volume 

refers to the arrival flow rate in the upstream of the bottleneck in the peak periods. The specific 

objectives are listed below.   

 Survey and document applicable methods for measuring and estimating demand.  
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 Identify the strengths and weaknesses of these methods and discuss their suitability for 

potential VDOT applications.  

 Evaluate and compare promising methods in case studies.  

 Recommend how the most promising methods may be used by VDOT.  

 

The focus of this project was to identify a method for demand estimation that can be 

implemented by VDOT in its SMART SCALE process or for other applications. Estimating 

origin-destination demand for travel demand models (TDMs) was beyond the scope of this 

project, and the emphasis is on arterials, not freeway facilities. The focus was on the major 

movements along arterials rather than the individual turning movements. To evaluate alternative 

methods, the research team used a hybrid approach that involves both microscopic simulation 

modeling and field data collection and processing.   

 

While travel demand is a broad topic, the focus of this project was on estimating demand 

of a given facility under prevailing (oversaturated) conditions. This entailed incorporating the 

queuing dynamics observed in the field into the demand estimation. It is possible that demand for 

a given facility may change after improvements are made. However, characterizing such induced 

or latent demand requires a TDM that was outside the scope of this study. 

 

METHODS 

 

Overview  

 

The following tasks were conducted to achieve the study objectives:  

 

1. Literature review 

2. Development of methods for demand volume estimation 

3. Data collection for model testing 

 

Literature Review 

 

The research team conducted a literature review that included a survey of existing 

methods for estimating volume and related traffic flow parameters based on various types of 

sensor data. Since estimating demand volume for oversaturated corridors is highly related to 

queue dynamics, methods for predicting queue lengths were also reviewed and summarized. 

Alternative approaches to estimate volume, e.g., through volume delay functions or travel time-

volume relationships, are also discussed, as are the various types of intelligent transportation 

systems data used in predicting travel demand and traffic flow parameters. Methods making use 

of data from vehicle detectors, probe vehicles and Connected Vehicles (CV), and video 

surveillance were also reviewed and synthesized.   

 

Methods for Demand Volume Estimation 

 

As discussed in greater depth in the literature review section, various approaches are used 

to estimate demand volume by employing different types of sensor data (e.g., aerial/drone 

imagery, probe vehicle trajectory). However, for oversaturated corridors, there is no well-
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established method that can be implemented in practice with a reasonable level of effort based on 

readily available data. VDOT has access to INRIX probe data through the Reginald Integrated 

Transportation Information System (RITIS, 2021) and such data are readily available for both 

freeways and arterials. Furthermore, over the years, the granularity of the INRIX data and the 

sample size or trips being captured by INRIX are increasing. Therefore, the research team 

proposed two methods that primarily rely on INRIX speed data for estimating the demand 

volume. These two approaches are listed below and presented in more details in the following 

subsections.  

 

 Shockwave Theory Based Approach: When the demand exceeds capacity, the queue 

grows upstream of the intersection at a rate (or speed) proportional to the demand 

volume and the throughput (or capacity) of the intersection. The boundary between 

congested (high density) traffic and arriving (low density) traffic is called a 

shockwave and can be observed in the field as the back of the queue grows at a steady 

rate. In the proposed model, the shockwave speed is estimated from the INRIX data 

which is then utilized to estimate the demand volume. For brevity, this first method is 

referred to as the SW method in this report.  

 

 Highway Capacity Manual (HCM)’s Volume Delay Function (VDF): The HCM 

provides a formula for calculating the average delay per vehicle when the signalized 

intersection is oversaturated. Average delay is calculated for a given volume to 

capacity ratio (denoted as ‘X’ or v/c). For our application, the delay is known (from 

INRIX data), and the HCM equation is solved for the unknown v/c ratio so that the 

demand volume can be estimated. For brevity, this method is referred to as the VDF 

method in this report. 

 

Before these two methods are presented, it is important to analyze how a typical INRIX 

speed profile looks like for an oversaturated corridor. Figure 1 shows the speed profiles for three 

days for a TMC segment on US-28 SB in Northern Virginia, a heavily congested corridor. It is 

apparent that at around 2 PM speeds are consistently dropping from 55 mph (denoted as UA) to 

approximately 20 mph and staying at the low level (UC) for a while before going back higher.  

 

 
Figure 1. INRIX speed profiles for TMC 110-05669 on US-28 (Sully Rd) southbound. This TMC is 1.18 mi 

long and ends at the Walney Rd/Braddock Rd Intersection. 
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This type of pattern (i.e., speeds dropping and staying constant for a while before 

resuming back to free-flow speeds) has been observed at various other congested segments. This 

pattern can be explained by the fact that the TMC length is finite (1.18mi for this TMC) and 

speed values are computed based on the probe vehicles travelling within the TMC boundaries. 

As the queue grows upstream, it eventually reaches the beginning of the TMC segment. As long 

as the queue (or congestion) spans the entire length of the TMC segment, and the downstream 

conditions remain stable, the probe vehicle speeds will remain approximately constant (since the 

boundary conditions remain the same).  

 

For such oversaturated segments, this pattern provides useful information in 

understanding the queue dynamics and the propagation of congestion. For example, one can 

estimate the time when the queue reaches the beginning of the TMC segment, which would be t2 

for the sample data in Figure 1. Since, the length of the segment is known, the speed by which 

the queue grows (i.e., shockwave speed) can be computed by simply dividing the segment length 

by t2-t1. This fundamental observation is the basis for the new shockwave-based method 

described below for DV estimation.  

 

Shockwave Theory-Based Method  

  

Traffic conditions on a roadway can be described in terms of speed, density, or flow at a 

macroscopic level. Due to the variations and fluctuations in demand and capacity, the traffic 

conditions (or system state) change over time and space. When two different traffic flow states 

interact, a boundary is established that demarcates the time-space domain of one flow state from 

the other. This boundary is called a shockwave. A prominent example of this could be observed 

at an oversaturated corridor as high-speed vehicles approach a queue of stopped vehicles. The 

boundary that separates the congestion from arriving traffic can be observed to move upstream as 

the queue grows. The rate at which this queue grows or, equivalently, the speed at which the 

shockwave travels (w), is correlated to the flow rate of the arriving traffic (𝑞𝐴), the flow rate 

within the queue (𝑞𝐶), and the densities of the arriving (𝑘𝐴) and queued (𝑘𝐶) traffic. From the 

basics of traffic flow theory, this relationship is described as:  

 

 

 
(1) 

 

 

This basic relationship is employed to estimate the arriving flow rate (𝑞𝐴) or the demand 

volume for oversaturated conditions. Since measuring density is generally more difficult than the 

other two traffic flow variables, density can be replaced by its equivalent using the fundamental 

relationship among the three-traffic flow variables, i.e., density is flow divided by speed (𝑘 =
𝑞/𝑢). Therefore, Equation (1) can be rearranged as follows for the unknown arrival rate 𝑞𝐴. 

 

 

 
(2) 

 

 

𝑤 =
𝑞𝐴 − 𝑞𝐶

𝑘𝐴 − 𝑘𝑐
  

𝑞𝐴 =
𝑞𝑐 − 𝑤

𝑞𝑐

𝑢𝑐

1 −
𝑤
𝑢𝐴
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 To apply the model above, the quantities on the right-hand side need to be provided. It 

should be noted that traffic conditions are dynamic, therefore these quantities would be time 

dependent. Therefore, the analysis will pertain to a specific period. As explained earlier, by 

analyzing the INRIX speed profiles (see Figure 1), one can estimate the critical time at which the 

queue reaches the beginning of the TMC or XD segment. In Figure 1, this corresponds to t2, 

while t1 can be considered the beginning of the oversaturation period. If these two event times 

are captured reliably, then one can estimate how long it takes for the queue to reach the 

beginning of the segment by simply subtracting t1 from t2.  If this is denoted by T (i.e., T= t2 - t1), 

the average shockwave speed will simply be 𝐿/𝑇, where L is the segment length. To use 

equation (2) in demand volume estimation, the other required inputs are as follows:  

 The flow rate within the queue, 𝑞𝑐: This will approximately be equal to the discharge or 

throughput from the signalized intersection that is acting as the bottleneck. At a typical 

signalized intersections approach, this can be estimated by dividing the total turning 

volumes (left, right, and through) by the observation period. If counts are not available, 

the capacity of the approach can be approximated by the HCM methods for signalized 

intersections.   

 The speed of the arriving traffic, 𝑢𝐴: This can be taken as the speed before the 

oversaturation starts. In Figure 1, this speed value is approximately 55 mph.  

 The speed of the queued traffic, 𝑢𝐶: This can be taken as the stable speed after the queue 

reaches the beginning of the segment. In Figure 1, this speed value is approximately 22 

mph.  

 

Equation (2) can be rearranged to solve for the v/c ratio instead of the demand volume. 

Dividing both sides by flow rate 𝑞𝑐, i.e., the queue discharge flow, results in the following.   

 

 

 
(3) 

 

 

The expression above can be used to estimate a v/c ratio for the oversaturated segment. It 

is apparent that the only input needed are three speeds: w, 𝑢𝐴, and 𝑢𝐶 . All three values can be 

extracted from the INRIX speed data.  

 

HCM Volume Delay Function 

 

To evaluate the level of service for signalized intersection, the HCM presents an 

analytical method to estimate the control delay (TRB, 2000). Equation (4) shows how the 

incremental delay caused by oversaturation is estimated using the HCM method. This Volume 

Delay Function (VDF) takes the degree of saturation X (or volume to capacity ratio), capacity of 

the lane group c (or intersection approach), and two parameters related to the signal operations (k 

and I) as inputs to compute the average delay for the analysis period of interest T. The equation 

assumes that there is no residual queue at the start of the analysis period. This equation is 

applicable to all degrees of saturations.  

 

𝑞𝐴/𝑞𝑐 =
1 − 𝑤/𝑢𝑐

1 − 𝑤/𝑢𝐴
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(4) 

 

Where: 

d2   =  incremental delay to account for effect of random and oversaturation queues, 

adjusted for duration of analysis period and type of signal control (s/veh); 

T   = duration of analysis period (h); 

k   =  incremental delay factor that is dependent on controller settings; 

I    = upstream filtering/metering adjustment factor; 

c   = lane group capacity (vehicles/hour); and 

X   = lane group v/c ratio or degree of saturation. 

 

For the purpose of this project, Equation (5) needs to be solved for the degree of 

saturation X (i.e., volume to capacity ratio) for the measured average delay d2. The delay value 

will be extracted from INRIX speed data for a given TMC or XD segment with a known length, 

L. Since d2 is the average delay per vehicle, it is computed as:   

 

 
 

(5) 

The remaining terms in Equation (4) include T, k, I, and c. T is the analysis period and 

taken to be t2 - t1. The values for the parameters k and I can be found from the HCM tables 

(Exhibit 16-13 for k values and Exhibit 15-9 for I in HCM 2000 (TRB, 2000)). The capacity c is 

the intersection approach throughput and is the same as parameter qC as defined above. With 

these inputs, the best X value satisfying Equation (4) is found by minimizing the square of the 

difference between the observed delay from INRIX data (Equation 5) and the incremental delay 

(d2) from equation (4). The Solver function in MS Excel can be utilized for this purpose.  

 

Simulation and Field Data for Model Testing and Validation 

 

To evaluate the methods described above, the research team utilized both simulation and 

field data. For generating the simulated data, two networks were simulated in VISSIM: A 2.6 km 

stretch of a two-lane road with a traffic signal; and a section of Indian River Road, a major 

arterial in Virginia Beach. For both simulation models, the traffic demands loaded onto the 

network are hypothetical and larger than the intersection capacity. Volume data from a congested 

corridor were collected to validate the models. These are explained below.  

 

Simulation Data: Two-Lane Road 

 

Hypothetical demand scenarios were created in VISSIM, a microscopic simulation 

program, to generate travel speeds and other needed data. First, a 2.6 km two-lane road segment 

with a signalized intersection is created in VISSIM to generate data for a basic scenario where 

only through movements are modeled. A fixed-time traffic signal is placed at 2.5 km from the 

d2 = 900 𝑇   (𝑋 − 1) +  (𝑋 − 1)2 +
8𝑘𝐼𝑋

𝑐𝑇
    

d2 =

𝐿
𝑢𝐶

−
𝐿
𝑢𝐴

2
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beginning of the segment, with a 45 second red phase and a 45 second green phase. Demand is 

loaded onto the network by specifying the flow rates shown in Figure 2. All other VISSIM input 

parameters were kept at default values to generate data for this hypothetical network. The 

maximum input flow rate of 2,400 vehicles/hour is larger than the capacity of the signalized 

intersection (which is about 1,950 vehicles/hour) and causes the queue to grow rapidly as shown 

in Figure 3. The analyses shown in the next section were performed solely based on the 

trajectory data extracted from VISSIM which include position and speed for every vehicle at 

every simulation second. The statistical programming language R was used to process the data 

and apply the methods. To emulate TMC-like data, the trajectory data were partitioned into 

discrete spatiotemporal regions. Since INRIX data’s lowest time resolution is one minute, the 

time resolution was set to one minute. Since TMC or XD segment lengths can vary, a range of 

TMC lengths, from 250 meters to 2000 meters in increments of 250 meters (for a total of 8 

length scenarios), were considered. Each one of these TMCs starts at the upstream of the signal 

and terminates at the stop bar. To generate the speed data for each TMC, average speeds of all 

vehicles within the TMC boundaries were calculated. The two methods described above were 

then applied to the average speed data for each TMC scenario.  

 

 
Figure 2.  Demand profile loaded onto the VISSIM network 

 

 

 
Figure 3.  Vehicle trajectories for the simulated oversaturated condition. Two sample trajectories are 

highlighted (blue and green) for a better visualization. 
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Simulation Data: Indian River Road Corridor 

 

To generate data for a more complex setting, the team created a VISSIM network for the 

eastbound direction of the Indian River Road (IRR) corridor shown in Figure 4. Two signalized 

intersections were modeled: one at the intersection of Regent University Drive and the other at 

Centerville Turnpike. Traffic signal times for these two intersections were coded in VISSIM 

based on the timing plans received from the City of Virginia Beach for the PM peak. Turning 

volume percentages at the intersections were based on field counts. Four hypothetical demand 

scenarios were considered for the vehicles entering the network at the beginning of the IRR 

corridor. Vehicles also enter the network at the two ramps shown in Figure 5. These demand 

profiles are shown in Figure 6. The ramp volumes were kept at a constant rate of 100 

vehicles/hour in all scenarios except in scenario 4, where the entering flow for Ramp-2 was set to 

1,000 vehicles/hour.  

 

These arbitrary demands are large enough to create oversaturation in the corridor. Each 

scenario was run four times with different random seeds. The trajectory data were generated 

from VISSIM and processed for creating XD speed profiles needed for the demand estimation 

methods. The trajectories were segmented spatially based on the INRIX XD definitions for the 

corridor shown in Figure 5. For each XD segment, average speeds were calculated at one minute 

aggregation intervals from the trajectory data of all vehicles. These speed profiles were then 

utilized in the demand estimation methods.  

 

 
Figure 4.  Screenshot of the VISSIM network for the IRR corridor 
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Figure 5.  INRIX XD segments for the modeled portion of the IRR corridor   

 

 

 
Figure 6.  Demand profiles for the mainline volume entering the IRR corridor under the four scenarios  

 

Field Data Collection  

 

To test the methods with field data, traffic volume counts are needed for oversaturated 

corridors. Since INRIX data have one-minute resolution, these counts need to be at one-minute 

or lower aggregation levels to be able to extract the needed flow rates within the period of 

interest (i.e., T). Ideally, the selected corridor should have vehicle detectors both upstream and 

downstream of the segment being studied. Furthermore, the (TMC or XD) segment being studied 

should be long enough for vehicles to accumulate for a meaningful duration before the queue 

spills back to the upstream segment. In the Results section, the impacts of the segment length on 

model accuracy are analyzed with the simulation data.  

 

0

1000

2000

3000

4000

5000

0 10 20 30 40 50 60

V
o

lu
m

e 
(v

p
h

)

Time (minutes)

Scn1

Scn2&4

Scn3



11 

 

To validate the methods with field data, two data sources were explored. First, 

Automated Traffic Signal Performance Measures (ATSPM) data were processed for a group of 

intersections on US 29 in Northern Virginia. ATSPM include high-resolution data from traffic 

signal infrastructure and contain event times for each sensor activation (sensor on) and 

deactivation (sensor off) events. The team received the raw ATSPM data from VDOT for the US 

29 corridor (intersections 1-8 in Figure 7) and prepared R scripts to convert the data to traffic 

volumes. Based on INRIX bottleneck ranking tool, SB direction of US 29 is listed as one of the 

highly congested corridors.   

 

After converting the raw data to volumes, it was determined that ATSPM data from this 

corridor would not be supportive in validating the demand estimation methods. This was due to 

missing data and unrealistic noise observed in the volumes. First, no sensor data were available 

for April 2021 for the downstream intersections 5 and 6. The same was true for sensors on SB 

through movements at intersection 2. As shown in Figure 8, the volume for this intersection is 

close to zero. Second, the volumes exhibited unrealistic fluctuations after April 12, especially 

those of intersections 1 and 3.  

 

Even though the evaluated ATSPM sample data did not prove to be useful for this project 

to provide the ground truth volumes, it should be mentioned that ATSPM data have potential to 

support various traffic analyses needs. Additional work is needed to evaluate the quality of the 

ATSPM data and streamline its usage in various applications. Since this was beyond the scope of 

this research project, further investigation of the ATSPM data for validating the demand 

estimation methods was left for a future study.  

  

 
Figure 7.  Intersections with ATSPM data in Northern Virginia 
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Figure 8.  Five-minute volume profiles for the SB movements of four intersections on US 29 extracted from 

the ATSPM data for weekdays in April 2021. Numbers above the plots refers to the day of the month in April 

2021. The names of the intersections can be found in the inset in Figure 7. 

 

To collect ground truth volume data for an oversaturated corridor, the team selected the 

Indian River Road (IRR) corridor in the City of Virginia Beach based on the speed profiles from 

the INRIX data. The eastbound direction between I-64 and Kempsville Road is generally 

oversaturated in weekdays in the afternoon hours. The XD segment from Centerville Turnpike to 

Ferry Point Road/Thompkins Lane (see Figure 9) is selected for volume data collection. This 

segment is about 0.33 mi. Video cameras were installed at the upstream and downstream ends of 

this segment in the afternoon hours on three days in September: 21st, 22nd and 28th. The cameras 

were attached to poles on the sidewalk and removed after the data collection was complete on 

each day.  

 

Post processing of the video was done by manual methods for the most part. Volume data 

were extracted and reported for each cycle as shown in the Appendix. These volume counts were 

used in model validation described in Results section. The video collected on Sept 28th was also 

processed through a custom vehicle detection program developed by this Old Dominion 

University (ODU) research team for a different project. The program’s image-processing 

algorithms detect and track vehicles in the video and attach a timestamp when each vehicle is 

detected (see Figure 10). These timestamps were used to create cumulative plots to visualize the 

variation in flow rate over time (shown in the Results section). The counts from the video image 

processing method matched the data from the manual method reasonably well: the mean absolute 

percentage error was about 4%.  
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Figure 9.  The INRIX XD segment on Indian River Road selected for volume data collection 

 

 

 
Figure 10.  Sample images from the vehicle detection program 

 

 

RESULTS 

 

Literature Review  

 

There are different approaches to quantify the demand depending on the type of method 

and technology being used. Several existing intelligent transportation systems technologies, 

including inductive loop detectors, video cameras, sensors, unmanned aerial vehicles (UAVs), 

CVs, probe vehicles, etc., may support the estimation of the demand volume. Various supporting 

methods are proposed to estimate demand volume using data from these technologies such as 

queue estimation methods, volume delay functions (VDFs), speed, delay and travel time studies 

and predictive data analytics. Each of these methods along with the technologies used by them 

was evaluated based on the available literature, and the findings are summarized in the following 

paragraphs. 
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Demand Volume Estimation Based on Vehicle Detection Sensors 

 

Queue estimation methods form the backbone of the demand volume estimation process 

for oversaturated conditions. If the maximum queue lengths are accurately predicted, the demand 

volume arriving at the back of the queue can be determined by employing the conservation of 

vehicles principle or an input-output method. One such model is first proposed by Berry in his 

1987 paper that computes the arrival volume in a cycle as a sum of the departing volume and the 

residual queue at the end of that cycle minus the residual queue in the preceding cycle (Berry, 

1987). The departing volume can easily be counted by sensors at the intersection. Measuring the 

residual queue at the end of each cycle is more challenging, as the queue can grow to an arbitrary 

length. Therefore, the success of this method hinges on an accurate way to observe the maximum 

queue length under oversaturated conditions. Unfortunately, the current queue estimation 

methods in the literature are not effective for estimating the queue beyond the upstream detector. 

Moreover, detector data is prone to noise and detector failures (Islam, 2013).  

 

A few researchers have suggested the use of magnetic sensors and signature matching for 

finding link volumes (Papageorgiou and Varaiya, 2009; Li et al., 2017).  Another method for 

estimating queue length has been proposed in which queue length can be estimated up to five to 

ten times greater than the distance between the detector and the stop line (Mück, 2002) but the 

main limitation of that approach is the assumption of a constant arrival rate of vehicles (Liu et 

al., 2009). While these methods seem promising in estimating the demand volume using the 

input-output model, they need further analysis to be applied under oversaturated conditions. 

 

Other methods based on shockwave theory and the detector technology have also been 

explored in the literature. In one method, congestion due to oversaturation and spillbacks can be 

easily identified, but the maximum queue length cannot be exactly estimated -- especially when 

the queue is very long. This is because the vehicles in queue do not cross the advanced detector 

even after the signal turns green (Wu et al., 2010). In another method, Cho et al. (2014) applied 

shockwave theory to estimate the volume and speed in the upstream of the signal under 

oversaturated conditions. However, both of these methods require the use of at least two 

detectors, one of which must be an advanced detector at a considerable distance from the 

intersection, which may not be practical. To implement the second method, effective solutions 

are needed to detect the propagation of shockwaves from sensor data (Cho and Tseng, 2007; Yao 

and Tang, 2019). 

 

Probe Vehicle or CV Data for Estimating Queue Dynamics and Volume 

 

Rather than relying on fixed sensors, queuing dynamics can be observed more directly 

from trajectory data of probe vehicles. To the best of our knowledge, the first study on estimating 

queue lengths at signalized intersections using probe vehicle data was conducted by Comert and 

Cetin (2009). They assumed a point queue model and Poisson arrivals to derive statistical models 

to estimate the queue length. The error in the estimation of queue length is a function of the 

market penetration rate of the probe vehicles in the traffic stream. However, their proposed 

statistical model is not applicable to oversaturated conditions.  
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To accommodate oversaturated conditions, Cetin (2012) proposed a shockwave theory-

based method for estimating the back of the queue profile from the known positions of probe 

vehicles when they first join the back of the queue. Based on data from a VISSIM simulation, the 

proposed model is shown to predict the back of the queue profile reasonably well even at low 

market penetration rates (e.g., 5 to 10%) and in the absence of probes in some cycles (Cetin, 

2012). Although this model works efficiently for single lane queues, it would need further 

development to work for multilane scenarios and requires raw probe data (i.e., GPS position and 

time) as the input.  

 

Similar studies have been conducted by Ramezani and Geroliminis (2013, 2015), who 

were also able to estimate queue length under oversaturated conditions limited to a single lane. 

They have suggested further improvements in terms of accommodating multi-lane analysis, 

precisely locating the probe vehicles, lane identification, and data fusion between detectors and 

probes. Cheng et al. (2011) have also provided a method to estimate cycle-by-cycle queue length 

using GPS location data from the probes. Ban et al. (2011) proposed a method to estimate queue 

lengths using travel time data from mobile sensors, but their method was not tested under 

oversaturated conditions. 

 

Zhang et al. (2019) also proposed a method to estimate the back of the queues using an 

Expectation Maximization approach when the Market Penetration (MP) of probe trajectories is 

low.  Tan et al. (2021) used a Maximum Likelihood Estimation approach to estimate the same 

with sparse probe vehicle data. Both these methods still need signal timing data and are 

applicable to through lanes only. These models seem promising but need improvement on their 

application to mixed lane analysis, queue spillbacks, and real time applications (Zhao et al., 

2019). Methods which infer vehicles between probe vehicles can also be implemented to 

improve estimations but have not been evaluated for unevenly distributed lane volumes or 

oversaturation conditions (Cetin and Anuar, 2017; Salahshour et al., 2019).  

 

The development of CV technology can reduce the dependency on the conventional 

detectors. Luo et al. (2019) have provided a method to estimate the traffic volume along with 

delays using Vehicle to Cloud communication, even at a low MP of 10%. However, their method 

is dependent on Vehicle to Cloud communication infrastructure (Luo et al., 2019). Zheng (2016) 

and Zheng and Liu (2017) employed Vehicle to Infrastructure communication to estimate the 

traffic volume and other parameters with reasonable accuracy at low MP of 10%, but their 

method is not suitable for oversaturated conditions. Gao et al. (2019) have used Vehicle to 

Everything communication and the back propagation neural network approach to estimate queue 

lengths even in a mixed traffic environment. Gao et al. (2020) also applied a Deep Neural 

Network method which replaces shockwave theory approach to estimate queues using Internet of 

Things technology. These approaches seem promising as they reduce the dependency on 

detectors. Shahrbabaki et al. (2018) combined the data from both detectors and CVs using V2I 

communication to estimate the traffic flow. However, their method requires high resolution data 

from the upstream detector. Ma and Qian (2019) used AV (Automated Vehicle) technology for 

traffic sensing and to estimate traffic parameters like speed, density, and flow even under low 

MP rates. If probes are provided with this technology, they can help in estimating traffic 

parameters accurately. But all the above methods still need to be improved further for their 

application to oversaturated traffic conditions. 
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Demand Volume Estimation Using VDFs and Travel Time-Flow Relationships 

 

The relationship between flow and travel time was established by Davidson in 1966, and 

since then many researchers have explored this relationship (Davidson, 1966). For example, 

Taylor (1977) proposed a new method to estimate the parameters of the Davidson flow-travel 

time relationship. Both methods are not applicable for oversaturated conditions. Akçelik 

provided an alternative travel time function and a time dependent form of Davidson’s function to 

overcome the problems associated with parameter tuning and his model is applicable to 

oversaturated conditions (Akçelik, 1991).  

 

Link performance functions used in the travel demand models can be used to estimate the 

demand beyond the capacity when locally calibrated. Huntsinger and Rouphail (2011) have 

successfully applied this technique to estimate the demand under oversaturation on freeways. 

Their method used a simple approach where actual demand is the sum of demand at capacity 

plus the queue length. Therefore, finding the queue length on freeways or on arterials plays an 

important role in the estimation of the demand under any traffic condition. However, Huntsinger 

and Rouphail’s method is applicable only for freeway corridors.  

 

Cetin et al. (2012) have observed that calibrating VDFs based on link travel time or speed 

does not yield accurate results in Travel Demand Model applications and, therefore, proposed a 

link count based Genetic Algorithm approach to calibrate optimal VDF parameters under 

congested conditions. Foytik et al. (2013) calibrated the Bureau of Public Roads function using a 

similar Genetic Algorithm approach using link counts and found that VDFs calibrated to high 

demand perform well under variable demand as well. Their method is tailored to a network-level 

calibration needed in Travel Demand Models and may not be applicable to calibrating VDFs for 

a given corridor.  

 

Kucharski and Drabicki (2017) proposed the estimation of a VDF based on density 

instead of flow and found their performance is more realistic. So et al. (2017) have created the 

So-Stevanovic VDF which is claimed to be better than the BPR function by linking the VDFs 

with upstream travel times for v/c ratio estimation at an isolated intersection. Nevertheless, their 

method is not directly applicable to oversaturated conditions.    

 

Moses et al. (2013) have worked on calibrating VDFs based on speed-flow data and 

found that more than one VDF is required to achieve the desired forecasting accuracy in urban 

regions. They also conducted a study on various VDFs and found that the Akçelik function is 

suitable for urban streets and the modified Davidson function performed well on all facilities 

(Mtoi and Moses, 2014). Utilizing speeds for volume or demand estimation needs to be explored 

further.  

 

Hao et al. (2013) have utilized travel times to estimate vehicle indices which are closely 

associated with vehicle arrival and departure processes. Morgul et al. (2014) have proposed the 

use of virtual sensors in a web-based approach to estimate the travel times. Moreover, Yang et al. 

(2015) have provided an improved travel time estimation for closed highways. However, all 

these methods are applicable only for travel time estimation and do not estimate demand under 

oversaturated conditions. 
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Video Image Processing and Unmanned Aerial Vehicles (UAVs) for Estimating Volume 

 

Video data processing has been considered as a means of overcoming the shortfalls of 

conventional detector technologies in demand estimation. Researchers have been exploring video 

detection for extracting volumes, speeds, and other traffic flow parameters. Coifman et al. (1998) 

developed algorithms for tracking vehicles from video image data under challenging conditions 

like occlusion, shadows, lighting transitions, and congestion. Ma et al. estimated lane-wise traffic 

demand (Ma et al. 2017) and queue lengths (Ma et al., 2018) using virtual detectors called video 

imaging detectors. Their model needs improvement in accuracy to detect traffic under 

oversaturated conditions. Luo et al. (2019) estimated queue lengths by applying the license plate 

recognition method to the video images but did not consider queue spillbacks. Li et al. (2019) 

estimated traffic volumes only in undersaturated conditions. Although Zhang et al. (2020) were 

able to predict the trajectory of vehicles using the LPR method and video imaging, their model is 

also not suitable for oversaturated conditions.   

 

Researchers have also utilized and proposed various machine learning and computer 

vision techniques to process image data from UAVs. Khan et al. (2018) proposed an analytical 

method for shockwave identification and estimation of traffic parameters like density at 

signalized intersections using UAV images. Khan et al. also developed a universal guiding 

framework for UAV-based traffic analysis (Khan et al., 2017a) and for automated multivehicle 

trajectory extraction (Khan et al., 2017b). Ke et al. (2020) created an advanced framework for 

estimating microscopic lane level traffic parameters from UAV video, which needs further 

development for real-time applications. Wang (2016) explained a method for collecting and 

processing the data using the UAVs. Kim et al. (2019) extracted vehicle trajectories using the 

Faster Region-based Convolutional Neural Network method from UAV images. Furthermore, 

Feng at al. (2020) proposed a method to extract trajectory data using UAVs under mixed traffic 

conditions using the Convolutional Neural Network technique. Zhu et al. (2018) have estimated 

traffic density by applying the Deep Neural Network method and using UAV data. Moreover, 

Jian et al. (2019) used UAVs for identification of traffic congestion on roads. Khan et al. (2020) 

also worked on smart traffic monitoring using UAVs. Yahia et al. (2019) also proposed methods 

based on Kalman filtering to identify traffic congestion as well as to estimate traffic flow using 

UAVs. Babinec and Apeltauer (2016) worked on accurately estimating the position of vehicles 

using UAVs. Barmpounakis et al. (2016) and Barmpounakis and Geroliminis (2020) used 

Unmanned Aerial Aircraft Systems (UAS) and massive drone data for traffic surveillance and 

monitoring. 

   

The use of UAVs for traffic analysis seems to have been gaining momentum in recent 

years and will play a significant role as UAVs become more common due to their other 

capabilities, including security monitoring and commercial service deliveries. However, 

deployment of this technology is currently costly for large scale deployment. Therefore, an 

effective methodology is needed for estimating demand volume for oversaturated corridors based 

on readily available data from existing or widely deployed intelligent transportation systems 

technologies.  
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Application of the Demand Estimation Methods Using Simulation Data 

 

The two demand estimation methods discussed previously were applied to the simulation 

data generated for the two-lane road network and the IRR network. The results are discussed in 

the next two subsections.  

 

Results for the Simulated Two-Lane Road Network 

 

 The simulated data were processed to generate the speed profiles shown in Figure 11 for 

the eight TMC lengths (ranging from 250 meters to 2000 meters) considered. In Figure 11, it is 

apparent that the average speed values drop considerably and become stable after the critical 

times t2 – indicated on the charts with vertical red lines. After these critical times, the queue 

covers the entire TMC segment length and, hence, causes the speeds to remain low. This 

phenomenon is explained previously in the methods section in the context of field data shown 

Figure 1. For each scenario, these critical times along with other inputs needed for the two 

demand estimation methods are extracted from the trajectory and simulated TMC speed data.  

 

 
Figure 11.  Speed profiles created from VISSIM data for different simulated TMC lengths ranging from 250 

meters to 2000 meters (numbers shown at the top of each plot). The red dashed lines indicate t2, the times 

when the queue starts completely covering the TMC segment. The blue dashed lines indicate the times when 

the oversaturated period begins. 

 

For the SW method, the extracted parameters and the model results are shown in Table 1 

and results for the VDF method are in Table 2. The parameters shown in these two tables are 

explained below.  

 Sim. Run#:  The simulation model is run three times (by changing the random number 

seed in VISSIM) to account for random variations due to vehicle speeds, arrival times, 

and other stochastic elements within VISSIM. This column shows the simulation run 

number.  

 Length: This refers to the simulated TMC length. 

 T: This corresponds to the difference between t2 and t1 (i.e., T= t2 - t1) which captures 

how long it takes for the queue to reach the beginning of the TMC segment. For each 

case, t1 is set to 12 minutes since within the 12th minute, the input flow rate with 2,400 

vehicles/hour reaches the traffic signals. The critical time t2 is computed from the speed 

profiles shown in Figure 11.  
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 UA: For the SW method, this is simply the free-flow speed in the network as vehicles 

approach the back of the queue with FFS. For the VDF method, this is computed as the 

average speed from TMC speed profiles from the observations before t1.  

 UC: For both methods, this is the average of all TMC speeds after t2, i.e., the average 

speed within the queue.  

 qC or c: This refers to the queue discharge rate, which is equivalent to the capacity of the 

intersection in this case.  

 Est qA: This is the estimated demand volume computed from the equations presented 

earlier (Equation 2 for the SW method and Equation 4 for the VDF method). 

 Obs qA: This refers to the flow rate computed based on the actual arrivals within the 

period T. Even though the arrival rate (demand volume) is 2,400 vehicles/hour, due to the 

random generation of the vehicles in VISSIM, the actual flow rate fluctuates over the 

simulation time. Therefore, qA is taken as the observed flow rate rather than the input 

flow rate.  

 k and I: For the VDF method, these two parameters are looked up from HCM 2000 tables 

as indicated before.  

 Obs Delay: For the VDF method, this corresponds to the average delay per vehicle and is 

calculated as shown in Equation (5).   

 X: This is the volume/capacity ratio in the HCM VDF equation.  

 % Err: Percent error is computed as (Est qA – Obs qA)/Obs qA ×100. 

 

From the results presented in Table 1 and Table 2, it is observed that both methods yield 

reasonably accurate estimates for the demand volume. The mean absolute percentage errors 

were calculated to be 2.5% and 2.8% for the SW and VDF methods respectively. The error is 

higher when the TMC segment length is short. This can be attributed to the relatively short 

observation interval T for shorter segments. For the 250-meter scenarios, T is only several 

minutes. Measuring traffic flow or counts within such short intervals typically results in a 

large variation. Furthermore, since the time resolution is one minute, the precision of 

estimating event times (e.g., t2 and t1) is only accurate within ± one minute. This plays a 

larger role when T (or the TMC segments) are short. Figure 12 shows the average error 

across the three simulation runs for the two methods as the TMC length is varied.  
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Table 1.  Parameters for the SW method and the estimated volume demands under different scenarios 

Sim. 

Run# 

Length 

(km) 

T 

(min) 

UA 

(km/h) 

Uc    

(km/h) 

w    

(km/h) 

qc     

(vph) 

Est qA 

(vph) 

Obs qA 

(vph) 

% 

Err 

1 0.25 2 51.0 12.3 -7.5 1,993 2,795 2,838 -1.5% 

1 0.50 5 51.0 12.8 -6.0 1,993 2,618 2,698 -3.0% 

1 0.75 7 51.0 12.9 -6.4 1,993 2,651 2,688 -1.4% 

1 1.00 10 51.0 13.0 -6.0 1,993 2,605 2,656 -1.9% 

1 1.25 11 51.0 13.1 -6.8 1,993 2,673 2,644 1.1% 

1 1.50 14 51.0 13.2 -6.4 1,993 2,634 2,586 1.9% 

1 1.75 20 51.0 13.2 -5.3 1,993 2,528 2,537 -0.4% 

1 2.00 23 51.0 13.2 -5.2 1,993 2,525 2,509 0.6% 

2 0.25 4 51.0 12.3 -3.8 1,993 2,423 2,577 -6.0% 

2 0.50 5 51.0 12.8 -6.0 1,993 2,619 2,544 3.0% 

2 0.75 8 51.0 13.0 -5.6 1,993 2,573 2,546 1.1% 

2 1.00 11 51.0 13.2 -5.5 1,993 2,546 2,414 5.5% 

2 1.25 17 51.0 13.1 -4.4 1,993 2,450 2,430 0.8% 

2 1.50 22 51.0 13.2 -4.1 1,993 2,418 2,434 -0.7% 

2 1.75 23 51.0 13.2 -4.6 1,993 2,462 2,436 1.1% 

2 2.00 26 51.0 13.2 4.6 1,993 2,465 2,423 1.7% 

3 0.25 3 51.0 12.3 -5.0 1,993 2,553 2,754 -7.3% 

3 0.50 5 51.0 12.9 -6.0 1,993 2,615 2,660 -1.7% 

3 0.75 8 51.0 13.0 -5.6 1,993 2,570 2,561 0.3% 

3 1.00 11 51.0 13.2 -5.5 1,993 2,546 2,515 1.2% 

3 1.25 14 51.0 13.2 -5.4 1,993 2,535 2,536 0.0% 

3 1.50 17 51.0 13.3 -5.3 1,993 2,525 2,494 1.2% 

3 1.75 23 51.0 13.3 -4.6 1,993 2,458 2,446 0.5% 

3 2.00 26 51.0 13.4 -4.6 1,993 2,457 2,432 1.0% 

Abbreviations used in the table: 

Sim. Run #  - Simulation run number  

Length   - Length of the segment in km 

T   - The time it takes for the speed to drop from free flow speed to congested speed   

UA   - Speed under free flow condition in km/hr 

UC   - Speed under congestion (or oversaturation) in km/hr 

w   - Shockwave speed  

qC  - Maximum flow (capacity) across intersection observed from simulation in vph  

vph   - vehicles per hour 

Est qA   - Estimated arrival rate of vehicles in vph 

Obs qA   - Observed arrival rate of vehicles in vph 

% Err   - Percentage error between the estimated and the actual arrival rates   

 

  



21 

 

Table 2.  Parameters for the VDF method and the estimated volume demands under different scenarios 

Sim. 

Run

# 

Length 

(km) 

T 

(min) 
I k 

UA 

km/h 

Uc 

km/h 

Obs 

Delay 

(s) 

c 

(vph) 
X d2 (s) 

Est 

qA 

(vph) 

Obs 

qA 

(vph) 

% Err 

1 0.25 2 1 0.5 30.9 12.3 22.0 1,993 1.31 21.9 2,613 2838 -7.9% 

1 0.50 5 1 0.5 38.5 12.8 46.9 1,993 1.29 46.8 2,565 2698 -4.9% 

1 0.75 7 1 0.5 42.0 12.9 72.5 1,993 1.33 72.4 2,647 2688 -1.5% 

1 1.00 10 1 0.5 45.3 13.0 98.6 1,993 1.32 98.5 2,624 2656 -1.2% 

1 1.25 11 1 0.5 46.5 13.1 123.4 1,993 1.36 123.3 2,718 2644 2.8% 

1 1.50 14 1 0.5 47.1 13.2 147.8 1,993 1.34 147.7 2,678 2586 3.5% 

1 1.75 20 1 0.5 47.6 13.2 173.3 1,993 1.28 173.2 2,555 2537 0.7% 

1 2.00 23 1 0.5 48.9 13.2 199.9 1,993 1.28 199.9 2,559 2509 2.0% 

2 0.25 4 1 0.5 31.1 12.3 221 1,993 1.14 22.0 2,266 2577 -12.1% 

2 0.50 5 1 0.5 38.4 12.8 46.9 1,993 1.29 46.8 2,565 2544 0.8% 

2 0.75 8 1 0.5 41.8 13.0 71.8 1,993 1.28 71.7 2,556 2546 0.4% 

2 1.00 11 1 0.5 44.9 13.2 96.5 1,993 1.28 96.4 2,551 2414 5.7% 

2 1.25 17 1 0.5 46.0 13.1 122.2 1,993 1.23 1221 2,452 2430 0.9% 

2 1.50 22 1 0.5 47.0 13.2 147.7 1,993 1.22 147.6 2,424 2434 -0.4% 

2 1.75 23 1 0.5 48.2 13.2 173.3 1,993 1.24 173.2 2,480 2436 1.8% 

2 2.00 26 1 0.5 48.5 13.2 197.7 1,993 1.25 197.7 2,487 2423 2.6% 

3 0.25 3 1 0.5 35.3 12.3 23.9 1,993 1.22 23.8 2,428 2754 -11.8% 

3 0.50 5 1 0.5 41.6 12.9 48.3 1,993 1.30 48.2 2,585 2660 -2.8% 

3 0.75 8 1 0.5 44.6 13.0 73.3 1,993 1.29 73.2 2,569 2561 0.3% 

3 1.00 11 1 0.5 46.8 13.2 98.2 1,993 1.29 98.2 2,562 2515 1.9% 

3 1.25 14 1 0.5 47.8 13.2 123.2 1,993 1.28 123.1 2,558 2536 0.9% 

3 1.50 17 1 0.5 48.5 13.3 147.6 1,993 1.28 147.5 2,554 2494 2.4% 

3 1.75 23 1 0.5 49.3 13.3 173.2 1,993 1.24 173.1 2,480 2446 1.4% 

3 2.00 26 1 0.5 49.7 13.4 196.3 1,993 1.25 196.3 2,483 2432 2.1% 

Abbreviations used in the table: 

Sim. Run #  - Simulation run number  

Length   - Length of the segment in km 

T   - The time it takes for the speed to drop from free flow speed to congested speed 

I  - Upstream filtering/metering adjustment factor 

k  - Incremental delay factor that is dependent on controller settings 

UA   - Speed under free flow in km/hr 

UC   - Speed under congestion in km/hr 

Obs Delay  - Observed delay in seconds 

c  - Maximum flow (capacity) across intersection observed from simulation in vph  

vph   - Vehicles per hour 

X   - Lane group v/c ratio or degree of saturation 

d2 - Incremental delay  

Est qA   - Estimated arrival rate of vehicles in vph 

Obs qA   - Observed arrival rate of vehicles in vph 

% Err   - Percentage error between the estimated and the actual arrival rates   

  

 

From the results presented in Figure 12, the average error rates (calculated from the three 

simulation runs) are within approximately ±2% when TMC length is 500 meters or longer. While 

these error rates look promising, in real life applications with field data, larger errors might occur 
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due to additional uncertainties. For example, travel speeds reported by INRIX (or any other data 

source) may exhibit more variance and uncertainty due to a low probe vehicle sample size, 

variation in travel speeds across different travel lanes, and complex traffic conditions (e.g., bus 

stops and slow-moving trucks).  

 

 
 
Figure 12.  Average errors in estimating demand volume from the SW and VDF methods that are computed 

from the results of three simulation runs as TMC segment length is varied 

 

Results for the Simulated IRR Network 

 

For the IRR network, four different demand levels were simulated (see Figure 6 for the 

demand profiles). Each demand scenario was simulated three times in VISSIM with different 

random number seeds. It is observed that a queue starts forming upstream of the Regent 

University Dr. intersection a few minutes after the 20th minute, the time when the demand peaks. 

After processing the vehicle trajectories within each XD segment, average speed profiles were 

created. Sample XD speed profiles for one of the scenarios are shown in Figure 13. XD5 is 

directly upstream of the signalized intersection. Average speeds at this segment are low even 

when the demand is below the peak value. The speeds for the remaining XD segments (1 to 4) in 

the upstream of the bottleneck are initially at around the FFS (free-flow speed) of 55 km/h as 

they are not impacted by queuing at the signals when the demand is low. After the peak demand 

is loaded, the queue grows and eventually reaches to the other four segments.  

 

As shown previously in Figure 5, the lengths of the XD segments are relatively short 

(segments 1-4 are shorter than 250 meters). Since these XD segments are short, estimating the 

SW speed from an individual speed profile will not be very reliable as explained in the previous 

section. Therefore, the propagation speed of the queue was estimated using data from multiple 

segments.  Based on the profiles in Figure 13, it can be inferred that the queue has reached the 

beginning of XD4 at the 25th minute and that of XD1 at the 30th minute. The sum of the lengths 

of XD1, XD2, and XD3 is 590 m. In this example, the SW takes 5 minutes to travel 590 meters. 

This observation is used to estimate the SW speeds. These speeds are reported in Table 3 along 

with other inputs data for the SW method.  
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Figure 13. Speed profiles for the simulated XD segments in the IRR network 

 

The demand volumes loaded onto the network on the mainline and ramps are shown in 

Table 3. For the first three scenarios, the ramp volumes are low (i.e., 100 vehicles/hour) and all 

ramp vehicles can merge onto IRR without causing a queue on the ramp. For the last scenario, 

the demand from Ramp-2 is 1,000 vehicles/hour and results in a backup on the ramp. During the 

congested period, vehicles can enter from this ramp onto IRR at 720 vehicles/hour. The column 

‘Ramp Inflow’ gives the total ramp volume entering the IRR corridor. The total demand volume 
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for the IRR is then the sum of ramp inflow and mainline flow (this sum is shown in Table 4 as 

Obs qA). This sum is what the demand estimation methods attempt to predict.  

 

 Table 3 and Table 4 summarize the results of the SW and VDF methods respectively. The 

estimated demand volumes (indicated by Est qA) are compared to the demand volumes entering 

the network (shown in Table 4 as Obs qA). The percent errors are reported for each simulation 

run as well as for the given demand scenarios as an average of three runs. As expected, these 

error rates are higher than those shown in Table 1 and Table 2 for the two-lane road network. 

This can be attributed to the relatively more complex geometry and traffic flow on the IRR 

network. Furthermore, in the two-lane network case, the estimated volumes are compared to the 

observed flow rates in simulation (within time T) rather than the input flow rates. Due to the 

randomness in vehicle generation process in VISSIM, the flow rate in a given period would not 

be equal to the loaded demand rate but would fluctuate around it.  

 

 The results shown in Table 3 and Table 4 demonstrate both methods produce relatively 

accurate results. The errors for the VDF method are a bit lower. The mean absolute percentage 

errors are 5.4% and 4.2% for the SW and VDF methods respectively.  

 
Table 3.  Parameters for the SW method and the estimated volume demands for the simulated IRR network  

Loaded Demand (vph) 
Sc 

# 
Sim. 

Run # 
Main 

Ramp

1 
Ramp

2 
Ramp 

Inflow 
t1 t2 

T 

(min) 
w 

km/h 
UC 

km/h 
Est qA 

(vph) 
% 

Err 
Avg. 

Err 

1 

1 3,500 100 100 200 28 36 8 -4.4 16 3,722 1% 

4% 2 3,500 100 100 200 27 33 6 -5.9 15 3,964 7% 

3 3,500 100 100 200 30 36 6 -5.9 16 3,894 5% 

2 

1 4,000 100 100 200 25 30 5 -7.1 16 4,026 -4% 

-4% 2 4,000 100 100 200 28 33 5 -7.1 15.5 4,065 -3% 

3 4,000 100 100 200 25 30 5 -7.1 16 4,026 -4% 

3 

1 4,500 100 100 200 25 29 4 -8.9 16 4,214 -10% 

-9% 2 4,500 100 100 200 23 27 4 -8.9 15 4,314 -8% 

3 4,500 100 100 200 25 29 4 -8.9 15.75 4,238 -10% 

4 

1 4,000 100 1,000 820 25 29 4 -8.9 10.85 4,927 2% 

-2% 2 4,000 100 1,000 820 22 27 5 -7.1 10.85 4,612 -4% 

3 4,000 100 1,000 820 24 29 5 -7.1 10.5 4,673 -3% 

Abbreviations used in the table: 

Sc #   : Demand scenario number 

Sim. Run #  : Simulation run number  

t1  : The time when the oversaturation is estimated to begin based on the speed profiles  

t2  : The estimated time at which the queue reaches the beginning of the TMC segment  

T   : t2-t1 or the time it takes for the speed to drop from free flow speed to congested speed 

w   : Speed of the shockwave produced due to queuing under congestion 

UC   : Speed under congestion in km/hr 

vph   : Vehicles per hour 

Est qA   : Estimated arrival rate of vehicles (or demand volume) 

% Err   : Percentage error of the estimated demand volume  

Avg.Err  : Average of the three percentage errors in each demand scenario 
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Table 4.  Parameters for the VDF method and the estimated volume demands for the simulated IRR network  

Sc 

# 

Sim 

Run# 

L  

(km) 

T 

(min) 
I k 

UA 

(km/h) 

Uc 

(km/h) 

Obs 

Delay 

(s) 

c (vph) x d2 (s) 
Est qA 

(vph) 

Obs qA 

(vph) 
% Err 

Avg. 

Err 

1 

1 0.59 8 1 0.5 55.0 16.0 47.1 3,150 1.18 47.1 3,723 3,700 1% 

5% 2 0.59 6 1 0.5 55.0 15.0 51.5 3,150 1.27 51.5 4,007 3,700 8% 

3 0.59 6 1 0.5 55.0 16.0 47.1 3,150 1.25 47.1 3,926 3,700 6% 

2 

1 0.59 5 1 0.5 55.0 16.0 47.1 3,150 1.30 47.1 4,089 4,200 -3% 

-2% 2 0.59 5 1 0.5 55.0 15.5 49.2 3,150 1.31 49.3 4,137 4,200 -1% 

3 0.59 5 1 0.5 55.0 16.0 47.1 3,150 1.30 47.1 4,089 4,200 -3% 

3 

1 0.59 4 1 0.5 55.0 16.0 47.1 3,150 1.38 47.1 4,333 4,700 -8% 

-7% 2 0.59 4 1 0.5 55.0 15.0 51.5 3,150 1.41 51.5 4,451 4,700 -5% 

3 0.59 4 1 0.5 55.0 15.8 48.1 3,150 1.38 48.1 4,361 4,700 -7% 

4 

1 0.59 4 1 0.5 55.0 10.9 78.6 3,150 1.64 78.6 5,175 4,820 7% 

2% 2 0.59 5 1 0.5 55.0 10.9 78.6 3,150 1.51 78.6 4,765 4,820 -1% 

3 0.59 5 1 0.5 55.0 10.5 81.8 3,150 1.53 81.8 4,835 4,820 0% 

Abbreviations used in the table: 

Sc #   - Demand scenario number 

Sim. Run #  - Simulation run number  

L   - Length of the segment in km 

T   - the time it takes for the speed to drop from free flow speed to congested speed  

I  - Upstream filtering/metering adjustment factor 

k  - Incremental delay factor that is dependent on controller settings 

UA   - Speed under free flow in km/hr 

UC   - Speed under congestion in km/hr 

Obs Delay  - Observed Delay in seconds 

C  - Maximum flow (Capacity) across intersection observed from simulation in vph  

vph   - Vehicles per hour 

X   - Lane group v/c ratio or degree of saturation 

d2 - Incremental delay  

Est qA   - Estimated arrival rate of vehicles in vph 

Obs qA   - Observed arrival rate of vehicles in vph 

% Err   - Percentage error between the estimated and the actual arrival rates in simulation   

Avg.Err  - Average of the three percentage errors in each demand scenario 

 

Validation of the Methods on the Field Data 

 

The SW and VDF methods were tested with the field data collected on IRR on September 

21st, 22nd, and 28th 2021. For each one of these days, INRIX XD data were analyzed to determine 

the critical times t1 and t2. These are shown in Figure 14 on INRIX speed profiles. For Sept 28th, 

there are two occasions of oversaturation observed within the video data collection period. As 

seen in Figure 14, speeds go back to around 30 mph between 4:30 PM and 5:30 PM twice. This 

gives the opportunity to apply the model twice to Sept 28th data.  
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Figure 14.  INRIX speed profiles for the XD segment on IRR over the three days 

 

For September 28th data, cumulative plots were also created (see Figure 15) to show the 

variation in flow rates over time in the upstream and downstream of the XD segment. The 

vertical axis in this figure shows the normalized count where a background rate of 2,700 

vehicles/hour is used. In other words, a horizontal line in this figure will correspond to a flow 

  

 
Figure 15.  Scaled cumulative count plots for the volumes at the upstream and downstream of the XD 

segment on IRR. At around 16:37 and 17:17 the INRIX speed values start dropping as shown in Figure 14. 

 

rate of 2,700 vehicles/hour. At approximately the critical times, the separation between upstream 

and downstream curves starts increasing. For example, at 16:37 PM, the arrival rate in the 
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upstream increases while the rate at the downstream starts diminishing. This leads to the 

accumulation of vehicles between upstream and downstream, and eventually the queue backs up 

to the upstream intersection. Similar observations can be made for the change in flow rates at 

17:17 PM. 

 

Table 5 and Table 6 show the parameters used in SW and VDF methods and the demand 

volumes estimated by these methods. For both methods, the estimated volumes are relatively 

close to the observed flow rates. The errors are less than 4%. These results demonstrate that the 

proposed methods are effective in estimating the demand volumes in oversaturated conditions.  

 
Table 5.  Application of the SW method to the collected data on IRR 

Date t1 t2 
T 

(min) 
UA 

(mph) 
Uc 

(mph) 
w 

(mph) 
qc 

(vph) 
Est qA 

(vph) 

Obs 

qA 

(vph) 
%Err 

9/21/2021 15:46 16:02 16 34 13 -1.24 2,736 2,892 2,936 -1.5% 

9/22/2021 15:57 16:10 13 27 12 -1.53 2,565 2,737 2,741 -0.2% 

9/28/2021 16:37 16:43 6 31 15 -3.31 2,754 3,037 3,069 -1.0% 

9/28/2021 17:17 17:22 5 31 16 -3.97 3,114 3,446 3,348 2.9% 

Abbreviations used in the table: 

Date   - Date of data collection 

t1  : The time when the oversaturation is estimated to begin based on the speed profiles  

t2  : The estimated time at which the queue reaches the beginning of the XD segment  

T   - t2-t1 or the time it takes for the speed to drop from free flow speed to congested speed 

UA   - Speed under free flow in mph (miles per hour) 

UC   - Speed under congestion in mph (miles per hour) 

W   - Speed of the Shock wave produced due to queuing under congestion in mph 

qC  - Maximum flow (Capacity) across intersection observed in field in vph  

vph   - Vehicles per hour 

Est qA   - Estimated arrival rate of vehicles using Shock wave theory in vph 

Obs qA   - Actual Observed arrival rate of vehicles in the field in vph 

% Err   - Percentage error between the estimated and the actual arrival rates in the field 
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DISCUSSION 

 

 Estimating DV for oversaturated conditions is nontrivial because of the difficulty in 

measuring flow rates when extensive queueing spans multiple segments and intersections. While 

the methods presented here appear promising, there are some important caveats to be noted.  

 

 The proposed methods only capture the effects of vehicles arriving to the queue. In other 

words, the methods estimate the flow rate joining the back of the queue within the 

analysis period. The vehicles arriving to the back of the queue might be metered by 

potential upstream constrictions (e.g., other traffic signals). In such cases, the arrival rate 

to the back of the queue would be higher if there had been no constrictions in the 

upstream. Consequently, the estimated values could underestimate the true demand when 

the traffic flow in the upstream is metered.  

 

 The proposed approach produces an estimated DV for the period T, not for the entire 

peak period. This period starts at the beginning of the oversaturation period and extends 

for a time T, depending on the length of the TMC/XD segment: the longer the segments, 

the longer the T. The demand volume rate beyond T is not estimated and may be higher 

or lower than the estimated values.  

 

 Given the fluctuations in traffic volumes (see the field data in Table 5 and Table 6), it is 

important to produce estimates for multiple days and average the results to obtain more 

stable estimates.   

 

 For extracting the critical times t1 and t2 from INRIX XD/TMC data, there is no 

automated method. The research team has attempted to develop an algorithm for this 

purpose, but the results have not been fully satisfactory. Therefore, these critical times are 

determined using manual inspection or a heuristic as explained in Appendix A.  

 

 In this research, it was assumed that the corridor being studied is known to have 

oversaturation.  No method is developed in this research to detect oversaturated 

conditions.  

 

 To estimate demand volume, in addition to the TMC/XD speed data, the capacity or 

throughput of the congested segment is needed. This can be obtained from intersection 

turning movement counts which was the case for the IRR example presented in Table 5 

and Table 6. If such data are not available, the capacity of the signalized intersection can 

be estimated based on signal timing and HCM methods. It should be noted that the SW 

method can be used for volume/capacity ratio estimation without the need for capacity 

data (see Equation 3).  

 

 The presented methods are applicable to reasonably long segments (e.g., >500 meters), 

where vehicles could accumulate due to the constricted capacity. Short segments or 

corridors with numerous entry/exit points (e.g., in downtown areas) would result in 

complex flow dynamics and multiple origin-destination flows to be tracked. The 

presented methods are not applicable to such complex cases.  
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CONCLUSIONS 

 

 Both HCM VDF-based and shockwave-based methods provide reasonably accurate 

estimates of the demand volume when tested with both the simulated data and the limited 

field data. The estimated volumes from the models, when implemented on the field data, 

are within 4% of the observed volumes. For the simulated IRR corridor, the mean 

absolute percentage errors are 5.4% and 4.2% for the SW and VDF methods respectively. 

 

 INRIX speed data were shown to be a viable option for estimating demand or 

volume/capacity ratios for oversaturated corridors. The INRIX XD data for the IRR 

corridor were used as the input for the two methods and were found to provide accurate 

estimates. The one-minute INRIX speed profiles give enough time resolution to capture 

the propagation of the queue across the XD/TMC segments. The critical times when the 

queue reaches the end or beginning of the segments can be identified effectively from 

INRIX data.  

 

 The methods perform better when the TMC/XD segments are longer than 500 m. The 

simulation results show that the error rates drop significantly when the TMC/XD length 

is 500 meters or longer.  

 

 The proposed methods could be applied to corridors with multiple intersections, but 

additional steps are necessary to account for different entering flows. As shown with the 

simulated data for the IRR corridor, when there are multiple entering flows, the methods 

produce an estimated demand volume corresponding to the net inflow to the main 

corridor (flows contributing to the queue). If the demand volumes coming from different 

sources need to be estimated, vehicle volumes need to be collected at the upstream points 

where the different flows (e.g., side street volumes) are entering the corridor.  

 

RECOMMENDATIONS 

 

The overall results of this research suggest that the use of either the HCM VDF or the 

SW method for estimating v/c or demand volume for oversaturated conditions could be valuable, 

when applicable, for managers of planning-level studies. Additional field testing of the methods, 

discussed below in the Implementation section, could further confirm the benefits of using these 

methods.  Managers of planning-level studies typically include, but are not limited to, TMPD, 

TED, and related District staff.   

 

The reasons for not requiring that planning managers use the HCM VDF or the SW 

method estimating v/c or demand volume for oversaturated conditions in every case are 

threefold.  First, these methods are applicable only if the volume is not directly observable 

through the appropriate placement of sensors.  Second, while these methods have been shown to 

be feasible given the current types of data available in Virginia, they should not preclude other 

methods (e.g., those that rely on vehicle information) (Gao et al., 2019, 2020) should they 

become feasible in the future.  Should other methods, with new types of data, enable smaller 

forecast to observed errors than those reported in this study (values ranged from 1.4% - 5.4%), 

such methods would also merit consideration.  Third, for some planning level studies, it may be 
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the case that latent demand—e.g., the traffic that would use a particular corridor if it were not 

congested—is of greater interest than the demand volume that was the subject of this report.  In 

that situation, the HCM VDF and SW methods may be informative but would require some 

additional analysis beyond the scope of this study’s findings in order to estimate latent demand.  

 

If managers of planning level studies decide to use the HCM VDF or the SW method for 

estimating v/c or demand volume for oversaturated conditions in a corridor, three study 

recommendations are: 
 

1. The ODU research team, with assistance from VTRC as needed, should provide written 

guidance enabling readers who are not familiar with this report to implement the HCM VDF 

and SW methods. 

 

2. The ODU research team, with assistance from VTRC as needed, should conduct a webinar 

for interested staff on how to use the HCM VDF and SW methods. 

 

3. VTRC should conduct a pilot project implementing these methods for two corridors. 

 

IMPLEMENTATION AND BENEFITS 

 

Implementation 

 

Implementation of the recommendations will proceed in three phases. 

 

Phase 1.  Immediate Term 

 

In support of recommendation 1, the ODU research team has provided instructions that 

enable reviewers after they have obtained an INRIX account, to perform the following steps:  (1) 

download some (but not necessarily all) of data for Virginia corridors such as those that are the 

subject of this study (e.g., Route 29 in the Northern Virginia District [Figure 7] or Indian River 

Road in the Hampton Roads District [Figure 5]); (2) use the geometry of the intersection to 

identify candidate bottleneck locations; (3) compute the volume/capacity ratio due to the likely 

bottleneck location; (4) estimate capacity (qc) using the HCM or signal-based methods (even 

using an HCM lookup table), and then (5) estimate demand volume using the SW or VDF 

methods.  These instructions, provided in Appendix A, were developed after the project panel 

had accepted the methods proposed herein.   

 

This recommendation has already been implemented. 

 

Phase 2.  Medium Term. 

 

The instructions in Appendix A will be conveyed in the form of a webinar conducted by 

the ODU research team and scheduled by the Virginia Transportation Research Council in 

consultation with ODU and planning partners.  Invitees will include staff who are involved in 

planning-level studies, primarily those within the Transportation and Mobility Planning Division, 

the Traffic Engineering Division, and the district planning function, as well as other staff who 
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may have an interest in the role of oversaturated demand conditions for the purposes of project 

prioritization.  Notably, the material to be presented in the webinar is not designed to enable 

attendees to obtain ground-truth data.  Rather, this material will enable webinar attendees to 

apply the SW or VDF methods in situations currently faced by most VDOT analysts: a location 

is known to have congestion (but how much is not known), INRIX data are available, but ground 

truth data in the form of sensors or field observations are not available. 

 

At this point, the instructions do not indicate that a particular amount of data (e.g., a 

week, month, or year) is needed, nor do they concern judgments such as possible seasonal 

variations in demand, or whether it is better to choose a week of average demand or a week of 

above-average demand.  Such judgments are appropriate points of discussion for the webinar.  At 

the conclusion of the webinar, attendees will be asked if they support (in terms of time) 

additional implementation work as discussed in Phase 3.   

 

This webinar will be conducted prior to July 31, 2022.  

 

Phase 3.  Long Term. 

 

Phases 1 and 2 are being pursued as part of the original research, at no further cost to the 

Department.  For Phase 3, VTRC implementation funds will be requested for a pilot project to be 

undertaken to deploy the tool at two corridors that involve real or potential transportation 

improvement investments. The pilot project may include up to four distinct elements, depending 

on the funds and staffing resources available. The scope of the pilot project will be established 

after the completion of the webinar in Phase 2 in order to move forward with the most productive 

elements. 

 

The request for funding will occur prior to December 31, 2022. 

 

 The pilot project may include the development of a macro-based tool that could automate the 

computation of T (based on t1 and t2) from INRIX data.  This macro-based tool does not seek 

to replicate the judgment associated with picking a bottleneck location, but rather would help 

the analyst discern the transition from UA to UC and would help partially automate the SW 

and VDF methods. 

 

 The pilot project may then indicate how future prioritization efforts, whether at the state or 

regional level, could make use of this newly available demand volume (or ratio of demand 

volume to capacity).  As one example of a prioritization effort, the Commonwealth 

Transportation Board (2021) recently issued updated guidance on the calculation of benefits 

for evaluating candidate transportation investments. The SW or HCM VDF methods could be 

applied to two or more candidate transportation investments and the impact on project 

prioritization could be examined. 

 

 If ATSPM data or field data become available, this pilot project could again entail a 

comparison with ground truth data; however, because of the large time cost associated with 

collecting field data or confirming the validity of sensor data, this third element requires 

careful consideration for inclusion in the pilot effort. 
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 The pilot effort may identify some short-term heuristics to address key limitations noted for 

these two approaches:  they generally do not distinguish demand by lane group at an 

intersection, they are not appropriate for quantifying induced demand, and while they are 

applicable for arterial facilities, they are not suitable for ramps. 

 

Benefits 

 

 One benefit of implementing Recommendation 1 is to quickly determine the degree of 

oversaturation at bottleneck links.  While more effort is required for estimating demand volume, 

the easier-to-estimate ratio of demand volume to capacity can be a useful screening tool, 

especially for situations such as IRR, where one can determine whether a potential bottleneck is 

impeding a relatively large or small demand (compared to its capacity).  For example, page 61 of 

Commonwealth Transportation Board (2021) explicitly notes that “person throughput is only 

credited/scored if the facility is over capacity in the no-build project condition (has a volume to 

capacity ratio greater than 1.0).”  Such language suggests that quick ways of estimating demand 

volume to capacity ratios for candidate transportation investments may be productive for entities 

that are considering candidate transportation investments that would be subject to that 

prioritization process. 

 

A second benefit of comparing demand volumes as opposed to comparing observed 

volumes in congested situations is that demand volumes can differ regardless of the capacity of 

the roadway, where observed volumes can only differ up to the capacity of the roadway.  The 

capacity of the roadway constrains the observed volumes and can mask the true demand.  

Further, when prioritizing projects based on their ability to reduce delay, one can weight these 

delays based on demand volume—which will differ from observed volume under oversaturated 

conditions.   

 

As an illustration of this second benefit, consider how one would weight a project that 

would reduce delay if it were situated on IRR (the subject of Tables 5 and 6).  Without this 

research, one would multiply the average vehicle delay reduction impacts by the observed 

volume (e.g., qc in Tables 5 and 6) which ranges from 2,565 vehicles/hour (on September 22, 

2021) to 3,114 veh/hr (on September 28, 2021).  With this research, one would likely use either 

the SW method (2,737-3,446 veh/hr) or the VDF method (e.g., 2,740-3,478 vehicles/hour).  (Of 

course, one could also perform field data collection as well to get an exact value of 2,741-3,348 

vehicles/hour, but such field validations are time consuming to perform and were one of the 

reasons for developing these other methods).  If one chooses the average of the four days, one 

obtains the following volumes: 

 

 Mean observed volume is 2,792 

 Estimated demand volume (SW method) is 3,027 (8.4% higher than observed volume) 

 Estimated demand volume (VDF method) is 3,042 (8.9% higher than observed volume) 

 Perfect demand volume (field observation) is 3,023 (8.3% higher than observed volume) 

 

Thus, the use of demand volume—without field observations—would yield a volume that 

is about 8.65% higher than observed volume—for a corridor similar to IRR.  However, if one 
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instead used a corridor similar to the simulated two-lane facility with a signal, then the average 

of the 48 estimated demand volumes in Tables 1 and 2 (2,540) is about 27.45% higher than the 

observed volume (1,993).  In short, demand volume will always be higher than observed volume 

(under congested conditions) but there may be variability in how much higher the demand 

volume is, depending on the location.  The methods shown herein enable one to estimate the true 

demand volume—e.g., one evaluates investments based on the actual true demand for the 

capacity of the roadway rather than based on the existing built capacity of the roadway. 
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APPENDIX A: STEPS IN APPLYING THE SW AND VDF METHODS 

 

This section explains the steps taken in applying the SW and HCM VDF methods. 

Overall, the following three main steps need to be completed in applying the methods.  

 Step 1: Identifying an XD or TMC segment along the oversaturated corridor for the 

analysis  

 Step 2: Extracting key parameters from the XD or TMC speed profiles 

 Step 3: Applying the SW and HCM VDF methods 

 

These steps are explained in detail below by using data from a sample congested corridor 

in Virginia Beach, VA. The IRR eastbound corridor is selected as an illustrative example since 

the team collected field data from this site as discussed in the report.  

 

Step 1: Identifying an XD or TMC Segment Along the Oversaturated Corridor  

 

For a given oversaturated corridor, there may be multiple potential XD or TMC segments 

affected by traffic congestion. These segments typically have varying lengths, different road 

geometry, access points, and speed profiles. As indicated in the report, segments shorter than 500 

meters do not provide enough range to apply the methods effectively. In addition, presence of 

significant access points with heavy turning volumes requires additional work to track entry and 

exit of volumes from/to the segment. Such access points may introduce additional noise to the 

INRIX speed data, making it difficult to analyze the speed for the main through movement 

across the segment. Therefore, before applying the method, the potential XD or TMC segments 

should be carefully analyzed. In other words, one should not expect that the proposed methods 

would yield accurate results for any oversaturated segment. The proposed methods are based on 

established traffic flow principles and should produce accurate results if the underlying 

assumptions are valid. The assumptions are more likely to be valid for segments that have 

reasonable lengths and minimal amount of traffic turbulence and disruptions.   

 

As shown in the report, the proposed methods rely on two critical time stamps (t1 and t2) 

to be extracted from the speed profiles. The first parameter, t1, marks the start of the 

oversaturation period for the segment being analyzed, whereas t2 the time when the queue 

reaches the beginning of the XD or TMC segment. How t1 and t2 are extracted from speed 

profiles is explained in the next subsection. However, before that, the selected XD or TMC 

segments should have speed profiles amenable for this purpose. While the team did not develop a 

precise test or technique to check whether an XD segment is suitable for the purpose, the 

following guidance is provided: 

 

“The speed profiles (over multiple days) should exhibit a consistent pattern with a 

significant drop in speeds (e.g., from 40 mph to 20 mph) that takes place within a 

‘meaningful’ period T (T = t2 – t1). In addition, after t2, the speed values should stay 

somewhat stable (at UC) for a reasonable duration (e.g., more than 5 minutes).”  

 

There is a direct relationship between the volume/capacity ratio (i.e., degree of 

saturation) and T (duration of speed transition from uA to uc). Figure A1, constructed based on 

Equation 3, shows the relationship between T and volume/capacity ratio for a hypothetical 
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segment where speed before oversaturation starts (uA) is assumed to be 40 mph and the speed 

within the queue (uC) 20 mph (assuming uC is about half of uA is reasonable based on profiles 

presented earlier in the report in Figure 1 and Figure 14). For example, if the XD segment is 0.5 

mi long, and volume/capacity ratio is 1.05, then T is expected to be 14 minutes. In this example, 

if the observed T values from speed profiles are much larger than 14 minutes (e.g., 60 minutes), 

this would indicate that there is no significant oversaturation to be estimated/measured and, 

hence, applying the proposed methods here would not be plausible. If T is too long for the given 

segment length, it will imply that the corridor is lightly oversaturated, or the demand volume is at 

or close to capacity. As volume/capacity ratio approaches 1.0, T gets larger very quickly and 

approaches to infinity. Producing accurate predictions for relatively low volume/capacity ratios 

(e.g., between 1.0 and 1.05), therefore, will be difficult. To avoid making predictions for 

inherently a challenging range, one can set a criterion for a lower bound of volume/capacity 

ratio. For example, if this lower bound is selected to be 1.05, this implies that T should not be 

larger than 14 for 0.5 mi segments in the hypothetical case in Figure A1. Therefore, the 

applicability of the methods should be limited to speed profiles that meet these criteria.    

 

The second sentence in the above guidance is about for how long the speed values remain 

approximately stable at around uC. As explained in Methods section, the queue under 

oversaturation eventually reaches the beginning of the TMC/XD segment (since its length is 

finite). As long as the queue (or congestion) spans the entire length of the TMC segment, and the 

downstream conditions remain stable, the probe vehicle speeds will remain approximately 

constant. Therefore, this condition is expected to persist for a noticeable duration. On the other 

hand, if the speed drops to uC but very quick goes back to a higher value (e.g., within 1 or 2 

minutes), this may be due to temporary events like incidents, and unlikely to be due to 

oversaturation.  

 

To show an example, INRIX data for the IRR eastbound corridor were selected as an 

illustrative example. Figure A2 shows three distinct XD segments along this corridor. XD1 is the 

same segment that was analyzed before in the Results section. The intersection of Kempsville 

Road and Indian River Rd is the major bottleneck. XD2 is in the upstream of this bottleneck and 

is relatively short (~1000 ft). Speed profiles for three segments are shown in Figures A3 through 

A5.  These are produced from the RITIS system by using the Performance Charts option within 

the Probe Data Analytics Tools. The selected speeds correspond to September 2021 weekday 

data and the aggregation interval is set to one minute. As it can be observed in Figure A5, there 

is no congestion on XD3 since this segment is at the downstream of the bottleneck. XD2 is 

immediately in the upstream of the bottleneck, however, it does not show a noticeable drop in 

speed in a relatively short period of time. On the other hand, the speed profile for XD1 in Figure 

A3 meets the guidance described above. The speed is dropping to a low value of approximately 

15 mph at around 4:00 PM and staying stable at the low value for almost 2 hours. Therefore, for 

this corridor XD1 should be selected for the analysis and for the application of the proposed 

methods.  
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Figure A1. The relationship between T (duration of speed transition) and v/c ratio for a hypothetical case 

where speed before oversaturation starts is assumed to be 40 mph and the speed within the queue 20 mph. 

The three lines correspond to three different XD or TMC segment lengths (0.25 mi, 0.50 mi, and 1.00 mi). 

 

 

 
Figure A2. Three INRIX XD segments along Indian River Rd EB 
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Figure A3. Speed profile for XD1 segment shown in Figure A2 

 

 
Figure A4. Speed profile for XD2 segment shown in Figure A2 
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Figure A5. Speed profile for XD3 segment shown in Figure A2 

 

Step 2: Extracting key parameters from the XD or TMC speed profiles 

  

Once a suitable XD or TMC segment is identified, the next step is to extract the key 

information from the speed profiles. These include t1 and t2 and the speed values uA and uC. The 

following heuristic is employed to determine these parameters. 

 

First, the approximate period to locate the critical times is identified based on a visual 

inspection of the average speed profiles in Figure A3. Based on this figure, the speeds are 

dropping around 4:00 PM. Therefore, the critical times should be searched around 4 PM on the 

speed profiles for an individual day. The speed profile for September 21st, 2021, is shown in 

Figure A6 as an example. On this day, there is a clear drop in the speed at around 4:00 PM; the 

speed is dropping to around 15 mph and remaining at that low level for a considerable duration. 

To locate t2 the profile is followed from high speed towards low speeds. After reaching 13 mph 

at 4:02 PM, the speed values start fluctuating up and down. Therefore, t2 is set to 4:02 PM. 

Going back in time from 4:02 PM, speed values keep increasing until 3:46 PM is reached and 

subsequently start fluctuating. Therefore, t1 is set to 3:46 PM.    

 

Once t1 and t2 are determined, the speed values uA and uC are simply found by reading the 

speeds from the chart corresponding to these time stamps. If the analyst does not want to 

download the INRIX data to a local computer for processing, the Performance Charts within the 

Probe Data Analytics Tools can be utilized to read off these values. The speed values are 

displayed by hovering the mouse over the chart and clicking on the value at a given time stamp.  

For this example, the speed values are 34 mph and 13 mph respectively for uA and uC.  
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Figure A6. Speed profile for XD1 segment shown in Figure A2 

 

Step 3: Applying the SW and HCM VDF methods 

 

Application of the SW method involves substituting the known parameters into the 

equations presented earlier. To illustrate it, the method is applied to the data extracted from 

Figure A6. The following parameters were extracted:  

t1 = 15:46  

t2 = 16:02  

UA = 34 mph 

UC =  13 mph 

 

Therefore, the duration of speed transition from uA to uc is: 

T =  16:02 – 15:46 = 16 minutes 

 

Since the XD segment length is 0.33 mi, the SW speed w is then as follows.  

w = 0.33/(16/60) = 1.24 mph. 

 

The ratio of volume/capacity or v/c can be found from Equation 3 as 1.06. 

 

 
 

Figure A6 does not indicate the discharge flow rate qc. However, field data were collected at this 

site to measure qc.  According to the observations, qc is 2,736 vph.  The estimated demand 

volume can be found by entering the known parameters in Equation 4.  

𝑣

𝑐
=

𝑞𝐴

𝑞𝑐
=

1 −
𝑤
𝑢𝑐

1 −
𝑤
𝑢𝐴

=  
1 + 1.24/13

1 + 1.24/34
= 1.06  
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Note that in applying Equations 3 and 4, the shock wave is moving backwards.  Thus, w is a 

negative number such that its subtraction is shown as adding a positive number (right side of 

each equation).  

 

 Similarly, the application of the HCM VDF method involves entering the known 

quantities into the VDF equation: 

 

 
 

This equation needs to be solved for the degree of saturation X (i.e., v/c ratio) for the 

measured average delay d2. For the same example, the delay d2 is computed as:   

 

 
The remaining terms in Equation (4) include T, k, I, and c. T is the analysis period and 

taken to be t2 - t1. The parameters k and I are looked up from the HCM tables (Exhibit 16-13 for 

k values and Exhibit 15-9 for I in HCM 2000). The capacity c is the intersection approach 

throughput and is 2,736 vph in this example. Using the known inputs, the VDF equation is 

written as: 

 

 
 

With these inputs, the best X value satisfying this equation can be found by using the 

Solver function in MS Excel. For this case, X = 1.06. Multiplying 1.06 by c gives the estimated 

demand volume of 2,891 vph.  

  

𝑞𝐴 =
𝑞𝑐 − 𝑤

𝑞𝑐

𝑢𝑐

1 −
𝑤
𝑢𝐴

=
2736 + 1.24

2736
13

1 +
2736

34

= 2,892 𝑣𝑝ℎ  

d2 = 900 𝑇   (𝑋 − 1) +  (𝑋 − 1)2 +
8𝑘𝐼𝑋

𝑐𝑇
    

d2 =

𝐿
𝑢𝐶

−
𝐿
𝑢𝐴

2
∗ 3600 =

0.33
13

−
0.33
34

2
∗ 3600 = 28.32 𝑠𝑒𝑐  

28.32 = 900(16/60)   (𝑋 − 1) +   (𝑋 − 1)2 +
8(0.5)(0.09)𝑋

(2736)(16/60)
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APPENDIX B: TRAFFIC COUNTS 

Upstream Volume Counts at the Indian River Road Corridor  
        

9/21/2021  9/22/2021  9/28/2021 

Time flow ended Count  Time flow ended Count  Time flow ended Count 

15:22:51 149  15:42:59 153  15:50:50 160 

15:26:16 145  15:46:18 147  15:54:10 164 

15:29:34 144  15:49:35 138  15:57:30 151 

15:32:53 151  15:52:59 147  16:00:50 172 

15:36:13 148  15:56:17 158  16:04:10 141 

15:39:38 162  15:59:33 142  16:07:30 157 

15:42:55 171  16:02:52 164  16:10:50 143 

15:46:19 156  16:06:12 170  16:14:10 156 

15:49:36 146  16:09:40 159  16:17:30 169 

15:52:57 171  16:12:58 166  16:20:50 150 

15:56:18 163  16:16:18 157  16:24:10 158 

15:59:39 166  16:19:30 153  16:27:30 150 

16:02:58 156  16:23:01 161  16:30:50 161 

16:06:19 140  16:26:18 150  16:34:10 158 

16:09:43 152  16:29:37 154  16:37:30 183 

16:12:58 174  16:33:04 157  16:40:50 164 

16:16:22 156  16:36:17 154  16:44:10 158 

16:19:40 152  Total 2630  16:47:30 155 

16:22:58 131     16:50:50 162 

16:26:21 151     16:54:10 131 

16:29:36 163     16:57:30 150 

16:32:58 158     17:00:50 138 

16:36:24 169     17:04:10 138 

16:39:36 151     17:07:30 168 

16:42:58 171     17:10:50 172 

16:46:27 163     17:14:10 182 

16:49:38 132     17:17:30 190 

16:52:58 144     17:20:50 153 

16:56:18 172     17:24:10 168 

16:59:39 130     17:27:30 163 

17:02:58 136     17:30:50 174 

17:06:16 172     17:34:10 151 

17:09:38 162     17:37:30 157 

17:13:00 159     17:40:50 107 

17:16:19 169     17:44:10 177 

17:19:40 168     Total 5531 

Total 5603       
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Downstream Volume Counts at the Indian River Road Corridor 
        

9/21/2021  9/22/2021  9/28/2021 

Time flow ended Count  Time flow ended Count  Time flow started Count 

15:10:39 106  15:54:38    16:34:37 171 

15:14:09 125  15:57:58 146  16:37:57 150 

15:17:19 155  16:01:18 139  16:41:17 156 

15:20:47 141  16:04:38 148  16:44:37 157 

15:23:39 172  16:07:58 145  Total 634 

15:27:19 152  16:11:18 166      

15:30:59 140  Total 744  Time flow started Count 

15:34:09 144     17:14:37 167 

15:37:09 149     17:17:57 167 

15:40:49 158     17:21:17 179 

15:43:59 164     Total 513 

15:47:19 162       

15:50:39 142       

15:54:09 155       

15:57:34 159       

16:00:49 150       

16:04:09 139       

16:07:29 149       

16:10:49 164       

16:14:14 159       

16:17:29 145       

16:20:59 137       

16:24:09 153       

16:27:55 156       

16:30:49 143       

16:34:29 173       

16:37:29 133       

16:40:49 175       

16:44:29 157       

16:47:29 128       

16:50:49 136       

16:54:29 162       

16:57:49 135       

17:00:49 135       

17:04:09 166       

17:06:49 150       

Total 5369       

 


