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ABSTRACT

Roadway departure (RD) crashes are one of the major causes of fatalities on highways.
Reducing the number and severity of RD crashes is one of the emphasis areas of the strategic
highway safety plan for many state departments of transportation in the United States. Many
significant efforts have been aimed at reducing RD crashes, and a continued focus on preventing
these crashes is needed. The purpose of this study was to identify roadway geometric design,
roadside, and traffic characteristics that are correlated with RD crashes on rural roads. Using
data collected in Virginia from 2014-2018, this study analyzed the characteristics of RD crashes
on rural roadways and identified how the variation in RD crash frequency and severity is related
to roadway, roadside, and traffic features.

The study found a significant correlation between the frequency of RD crashes and
annual average daily traffic, shoulder width, and speed limit. The number of RD crashes
increased as the annual average daily traffic and speed limit increased and decreased as the
shoulder width was increased. Further analysis using more granular data from two fairly recent
data sources, SCRIM and iVision, showed promise for further insights into factors influencing
RD crashes. In particular, the results showed that these crashes are significantly influenced by
roadway geometry (curvature and cross slope) and pavement condition (skid resistance and
roughness).
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INTRODUCTION
Background

According to the Federal Highway Administration (FHWA), a roadway departure (RD)
crash is “a non-intersection crash in which a vehicle crosses an edge line, a centerline, or
otherwise leaves the traveled way” (FHWA, 2019a). About 52% of all traffic fatalities in the
United States from 2015-2017 were caused by RD crashes. A significant proportion of fatalities
on Virginia’s roads are the result of RD crashes. From 2014-2019, RD crashes constituted about
52% (2,332 of 4,425) of fatal crashes in Virginia. Reducing the number and severity of RD
crashes is one of the eight emphasis areas in the Virginia 2017-2021 Strategic Highway Safety
Plan (Virginia Department of Transportation [VDOT], 2017).

To improve traffic safety across the nation, transportation agencies and the research
community have devoted significant efforts to understand the causes of RD crashes and develop
effective countermeasures. Several countermeasures including widening lanes and/or shoulders,
modifying shoulder types (paved, gravel, composite, turf), using less rigid barrier types,
installing shoulder rumble strips, improving delineation, and changing alignments (grade,
horizontal curve radius, etc.) have been shown to reduce the frequency and/or severity of RD
crashes (American Association of State Highway and Transportation Officials [AASHTO],
2010; FHWA, 2018).

Based on the literature, the factors associated with RD crashes can be summarized into
five categories: traffic-related factors, geometric design and environmental factors, human
factors, roadside factors, and other factors (Al-Bdairi and Hernandez, 2017; Das and Sun, 2016;
LeBlanc, 2006; Lord et al., 2011). Traffic volume and speed are both important influencing
factors. Highway design factors, including lane width, shoulder width and type, roadside design,
pavement edge drop-off, horizontal curvature and grades, driveway density, and pavement
friction, are associated with RD crashes. Human factors, such as safety belt use, alcohol and
drug use, age, and gender, also affect RD crashes; other factors include time of day, vehicle type,
etc. These factors have random or fixed effects on roadway departures, and for some roadway
and roadside factors, the effects can vary by study site and drivers (Gong and Fan, 2017; Gordon
et al., 2013; Kusano and Gabler, 2012; Zou et al., 2014). Therefore, to implement appropriate
countermeasures, it is necessary for VDOT to study the characteristics of RD crashes in Virginia
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and understand the impact of crash-influencing factors on the roadway segments where RD
crashes are more prevalent.

Problem Statement

Over the years, VDOT has made significant efforts to reduce RD crashes. Counts of RD
crashes are used to identify locations for RD safety improvements, and in 2019, network
screening safety performance functions (SPFs) were developed to identify potential locations for
RD safety improvements (Kweon and Lim, 2019). Other tools, including the Roadway
Departure Safety Implementation Plan (VDOT, 2017) and the Roadway Departure Crash
Countermeasure Tool (VDOT, 2016), were developed to provide guidance on selecting
countermeasures to mitigate RD crashes. However, even with these tools and improvements, a
continued focus on preventing RD crashes is still needed. RD crashes are complex by nature, not
only because of the combination of driver, environmental, and roadway factors, but also because
of the interaction of multiple elements when only roadway factors are considered. The main
strategy to reduce RD crashes is to keep the vehicle on the road; further, a complementary
strategy is to minimize the effect of a crash should a vehicle leave the road. Unfortunately, a
large number of RD crashes occur on rural roads that have limited or no shoulders and very
limited recovery zones.

A thorough understanding of the characteristics of rural RD crashes in Virginia and the
factors contributing to these crashes will help VDOT implement countermeasures proactively to
improve the safety of rural roads.

PURPOSE AND SCOPE

The purpose of this study was to identify roadway features and traffic characteristics that
are correlated with RD crashes on rural roads in Virginia. The main objectives were as follows:

1. Assess the extent of RD crashes on rural roadways in Virginia.

2. Examine how variation in RD crash frequency and severity is related to roadway
features and traffic factors.

3. Explore the factors that are currently not included in the VDOT Traffic Engineering
Division’s (TED) Oracle database (COTEDOP) but may have an effect on RD
crashes.

4. Develop recommendations for minimizing the risk of RD crashes.

Specific questions that the study sought to address included the following:



1. Are locations with narrower shoulders more likely to have more RD crashes?

2. Are locations with limited sight distance with a row of trees more likely to have more
frequent RD crashes than locations surrounded by grassy fields?

3. Does a certain speed limit combined with other geometric features produce crash
hotspots?

4. Should VDOT focus on improving shoulders of certain types of roads or perform
selective clearing in certain conditions?

This study focused on examining the impact of roadway geometric design, traffic, and
roadway surface condition. Based on discussions with the study’s technical review panel, the
analysis was limited to two-lane and multi-lane divided and undivided primary and secondary
rural highways. The potential impact of rows of trees (Question 2) was not studied because there
was an ongoing national research effort at the time of this study—NCHRP 17-72: Update of
Crash Modification Factors for the Highway Safety Manual—that sought to address this issue,
among others, in a comprehensive manner.

METHODS

To achieve the research objectives, the research team started with an initial review of
relevant state roadway network inventory and crash databases, followed by an in-depth review of
pertinent crash reports and site characteristics. All analyses were performed using standard
statistical methods for estimating potential causal factors.

Literature Review

The literature on the latest developments with regard to RD crash characteristics and
potential countermeasures was identified. The Transportation Research International
Documentation (TRID) database was used to search the literature. The literature review helped
identify factors that are known to contribute to RD crashes and potential countermeasures to
reduce crash risk. The literature review also helped identify the common methods used to
analyze RD crashes, which provided insights for statistical modeling in later tasks.

A review of RD crash countermeasures was also conducted. The main sources for this
information were FHWA and AASHTO publications and the Crash Modification Factors
Clearinghouse (FHWA, 2019b). The objective was to identify low-cost treatments for reducing
RD crashes on rural roads.



Data Collection and Preparation

Based on the results of the literature review and input from the study’s technical review
panel and other VDOT staff, the research team identified the data needs and collected crash,
roadway, traffic, and other relevant data. All data were screened for quality assurance.
Anomalies and incomplete data were identified and removed. The primary sources of data were
COTEDORP and the Road Network System (RNS) database; VDOT’s iVision system (hereinafter
“iVision”) and SCRIM (the proprietary truck-based multifunctional roadway survey machine)
provided supplemental data. Structured Query Language (SQL) codes were developed to
retrieve and process data from COTEDOP, and four categories of data were collected: roadway
inventory data, roadway geometry data, traffic volume data, and crash data. iVision and SCRIM
were sources of road surface condition data, and they also provided some roadway geometry and
roadside data. Each data source is discussed in the following sections.

COTEDOP Roadway and Traffic Data

The scope of this study was limited to two-lane and multi-lane primary and secondary
rural highways. The COTEDOP database was first queried to generate an initial list of roadway
segments that satisfied this scope. These roadway segments were identified based on the
following fields and attributes of the database:

e Governmentcontrol = (1. State primary and interstate, 2. State secondary)

e Functionalclass = (2. Rural other principal arterial, 3. Rural minor arterial, 4. Rural
major collector, 5. Rural minor collector, 6. Rural collector)

e Facilitytype = (0. Two-way undivided, 1-3. Divided with no, partial, or full control of
access).

Each segment was defined by route name, start milepost, and end milepost. Roadway
geo-spatial, geometric, speed limit, and annual average daily traffic (AADT) data for the
identified segments were retrieved from the database for the years 2014-2018.

Lane width data were not directly available in COTEDOP; instead, lane widths were
calculated by dividing the surface width information by the number of lanes. Segments for
which the calculated lane widths were less than 8 ft or greater than 13 ft were excluded from this
study. In addition, short segments (less than 0.1 mile long) and those that had either no AADT
data available or very low AADT (less than 50 vehicles per day) were excluded from the study.
The final dataset consisted of 56,443 segments totaling 35,243 miles of roadway.

iVision Data

iVision is a web application for pavement and asset management. It provides
synchronized surface condition data, roadway geometry data, and road and pavement images.
Data can be easily exported using the interface shown in Figure 1. iVision data were recorded in

4



0.1-mile segments, but segments could be shorter if there is any change in geometry or pavement
type within 0.1 mile. GPS locations for the start and end points of each segment were recorded.

F Workspaces Cameras Tables Charts  Sync Year (2019 ~v | level 100 v | Locators Distance 0.022 v IM M ¢ » M M 8t R Export share o &

x | Row 2013

Figure 1. iVision System Interface

iVision data include more than 100 fields. The pavement condition variables collected
included the International Roughness Index (IRI) and the year of last rehabilitation. IRl is a
standard pavement roughness measure used worldwide, and it indicates ride quality of a vehicle.
iVision reported the IRI for both left and right wheel paths, and the average of the two was used
to represent the segment IRI in this study. The unit used in iVision is inches per mile.

iVision includes several shoulder condition variables that were not found in COTEDOP.
Shoulder condition assessments are generally subjective and made by raters following guidelines
specified by VDOT’s Maintenance Division (VDOT, 2012). Some of the variables contained in
the system are as follows:

e Shoulder type: curb, gravel, asphalt, concrete, paved combination (asphalt +
concrete), unpaved combination (gravel + turf), or none. Data are recorded for both
left and right shoulders.

e Shoulder length: total length of shoulder along a segment.

e Shoulder condition: the condition rating for shoulder materials (good, fair, poor).
The length of shoulder in each of the three conditions is provided. Data are recorded
for both left and right shoulders.

e Drop-off: the difference in elevation between the traveled surface and the shoulder.
Values greater than 3 in are considered high severity, and values between 1.5 and 3 in
are considered medium severity. The length of shoulders in each severity category is
recorded. Data for both right and left shoulders are available.
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o Deficient slope: a shoulder slope such that water does not drain away from the
roadway. The length of the shoulder with a deficient slope is recorded. Data for both
right and left shoulders are available.

e Build-up: vegetation growth or debris build-up that adversely affects drainage. The
length of shoulder with build-up is recorded. Data for both left and right shoulders
are available.

Geometric variables such as lane width, shoulder width, and number of lanes were also
collected from iVision. These variables were collected for mainly exploratory purposes. The
statistical analysis in this study used geometry data from COTEDOP, as it is the standard
database for all kinds of safety analyses for VDOT since the quality of iVision geometry data
had not yet been evaluated. The advantage of iVision data is that they are collected on shorter
segments than those identified in COTEDOP and therefore might better reflect local conditions.

iVision maintains data for only the past 4 years. iVision data for 2016-2019 were
available at the time of this study. The 2016 and 2017 data were for secondary roads only.
VDOT collects iVision data for 25% of secondary roads in the state every year, and iVision
keeps one set of statewide data for secondary roads in a 4-year period. Currently the 2016 data
cover statewide secondary roads. Although the year of data collection was recorded as “2016,”
75% of data were actually collected in previous years. This would affect the accuracy of
variables, such as the IRI, changing over time. Also, a data completeness check found that the
2016 data did not have data for all secondary roads in the state.

iVision data are directional, but data for lanes in both travel directions may not be
available at the same time. Also, the roadway segmentation in both travel directions can be
different because of different geometry or other factors (e.g., access points on one side of the
road). This makes it challenging to combine data for both travel directions.

SCRIM Data

SCRIM is a truck-based multifunctional roadway monitoring device (Figure 2) that can
simultaneously and continuously collect roadway surface condition and geometry data while
being driven in the speed range of 25 to 85 km/h (15 to 53 mph). SCRIM has been widely used
in European countries for nationwide road surveys. The FHWA first introduced SCRIM to the
United States in 2015 to help the states in pavement friction management (Virginia Tech
Transportation Institute [VTTI], 2015). VDOT started roadway surveys using SCRIM in 2018
through VTTI. These SCRIM surveys comprise a hew source of data for pavement skid
resistance, texture, and roadway alignment.



Figure 2. SCRIM. Instrumentation is housed in the truck.

SCRIM data were obtained from VTTI in late 2019. At that time, data were collected on
selected routes in four of VDOT’s nine districts; however, the majority of data were for interstate
highways. Non-interstate data were available for only a few road segments on US 29 in the
Lynchburg District; US 460 in the Salem District; and US 11, US 58, and US 460 in the Bristol
District. Like iVision data, SCRIM data are directional. The instrument collects data for one
direction in each run.

The roadway geometry data collected by SCRIM were horizontal curvature (1/m),
vertical gradient (%), and cross slope (%). GPS coordinates were included in the data. The
surface condition variables collected by SCRIM included the following:

e SCRIM reading (SR): an indicator of skid resistance
e Mean profile depth (MPD): an indicator of pavement macrotexture.

RAVCON (Figure 3) and SkidVid (Figure 4), the software from the SCRIM vendor, were
used for data processing. RAVCON converted the raw data into a text file, and then SkidVid
used the text file as input to visualize data and export data to a spreadsheet. The raw SCRIM
data were collected every 100 mm. Using SkidVid, SR, MPD, and geometry data were
aggregated by 10 m (33 ft).

The SR collected at different speeds are corrected to a standard speed of 50 km/h (30
mph) based on the Design Manual for Roads and Bridges, Volume 7, Section 3, Part 1 (HD
28/15) (Highways England, 2015). The conversion equation is shown in Equation 1:

SR(V) * (—0.0152 * v2 + 4.77 % v + 799
sR50 = SRV * ( o ) Eq. 1

where v is the testing speed, SR(V) is the SR at speed v, and SR50 is the values of SR(v)
corrected to 50 km/h (30 mph).
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SCRIM coefficient (SC) values can be calculated by Equation 2:

_ SR(50)

SR
10

X Index of SFC Eq. 2

where SC is SR adjusted after any relevant corrections for load, speed, and temperature; the
index of SFC (side friction coefficient) is 0.78 (Highways England, 2015).

After a data quality check and the removal of invalid data, a dataset was created for 43
centerline miles of US 29 in the Lynchburg District, 44 centerline miles of US 460 in the Salem
District, and 13 centerline miles of US 11 in the Bristol District. Data for US 58 and US 460 in
the Bristol District were removed because of incompleteness and errors. The common issues
found with the SCRIM data were as follows:

e Incomplete data: The number of records for each measure are very different. For
example, 125 records were available for alignment measures but more than 6,000
records were available for other measures on US 460 in the Bristol District.

e Invalid readings: Data are beyond the normal range for a variable. For example,
zeros for GPS readings or negative skid readings were identified as invalid readings.

Crash Data

To account properly for all the crashes to be considered in the study, the research team
used a technical definition of RD crashes established by VDOT in 2015 (Kweon and Lim, 2019).
SQL codes were developed to query the crash data subsystem of VDOT’s RNS (RNS_CRASH)
database according to the flow diagram in Figure 5. In general, the procedure identifies any
crash that involves at least one vehicle leaving the travel lanes as a RD crash unless the crash
occurred within 250 ft of an intersection. Crashes that involved pedestrians were excluded from
the analyses.

Detailed crash records for RD crashes from 2014-2018 were retrieved. The data were
combined with roadway and traffic data from COTEDOP to create a dataset for statistical
analysis. The crash records included unique identification, crash types, severity, harmful event,
geo-spatial information, route and milepost information, time and date, environmental variables,
etc.
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Development of Composite Dataset

This task combined RD crash data with COTEDOP, RNS, iVision, and SCRIM data to
create the primary and secondary datasets for this study.

Primary Dataset

The RD crashes from RNS and the roadway and traffic data from COTEDOP were linked
with unique route information and milepost. RNS and COTEDOP are both Oracle databases.
SQL codes were developed to merge the crash data with the roadway and traffic data. This
constituted the primary dataset for this study.

Secondary Dataset

RNS crash data were merged with iVision, SCRIM, and COTEDOP data to provide a
secondary dataset for this study. The purpose of this dataset was to explore the merits of
collecting and archiving data for other variables—with potential for explaining RD crashes—that
are not routinely collected or archived as part of current practice.

As SCRIM data were available for only a few sections on US 11, US 29, US 460, crash,
roadway geometry, and traffic data for these three routes were selected from the data processed
in the previous task. The iVision segment, with an average length of 0.1 miles, was selected as
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the analysis unit for exploratory analysis. Combining crash data with the other data was
challenging as there were no common data fields among those databases and data were stored in
different formats. Although iVision, RNS, and COTEDOP data all had route information, they
were coded in different formats. The geo-spatial information was the key to combining the data,
as shown in Figure 6. Python scripts were developed to create the secondary dataset following
three steps.

First, the route information was extracted from COTEDOP roadway data and converted
to the iVision route information format. The iVision and COTEDOP roadways were merged
based on route information and milepost. This process removed the iVision segments that did
not fit the scope of this study (rural two-lane and multi-lane highways) and added roadway and
traffic information for the iVision segments left.

Second, based on the SCRIM GPS data (aggregated at 10 m), iVision GPS, route, and
milepost information, the combined iVision data created from the previous step were merged
with SCRIM data.

Third, route, direction, and milepost information in crash data were converted to the
iVision format and then merged with combined data created from the second step.

iVision COTEDOP

S Roadway surface condition

Roadway geometry
Road images
Route info (route name, direction &
" milepost )
GPS

A

Roadway characteristics
Roadway inventory
Traffiic
Route info (route name & milepost )
Maps

Roadway surface condition

Roadway geometry
GPS

Crashes

Crashes severity
Weather, surface condition, etc.

Route info (route name & milepost )
Geo-spatial data

Figure 6. Data Structure for Secondary Dataset

Data Analysis

Standard and advanced statistical methods were used to examine correlations between
RD crashes and relevant roadway, roadside, and traffic characteristics. The data analysis
included principal component analysis (PCA) to reduce dimensionality of the data; descriptive
analysis of variables identified as potentially having the most influence on RD crashes;
multinomial logit regression to estimate crash severity; and negative binomial (NB) and zero-
inflated Poisson (ZIP) regression models to estimate crash frequency.
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The assembled data were split into nine groups depending on roadway type (two-lane,
undivided multi-lane, or divided multi-lane) and geographical region (Northern, Eastern, or
Western). The three regions and their crash locations are shown in Figure 7. Each region was
deemed to have common geometric and driver behavior characteristics (Garber and Rivera,
2010). The northern region was composed of primarily urban and suburban counties near
Washington, D.C. The western region consisted of primarily rural roads that often were located
in rolling or mountainous terrain; and the eastern region consisted of counties in the central and
eastern parts of the state that were primarily flat and had a mixture of urban and rural counties.
The specific districts and counties in each of the three regions can be found in Garber and Rivera
(2010).

The following sections describe the methodology and the characteristics related to the
PCA, NB, multinomial logit, and ZIP models used in this study.

Region

M Eastern Region
Northern Region

Ml Western Region

Figureﬂ7. Roadway Departure Crashes in the Three Analysis Regions

Factors Involved in RD Crashes

The primary dataset contained more than 100 variables with possibly complicated
correlation patterns. PCA was used to reduce the data to a smaller number of uncorrelated
summary variables (principal components) that retained as much of the information in the dataset
as possible. The variance accounted for (VAF) by each component (eigenvalue), as well as the
correlations between the variables and the principal components (loadings), were estimated using
SPSS software. A variable’s contribution to the total VAF is reflected in the sum of squared
loadings (communality) across all principal components (Linting and VVan der Kooij, 2012).
There is no clear consensus regarding a good VAF threshold. Linting and van der Kooij (2012)
cited Comrey’s 1973 advice regarding VAF: 10% is poor, 20% is fair, 30% is good, 40% is very
good, and 50% is excellent. Based on this rule of thumb, a minimum VAF criterion of 35% was
used in this study.
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It is worth noting that standard PCA is based on a matrix of correlations between
variables and generally requires interval data and assumptions of linearity between variables.
Several of the variables in the dataset used for this study were categorical and therefore not well-
suited for standard linear PCA. Therefore, categorical PCA (catPCA), a nonlinear alternative
that assigns numerical quantifications to the categories of each variable through optimal scaling,
was used (Gifi, 1990; Linting et al., 2007; Meulman et al., 2004). Unlike PCA, which requires
numeric variables, catPCA can simultaneously analyze numeric, ordinal, and nominal variables.
In situations where all variables are numeric and relationships are linear, catPCA provides the
same results as standard PCA.

Nine separate catPCAs were performed using data for each roadway type (two-lane,
undivided multi-lane, and divided multi-lane) and geographical region (northern, eastern,
western) combination. For each roadway type, variables that contributed substantially to the
solution across all three regions (VAF > 0.35) were selected for further consideration as these
variables were deemed the ones likely to have the most potential in explaining RD crashes.

Characteristics of Influencing Variables

Characteristics of variables identified through PCA as most likely to influence RD
crashes were explored. Crash data were divided into three groups based on severity: no injury
(property damage only or no indication of injury); minor injury (possible or non-incapacitating
injury); and severe injury (incapacitating or fatal injury). Statistical tests were conducted to
examine potential differences in how various factors might affect the severity of RD crashes.
For categorical variables, the chi-square contingency test was used. One-way analysis of
variance was used for a three-way comparison of means of continuous data. The Kruskal-Wallis
test was used for three-way comparison of ordinal data.

Factors Affecting Injury Severity

A multinomial logit model was then formulated with injury severity level as the
dependent variable. The explanatory variables used were informed by the literature and the
statistical analysis performed earlier. The same three injury severity levels (no injury, minor
injury, and severe injury) discussed in the previous section were considered.

To begin, the likelihood that a RD crash will result in injury severity level j was
expressed as the sum of a deterministic component and a random error component in accordance
with Equation 3:

where
U; = likelihood of crash severity level j
Xj = vector of measurable attributes of each crash severity level

S = vector of coefficients of X;
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&j = unobservable factors
S'X; = deterministic component.

The error term was assumed to follow an independent and identically distributed extreme value
distribution. The resulting probability of injury severity j, P; is then given by Equation 4:

eP'Xj

= Eq. 4
J J X
j=re?

where J is the total number of crash severity levels to be modeled.

Crash severity level j was considered to be predicted if the calculated value of the
severity likelihood function, and by extension the resulting probability, was a maximum among
the severity levels being modeled (Peng et al., 2012).

Model parameters were estimated using maximum likelihood methods, which are readily
available in many software packages. Emphasis was on identifying variables that may
significantly influence the severity of RD crashes, rather than the overall predictive capability of
the model. Several functional forms of the regression model (Eq. 3) were tested. Akaike’s
information criterion (AIC), a goodness-of-fit measure derived from the log-likelihood of the
fitted model, the number of predictors, and the number of levels of the dependent variable (crash
severity), was used as the primary criterion for comparing models. In comparing two models,
the one with the smaller AIC is generally preferable (Cafiso et al., 2010).

Factors Affecting Crash Frequency

An NB model was formulated to investigate further the relationship between RD crash
frequency and likely influencing variables derived from PCA. The Poisson and NB models are
the most common types of models used by safety analysts. The NB model is especially pertinent
to crash frequency variation, as crash data are often overdispersed, with sample variance
exceeding the sample mean.

The general form of the model adopted for this study is given in Equation 5:
E(Y) = e%-n-L-ADT% - eZi=1biX Eq.5
where

E(Y) = expected RD crash frequency per year

L = length of segment under consideration (mi)

ADT = average daily traffic on the segment (veh/day)
n = years of crash data

Xj = any of m additional variables

ao, o1, fj = model coefficients.
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The form of the model specified in Equation 5 is widely accepted partly because it is
intuitively appealing; in particular, it logically estimates zero crashes if one of the two exposure
variables (ADT or L) equals zero (Cafiso et al., 2010; Peng et al., 2012). As with the
multinomial logit model discussed earlier, AIC was used as the primary criterion for comparing
competing models, with preference given to models with low AIC values.

Separate models of crash frequency and severity were developed for the three roadway
types (two-lane, multi-lane divided, and multi-lane undivided). For each roadway type, three
segment location—based subgroups of data were considered for modeling: northern, eastern, and
western regions.

A likelihood ratio test was conducted to help assess the need (or otherwise) for a separate
model for each subgroup or region (Behnood and Mannering, 2017). The null hypothesis was
that parameter estimates were similar between the different subgroups of data. The test statistic
was calculated from the log-likelihoods at convergence of models estimated using statewide data
and region-specific data as given in Equation 6:

3
X =2 <LL(/>’) -> LL(&)) Eq. 6
k=1

where

LL(S) = log-likelihood of model estimated with statewide data
LL(S) = log-likelihood of model estimated with data from region k (k = 1, 2, 3).

The test statistic shown in Equation 6 is chi-square distributed with degrees of freedom
equal to the difference between the total number of parameters estimated in the three subgroup
models and the number of parameters estimated in the model using data from all regions. The
null hypothesis is rejected (and separate models deemed statistically warranted) if the right-tail
probability of the calculated test statistic was less than a pre-specified significance level (e.g.,
5%).

Impacts of Roadway Geometry and Pavement Condition

The ZIP model is an alternative to the Poisson and NB models for modeling crash count
data. It is suitable for count data that have a much larger than expected number of zeros than
assumed by the Poisson model (Hu et al., 2011). This model was considered because the
proportion of segments with zero RD crashes in the secondary dataset was approximately 74%.
The ZIP model considers the possibility of a two-state process; one a near safe zero-crash state,
and the other a normal count process (Poisson) with non-negative integers. The model
specification is shown in Equations 7 and 8:

E(Y)=(1- (p)ezfﬂﬁj’fj Eq. 7
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where

ezlk{=1 yka
= Eq. 8
1 + eZ’;f:ﬂ/ka
pB; = coefficient for count model covariate j (j = 1...., J)
X; = count model covariate j
pB; = coefficient for zero-inflation model covariate k (k = 1,..., K)

Z, = zero-inflation model covariate k.

RESULTS AND DISCUSSION
Literature Review

Understanding the impact of factors related to rural RD crashes in Virginia is very
important for VDOT to implement countermeasures to reduce crash risk; however, because of
the complexity of RD crashes, it is challenging to identify factors related to RD crashes and
quantify their impacts on crash frequency and severity. The studies in the literature analyzed
various categories of factors such as roadway geometry, traffic characteristics, environmental
conditions, pavement surface condition, driver behavior, and human factors (Al-Bdairi and
Hernandez, 2017; Bahar, 2008; Eustace et al., 2016; Turochy and Ozelim, 2016). Mixed logit
models, nested logit models, multinomial logit models, and NB models are the most used models
to examine RD crash severity and frequency (Al-Bdairi et al., 2018; Gong and Fan, 2017; Intini
et al., 2019; Jurewicz and Ahmed, 2018).

RD Crash Influencing Factors

Well-studied RD crash influencing factors include roadway horizontal curves,
lighting/environmental conditions, and human factors such as fatigue and alcohol/drug use.
Horizontal curves are well recognized as an important factor for RD crashes on rural roads. An
FHWA (2016) study found that approximately three-fourths of curve-related fatal crashes
involved single vehicles leaving the travel way and striking fixed objects or overturning. Al-
Bdairi et al. (2018) used multinomial logit models, nested logit models, and mixed logit models
to analyze RD crash severity involving large trucks and found that driver, traffic flow, roadway
geometric features, land use, and time characteristics were the contributing factors to the severity
level of these crashes. The study also found a significant difference between lighted and dark
conditions and that the level of severity outcomes was highly influenced by “several complex
interactions between factors.” Cicchino and Zuby (2017) aimed to “quantify the proportion of
drivers involved in unintentional lane drift crashes who would be unable to regain control of
their vehicles to inform the design of such systems.” The results showed that 34% of drivers
who crashed because they drifted from their lane were sleeping or incapacitated and 13% of
these drivers had a medical issue, a blood alcohol concentration over the legal limit, or another
factor that compromised vehicle control. Also, when crashes involved serious/fatal injuries, 42%
of drivers who drifted were sleeping or otherwise incapacitated. Eustace et al. (2016) studied
fatal and injury RD crashes in Ohio using 5 years of data. The results showed that the following
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were factors in increasing the severity or likelihood of run-off-road crashes: alcohol and drug
use, curves/grades, female victims, overturn/rollover crashes, and run-off-road crashes on dry
roadway surfaces. Further, buses, trucks, and emergency vehicles that crashed on roads with a
posted speed limit higher than 40 mph increased the probability of severity.

Jalayer et al. (2016) found inattention/fatigue, avoiding something, and driving too fast
were common reasons for a driver to leave a travel lane. Roadway and roadside geometric
design features play a significant role in whether or not human error results in a crash. Gong and
Fan (2017) studied rural RD crashes using a mixed logit model. The likelihood ratio tests
indicated that developing separate injury severity models for each age group was statistically
superior to estimating a single model using all data. The estimation results showed that the main
contributing factor for injury severity varied over different age groups. Inexperience, drug or
alcohol involvement, use of a restraint device, and horizontal curves were found to affect the
likelihood of crash injuries and fatalities in all age groups. Reckless driving, speeding,
distraction, being accompanied by others, and driving an SUV/van had a stronger influence on
crash severity for younger/middle-aged drivers than for older drivers. Truck drivers were less
likely to have injuries in a large-sized vehicle than drivers in smaller vehicles. Driving on a
roadway segment with a lower AADT decreased the likelihood of fatal injury for young drivers.
Bahar (2008) found that RD crashes mostly occurred on two-lane local highways and were
overrepresented on horizontal curves. Alcohol, fatigue, distraction, and speed were contributing
factors. Wang and Wang (2019) studied lane departure behavior using a simulator study. The
results showed that there were significant differences between lane departure behavior in the
direction of centrifugal force and lane departure behavior against the direction of centrifugal
force. Radius, superelevation, and circular curve length of combined curves were significant
variables affecting lane departure. Also, the significant effects of geometric design
characteristics on lane departure differed by type of combined curve.

Intini et al. (2019) analyzed data taken from run-off-road single-vehicle crashes at rural
two-lane road curves in Norway. Logistic regression models were used, and their study found
that driver familiarity was a factor associated with dangerous driving behavior such as speeding.
Crashes involving unfamiliar drivers were associated with unexpected curves and a combination
of horizontal and vertical road curvature. Jurewicz and Ahmed (2018) used Poisson regression
modeling to estimate run-off-road crash frequency. The results showed that narrower hazard
offsets increased the likelihood of run-off-road casualty crashes. Tight road curvature was a
strong and consistent predictor of run-off-road casualty crashes. Freeman et al. (2016) found that
RD crashes were often the result of poor driver performance leading up to the crash. Turochy
and Ozelim (2016) studied the effects of pavement widening, rumble strips, and rumble stripes
on rural highways in Alabama and found that crash modification factors (CMFs) for two-lane
roads for the combined effect of paved shoulder and shoulder rumble strips and stripes were 0.79
and 0.82 (reduction in RD crashes of 21% and 18%). Further, CMFs for the combined effect
could be as low as 0.7 or as high as 0.81 within the confidence interval. Kuehn et al. (2015)
analyzed unintentional car RD crashes and found lane departure to the left happened more often
than lane departure to the right. This study also found driver health risks/issues were twice as
prevalent as driver distractions. The authors believed lane assist technology was a very
important technology for reducing RD crashes.
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Pavement friction was found to be linked to RD crashes, as an appropriate level of
pavement friction is critical to ensure a vehicle remains in its lane (FHWA, 2019a; Najafi et al.,
2015). Skid resistance significantly affects the safety of driving on pavements, especially in wet
surface conditions (Mataei et al., 2016). SCRIM road surveys are widely used in European
countries to measure skid resistance and identify sites for safety investigation; however, safety
analyses using combined SCRIM, roadway, and traffic characteristic data are still limited in the
literature. One study conducted in New Zealand found that curvature and skid resistance had
strong effects on crashes, but pavement roughness had weaker effects (Cenek and Davies, 2004).
But that study used simple analysis methods that could create substantial error for sites with
fewer than 25 crashes. It is challenging to quantify the impact of skid resistance on crash risk
because the crash event is complicated and involves many factors and the level of skid resistance
may vary by vehicle, even at the same location. Studies from Australia found that changing the
level of skid resistance can influence crash frequency and severity of wet weather skidding
crashes and that the influence of skid resistance as a crash influencing factor decreased as the
skid resistance increased (VicRoads, 2018).

Countermeasures

To reduce RD crashes, providing an opportunity to re-enter the travel way safely is a
priority (Donnell et al., 2019). Therefore, shoulder, safe pavement edges, and clear zones are
recommended as effective countermeasures; countermeasures that keep a vehicle on the travel
way and those that reduce crash severity are also recommended (Albin et al., 2016).

AASHTO’s Highway Safety Manual (HSM) (2010), hereinafter “HSM 2010,” provides
the following CMFS for RD crash countermeasures:

e Widening lanes on rural two-lane roads and rural multi-lane highways reduces single-
vehicle run-off-road crashes and multiple-vehicle head-on, opposite-direction
sideswipe, and same-direction sideswipe collisions. The CMFs are presented in
Tables 13-2, 13-3, and 13-4 of HSM 2010.

e Widening paved shoulders on rural two-lane roads reduces single-vehicle run-off-
road crashes and multi-vehicle head-on, opposite-direction sideswipe, and same-
direction sideswipe collisions. The CMFs are provided in Table 13-7 of HSM 2010.

e Modifying shoulder types (paved, gravel, composite, turf) can affect single-vehicle
run-off-road crashes on rural two-lane roads. The CMFs are provided in Table 13-9
of HSM 2010.

e Changing barriers along embankments to less rigid types can reduce fatal and injury
run-off-road crashes on rural two-lane roads, rural multi-lane highways, freeways,
expressways, and urban/suburban arterials. The CMFs are provided in Table 13-22 of
HSM 2020.
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e Installing continuous milled-in shoulder rumble strips on rural multi-lane divided
highways with an AADT of 2,000 to 50,000 and rural freeways can reduce single-
vehicle run-off-road crashes. The CMFs are provided in Tables 13-44 and 13-45 of
HSM 2010.

e Increasing the clear roadside recovery distance appears to reduce run-off-road
crashes, but the effect is uncertain.

e For rural two-lane roads, rural multi-lane highways, freeways, expressways, and
urban and suburban arterials, installing roadside barriers along embankments appears
to reduce the number of fatal and injury run-off-road crashes and the number of run-
off-road crashes of all severities. However, the magnitude of the crash effect is not
certain at this time.

A review of the CMF Clearinghouse was conducted to identify countermeasures for RD
crashes on rural two-lane and multi-lane highways. The CMF Clearinghouse had more than
1,000 CMFs related to RD crashes, and only those studies specified for RD crashes on rural non-
interstate highways and with a quality rating of 4 or 5 stars were reviewed. The results are given
in Table 1. The CMFs applicable for “all types” of crashes were excluded to focus on RD
crashes only.

The installation of centerline rumble strips and shoulder rumble strips can reduce run-off-
road crashes; however, for some countermeasures, such as clear zone width and roadside
barriers, CMFs are available, but the studies might lack reliability and applicability (ranked low
in the CMF Clearinghouse).

CMFs of 0.58 for run-off-road crashes and 0.60 for all crashes were reported with regard
to installing a combination of chevron signs, curve warning signs, and/or sequential flashing
beacons. These values applied to principal arterials other than freeways and expressways, and
the study area was not specified.

For roadside treatments, CMFs for roadside barriers were found in the CMF
Clearinghouse, but these studies were for freeways and expressways only. For pavement friction
improvements, the CMFs for RD crashes were 0.306 to 1.566 for all road functional classes.

The CMF Clearinghouse included CMFs for countermeasures that typically comprised a

physical change to the infrastructure. Other types of countermeasures such as policy changes
and education efforts were not included.
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Table 1. Crash Modification Factors (CMFs) for Roadway Departure Crash Countermeasures? P

Crash
Category Countermeasure CMF Crash Type Severity CMF ID
Alignment | Flatten horizontal curve 0.216 Fixed-object, run-off-road | All 9652
Roadway Widen narrow pavement 0.643 Run-off-road All 6863
Install centerline and shoulder 0.6 t0 0.92 Run-off-road All 6852, 6939,
rumble strips 6948, 6970,
6973, 6974
Install edge line rumble strips at 0.71t0 0.78 Run-off-road All 9832, 9837,
horizontal curve 9839
Install edge line rumble strips on 0.34 t0 0.57 Run-off-road K, A B, C | 3404, 3408
roadways with a shoulder width of
5 ft or greater
Shoulder Install a combination of shoulder 0 Head-on, run-off-road (0] 9007
treatments rumble strips, shoulder widening 0 Head-on, run-off-road A B, C, 0 | 9010, 9012
(from O to 2 ft), and resurface 0to0 0.877 Head-on, run-off-road All 9013, 9100
pavement 0.732 Head-on, run-off-road B,C 9093
0.743 Head-on, run-off-road A BC 9096
0.729 Head-on, run-off-road K,A B, C | 9098
Install alternative audible lane 0.79 Head-on, run-off-road All 9685
departure warning treatments
Install safety edge treatment 0.64 to 1, 0.79¢ | Run-off-road All (Total of 36
CMFs)
0.769t0 1.036 | Run-off-road K, A, B, C | 4358, 4362,
4364
0.84 t0 0.926 Run-off-road (0] 4375, 4379,
4380, 4381,
8663
Install shoulder rumble strips 0.84,¢0.87 Run-off-road All 3442, 1195
0.83¢ Run-off-road K, A B,C | 3447
Install shoulder rumble strips and 0.541 Run-off-road All 6667
widen shoulder
Install shoulder rumble strips on 0.46 Run-off-road K, A B,C | 3627
roadways with a shoulder width
equal to 5 ft
Pave shoulder 0.82 t0 0.98 Fixed-object, head-on, A B, C 6690, 6744
run-off-road, sideswipe
0.75t0 1.04 Fixed-object, head-on, (0] 6691, 6745
run-off-road, sideswipe
Widen shoulder 0.556 Run-off-road, single- K,A B, C | 6658
vehicle
0.607 Run-off-road, single- All 6659
vehicle
Delineation | Install profiled thermoplastic 0.941t0 1.061 Run-off-road All 9800, 9806,
pavement markings 9813
Sign Install oversized chevron signs 1.061 Run-off-road All 8979

@ This table does not include the CMFs for interstates, freeways, and expressways; the CMFs with no specified
roadway type are included.
®The study area type is either rural or not specified.
¢VDOT-preferred CMFs.

VDOT (n.d.) published the Virginia State Preferred CMF List that contains CMFs with
high-quality ratings relevant to Virginia. The Virginia State Preferred CMFs specified for run-
off-road crashes are included in Table 1. A CMF of 0.79 for all run-off-road crash severities is
recommended for adding Safety Edge on rural two-lane undivided highways; the CMF for
adding shoulder rumble strips on rural non-freeway segments is 0.84 for property damage only
run-off-road crashes and 0.83 for fatal and injury run-off-road crashes.
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FHWA’s Strategic Approach and Plan for RD crashes includes strategies in three areas:
keep vehicles on the roadway, provide for safety recovery, and reduce crash severity (FHWA,
2020). Table 2 provides a list of recommended countermeasures in each area.

The effectiveness of countermeasures in each strategic area has been proven in previous
studies. High friction surface treatments were found to reduce total crashes by 24% and wet
surface crashes by 52% (FHWA, 2019a). Shoulder rumble strips were proven to reduce single-
vehicle run-off-road crashes by about 15% and single-vehicle run-off-road fatal and injury
crashes by 