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ABSTRACT 
 
The ability to inspect reasonably and ensure the durability of hybrid composite beams 

(HCBs) is of concern to transportation agencies.  In case of infiltration of chloride-laden water 
through the fiber-reinforced polymer (FRP) shell of an HCB, tension reinforcement strands in the 
bottom flange will be subject to corrosion, thus severely affecting the service life of the beams.  
Test specimens from HCBs, which were load tested to failure at Virginia Tech for a 2012 study, 
and specimens manufactured for testing by HCB, Inc., were used in this study.  A selected 
number of specimens were subjected to accelerated exposure in the laboratory by exposure to 
ultraviolet radiation and condensation cycles.  In addition, to compare the influence of actual 
field exposure, specimens were placed in two selected field locations with different exposure 
conditions.  All specimens were characterized before and, periodically, during the exposure 
using nondestructive and destructive methods to understand the change over time.  The 
specimens were photographed periodically during the study to identify any progress of 
deterioration. 

 
Ground penetrating radar was found to be reliable in detecting moisture in the interior of 

HCBs.  Fourier transform infrared spectroscopy was used to understand the changes in the 
chemical structure of the exposed specimens.  Spectrocolorimetry was used to understand the 
natural changes in the surface conditions of the FRP shell as the exposure duration progressed.  
The literature review provided extensive information on the aging behavior of the FRP shell 
specimens.   

 
The greatest degree of damage was found at the field exposure site with the highest 

recorded UV index values.  Based on the preliminary results, HCB specimens with no 
preexisting blemishes have exhibited only minor degradation in the course of laboratory and 
field exposures.  The specimens with preexisting damages such as delaminations, scratches, and 
other blemishes have degraded more rapidly than have the sound specimens.  None of the beam 
components exhibited complete failure after 1 year and 8 months of outdoor atmospheric 
exposure.   

 
Scanning electron microscopy and X-ray computed tomography provided excellent 

visualization of the surface and the volume, respectively, of the FRP material to demonstrate the 
fiber layout.  Tensile testing of the FRP specimens indicated the importance of the fiber content 
in the FRP specimens.  Resin degradation because of natural ultraviolet and freeze-thaw 
degradation and accidental damages because of flooding events should be repaired to protect the 
load-carrying fiber content.  At this stage, regarding findings related to durability, the Virginia 
Department of Transportation should pause further use of HCBs, since there are still many 
unknowns about the late-stage deterioration mechanism of FRP, and also because neither visual 
nor nondestructive methods can fully assess the condition of the beams at this time.  Further 
environmental exposure is recommended for a reliable sense of HCB durability. 
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INTRODUCTION 
 
In 2015, the U.S. Department of Transportation (2015) reported that an estimated annual 

average funding of $89.9 billion was needed to maintain the conditions and performance of the 
nationwide transportation infrastructure.  The funding needed to improve conditions and 
performance was estimated at $142.5 billion annually.  In Virginia, according to the Virginia 
Department of Transportation (VDOT) Dashboard in 2009, 7% of bridges and culverts were 
structurally deficient (VDOT, 2009).  With the number of structures needing major rehabilitation 
and replacement increasing along with the associated costs, it makes sense to think in terms of 
the overall life cycle of structures rather than the initial investment alone.  Cheaper construction 
materials that are vulnerable to corrosion and other forms of deterioration will require significant 
funds for maintenance in the long term.  In addition, construction materials and systems that are 
conducive to faster construction can reduce the user costs involved in traffic control during 
construction and maintenance activities. 

 
Hybrid composite beams (HCBs) may be a viable alternative to some currently used 

precast bridge superstructures.  The HCB, originally designed by Hillman, is an innovative 
design consisting of three components (Hillman, 2003; Hillman, 2008).  The compression stress-
bearing component is the internal concrete arch, which runs from end to end on the beam.  The 
tension-reinforcing component consists of metallic or nonmetallic ropes that tie the legs of the 
concrete arch.  The outermost component is a fiber-reinforced polymer (FRP) shell, which 
encapsulates the innards and prevents moisture and salt from infiltrating.  The shell is made up of 
vinyl ester resin reinforced by glass fibers oriented to resist appropriate forces (Hillman, 2003).  
This resin matrix was selected mainly based on the selection of glass fibers and the intended 
fabrication process.  The spaces inside the FRP shell outside the arch are filled with a rigid foam 
material.   

 
The main advantage of an HCB is the FRP outer shell, which protects the concrete and 

reinforcement from exposure to harmful chemicals.  Placement of concrete into the arch can be 
performed either in the casting yard before transportation or after installation at the site of the 
bridge.  In the latter case, the lightness of the unfilled shell may be an added advantage for 
transport and erection.  Even after the arch is filled with concrete, the weight of an HCB is one-
fifth that of a steel beam and one-tenth that of a precast prestressed concrete beam designed for 
the same span length (Hillman, 2003). 
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PURPOSE AND SCOPE 
 
The purpose of this study was to determine the general durability of HCBs and the factors 

affecting them using advanced material evaluation techniques such as Fourier transform infrared 
spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray computed tomography 
(XCT).  The study plan was to document the incidence of deterioration of the fiberglass shell and 
the effects on the durability of strands.  In addition, since HCBs are more difficult to inspect, 
appropriate nondestructive techniques were evaluated for effectiveness.   

 
The scope of the study was accelerated laboratory exposure and field exposure of the 

FRP shell material and evaluation of the factors affecting its durability.  All specimens were to 
be characterized before exposure and, periodically, during the exposure using nondestructive and 
destructive methods to quantify the damage over time.   

 
 

METHODS 
 
The study included the following tasks: 
 

1. Compile information from the literature regarding the performance of the materials 
used in the manufacture of HCBs. 
 

2. Conduct accelerated exposure using ultraviolet (UV) exposure in the laboratory and 
monitor the condition of the FRP specimens periodically. 

 
3. Conduct field exposure of the FRP specimens in different environments and monitor 

the condition of the specimens periodically. 
 

4. Evaluate the specimens at the end of the laboratory and field exposures using 
destructive tensile strength testing and nondestructive techniques to understand the 
level of deterioration. 

 
 

Task 1: Literature Review 
 

A literature review was conducted using library resources and Google Scholar searches.  
The keywords used for the searches were vinyl eater resin, glass fibers, UV degradation, 
durability of vinyl ester, weathering, accelerated aging, and scanning electron microscope. 

 
 

Task 2: Laboratory Accelerated Exposure 
 
Both laboratory and field exposures of HCB specimens were conducted, since the 

correlation between the results of laboratory accelerated aging and the actual field performance 
of composites remains debatable.   
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Specimens for exposure testing were fashioned from the bottom flange of HCBs after the 
beams were load tested to failure at Virginia Tech as a part of a study by Ahsan (2012).  One of 
the bottom flanges used in the study is shown in Figure 1. 

 
Four types of specimens were prepared for various testing necessities, as described in 

Table 1.  FRP, FRP with exposed steel strands, and foam were shaped from an HCB.   
 
The FRP specimens were aged in the laboratory with UV radiation and condensation.  

Accelerated UV exposure was conducted using a QUV accelerated weathering tester (Figure 2) 
in accordance with ASTM D4587 (ASTM International [ASTM], 2011).  Cycle 4, as prescribed 
in the standard, was used.  Cycle 4 consists of a 0.89 W/m2.nm UV radiation intensity at a 340 
nm wavelength for 8 hr at 60 °C followed by 4 hr of condensation at 50 °C.   

 
The space within the QUV accelerated weathering machine allowed 28 FRP specimens 

and 4 thin foam specimens with dimensions of 5 x 4 in.  The laboratory UV exposure was 
interrupted at 920 hr and 2000 hr for colorimetry, FTIR, and digital imaging. 

 

 
Figure 1.  Hybrid Composite Beam: (a) bottom flange; b) side view of bottom flange.  HCB = hybrid 
composite beam; FRP = fiber-reinforced polymer.   
 



4 
 

 
Figure 2.  Accelerated Weathering Machine 

 
FTIR 
 

FTIR is a near-surface evaluation technique that shines waves with a wide range of 
frequencies in the infrared spectrum on the target material and measures the reflected or emitted 
frequencies.  The information is converted into a spectrum using the Fourier transform.  
Advantages of this system include a broad scan of a wide spectrum and near-instant 
measurements.  However, the presence of impurities can easily add noise to the readings.   

 
This method involves simple data collection followed by an advanced data analysis and 

then an even more advanced data interpretation.  This method will not work as a routine 
inspection technique, considering the expense of the equipment and expertise needed in addition 
to the aforementioned reasons.  This method was used as a research tool only for an in-depth 
understanding of the change in the material property when exposed to different weathering 
factors.  A handheld Agilent 4100 ExoScan Series FTIR was used in this study, as shown in 
Figure 3. 
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Figure 3.  Fourier Transform Infrared Spectroscopy Equipment 

 
Colorimetry 

 
One of the objectives of this study was to find a simpler but reliable way to inspect the 

condition of the FRP material.  Thus, considering the nature of the degradation of the FRP 
composite materials that involves chemical changes, which changes the color of the material 
over time, a careful visual inspection could work.  In order to quantify the color change without 
the subjectivity of human factors, several methods were considered.  Finally, colorimetry was 
selected based on the simplicity of the data collection and interpretation and the cost of the 
equipment. 

 
Colorimetry is the quantification of human color perception.  The spectrum is thus 

limited to the visual electromagnetic wavelength range of 400 to 700 nm.  The color system used 
was the International Commission on Illumination’s (or Commission Internationale de 
l’Eclairage) CIE L*a*b* and CIE L*C*h° color spaces.   

 
CIE L*a*b* uses Cartesian or rectangular coordinates (Schwiegerling, 2004):  
 
• L* is the vertical axis, and a* and b* are in the perpendicular plane, perpendicular to 

each other.  L* stands for lightness, which runs from 0 to 100, where 0 represents the 
darkest black and 100 represents the brightest white.   
 

• a* stands for the color between green and red, where green is represented by negative 
numbers and red is represented by positive numbers.   
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• b* stands for the color between blue and yellow, where blue is represented by 
negative numbers and yellow is represented by positive numbers.  True neutral gray 
values are represented by a* = b* = 0.   

 
CIE L*C*h° uses cylindrical coordinates:  
 
• L* is the vertical axis, the same as in the L*a*b* color space.   

 
• C* stands for Chroma or saturation, which is the distance from the L* axis in the 

perpendicular plane.  Chroma is a positive number that starts with 0, where 0 stands 
for neutral or unsaturated gray and 100 stands for high saturation or color purity.   

 
• h° stands for hue, which represents the circumference of the cylinder with fully 

saturated colors at the edge of the circle; hue angle is 0° at red, 90° at yellow, 180° at 
green, and 270° at blue.   

 
For consistency, the measurements were made at D65 illumination, which is an 

international lighting standard.  D65 represents a standard daylight condition at 6504 K color 
temperature.  In addition, the field of vision was taken to be 10°, which represents the standard 
human field of view.  An X-Rite RM200QC Imaging Spectrocolorimeter was used in this study.  
Figure 4 shows the spectrocolorimeter.   

 

 
Figure 4.  Spectrocolorimeter 

 
 

Task 3: Field Exposure 
 
Two field exposure sites were selected in Virginia to understand the natural weathering 

process of this material.  The sites were in Hampton Roads and Harrisonburg, shown in Figure 5, 
where Hampton Roads represents severe coastal conditions, and Harrisonburg represents a mild 
exposure rural environment. 
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Figure 5.  Field Exposure Sites 

 
FRP with protected steel specimens was manufactured by HCB, Inc., for this study.  

Table 1 shows the number of specimens that were placed at the two exposure sites, and the mid-
preparation of the specimens is shown in Figure 6.   

 
Table 1.  Test Materials Evaluated During This Study 

 
 
 

Material 

 
 
 

Description 

No. of Specimens 
Placed at Hampton 

Roads Exposure 
Site 

No.  of Specimens 
Placed at 

Harrisonburg 
Exposure Site 

FRP FRP without strand or foam 12 12 
FRP with exposed steel FRP with strand end exposed 4 4 
FRP with protected steel FRP with strand fully encapsulated 5 5 
Foam Foam directly exposed 3 3 

    FRP = fiber-reinforced polymer. 
 

 
Figure 6.  Hybrid Composite Beam Specimens Under Preparation 
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The Harrisonburg and Hampton Roads exposure panels are shown in Figures 7 and 8, 
respectively. 

 

 
Figure 7.  Harrisonburg Exposure Site 

 

 
Figure 8.  Hampton Roads Exposure Site 
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Weather stations were placed at the Harrisonburg and Hampton Roads sites to gather 
weather data.  These stations were placed near the specimens to collect temperature, humidity, 
precipitation, solar radiation, and UV index data.  A wind vane was mounted at 7 ft and a rain 
cone was mounted at 5 ft above the ground.  The resolution and accuracy of each sensor are 
provided in Table 2. 

 
Table 2.  Sensor Resolution and Accuracy 

Weather Data Element Data Resolution Accuracy of Measurement 
Temperature 0.1 °F 1 °F 
Humidity 1% 3% relative humidity, 4% above 90% 
Precipitation 0.01 in Greater than 4% 
Solar radiation 1 W/m2 5% of full scale 
Ultraviolet (UV) index 0.1 5% 

                       Source: Davis Instruments, 2014. 
 
Visual Assessment 

 
Routinely, the exposed specimens were visually evaluated for damage.  This was 

performed by comparing the specimens to earlier images and comparing different specimen 
locations (top vs. bottom, directly exposed area vs. area under a hold-down, etc.).  Images were 
captured at different times to aid in determining if the sample conditions had changed. 

 
Ground Penetrating Radar (GPR) 

 
GPR works by sending an electromagnetic pulse into the target object and by receiving 

the reflected waves to characterize the contents of the object.  Materials with different dielectric 
constants can be differentiated.  Theoretically, any moisture in the HCB interior could be 
detected by GPR, since the dielectric constant for water is about 81 and for polyurethane and 
vinyl ester is approximately 3.0.  Therefore, GPR was used to identify the presence of moisture 
within the FRP shell in a laboratory experiment.  The inner foam surface of the bottom flange 
was applied with moisture at selected spots, and GPR was used to scan from the outer FRP shell 
surface to check for moisture detection.   A GSSI StructureScan Mini XT device (Figure 9) was 
used for data collection, and GSSI’s RADAN 7.0 software was used for data analysis. 

 

 
Figure 9.  Ground Penetrating Radar Device 



10 
 

Task 4: Evaluation of Deterioration 
 
The deterioration of the HCB samples aged by accelerated laboratory exposure and 

environmental exposure was analyzed using SEM and XCT.  These results were compared with 
values from tensile testing to failure. 
 
 

RESULTS AND DISCUSSION 
 

Task 1: Literature Review 
 
One of the concerns with HCBs is the lack of a clear understanding of their structural 

behavior.  Relatively few studies have attempted to explain the mechanism of load transfer and 
distribution in HCBs because of the novelty of this system (Aboelseoud and Myers, 2015; 
Ahsan, 2012; Harris and Civitillo, 2017; Van Nosdall et al., 2013). 

 
Ahsan (2012) noted that most of the HCB components showed linear-elastic behavior 

under service level loads.  However, in one of the trials, nonlinearity and small residual 
deflections were observed.  Ahsan (2012) also observed that the concrete arch acted separately 
from the overall HCB behavior and was susceptible to local effects from loading.  Local bending 
occurred in the arch, resulting in strains in excess of the cracking limit of concrete.  This study 
also found that correction for skew was not included in the original Hillman model and that the 
model did not predict the behavior of the arch (Ahsan, 2012).   

 
Van Nosdall et al. (2013) determined that the flexural rigidity of the tied arch component 

was about 80% that of the entire beam.  On a related note, during noncomposite testing, the tied 
arch system carried 80% of the load and the FRP shell carried about 20% of the load.  The study 
confirmed that the transformed area method was useful for the FRP shell and tension ties but did 
not work well for the arch.  However, for the composite condition, the concrete arch was found 
to make a minimal contribution to the HCB stiffness and strength because the majority of the 
arch was below the neutral axis.  The arch also cracked under the maximum live load.  At this 
condition, the FRP shell and tension strands carried about 80% of the applied load and the deck 
carried most of the remaining loads (Van Nosdall et al., 2013). 

 
A study by Aboelseound and Myers (2015) involved finite element modeling of HCB 

bridges.  The studied concluded that the transformed area method was significantly conservative 
in predicting the deflection of HCBs.  The numerical simulation predicted that the maximum 
deflection caused by the AASHTO notional loads was approximately 17% of the permissible live 
load deflection.  The finite element model predicted lower stresses carried by the FRP shell 
under service loads, which could allow the FRP shell to have a high durability and thus could 
increase the service life of HCBs. 

 
A field instrumentation of an HCB bridge in Virginia by Harris and Civitillo (2017) 

confirmed the location of the neutral axis above or near the top of the concrete arch once the 
beams became composite with the deck.   
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Durability 
 
Another concern is that the durability of the entire HCB system depends on the outer 

shell.  If the shell degrades because of environmental exposure, such as to salt spray or UV rays, 
or if the shell is damaged, such as by vehicle collision, then the integrity of the beam may be 
compromised.  Thus, the durability of the outer shell needs to be studied.  In addition, the 
success with which the outer shell can resist the penetration of moisture also needs to be studied.  
If moisture or contaminants can diffuse through the shell, even at a slow rate, the embedded 
tension reinforcement may start to corrode.  The filler foam, being a closed cell polymer 
material, will not hold moisture; however, the moisture can stagnate in the bottom and increase 
the probability of corrosion.  In addition, the moisture could collect between the shell and the 
foam or the concrete and the foam. 

 
As per the study by Van Nosdall et al. (2013), in a composite design condition when the 

beams are in service, the FRP shell and tension strands carry about 80% of the loads.  This 
highlights the significant role the FRP shell plays regarding the integrity of the HCB, beyond 
serving as a water-resistant box.  This led the authors to concentrate on the durability of the FRP 
shell. 
 
Vinyl Ester Resin 

 
Vinyl ester resin is an organic thermosetting resin, used in FRP-matrix composite 

materials.  Vinyl ester resin, although more expensive than polyester resin for similar purposes, 
has considerable commercial interest in boat manufacturing because of the higher resistance to 
degradation by corrosive and hostile environments (Telang et al., 2006, Visco et al., 2012).   

 
Visco et al. (2012) tested the influence of exposure to seawater on the mechanical 

properties of various resin materials.  Vinyl ester resin showed the highest resistance to the 
seawater degradation after accelerated aging tests of undercured matrices, which was verified 
using various evaluation methods such as calorimetric analysis, FTIR, SEM, contact angle 
measurement using the sessile drop technique, density measurements, Vickers hardness, and Izod 
resilience.  The degradation of vinyl ester resin occurred mainly by surface hydrolysis, where the 
water was observed to detach surface layers of material rather than penetrate or diffuse into the 
matrix network. 

 
Signor et al. (2003) exposed vinyl ester resin to artificial UV radiation for up to 4,000 hr.  

The ultimate tensile strains for 0 hr; 1,000 hr; and 4,000 hr of UV exposure were 16.72%, 
14.98% (~10% decrease from 0 hr), and 8.92% (~46% decrease from 0 hr), respectively; the 
average specific toughness values were 1.44, 1.26 (~12% decrease from 0 hr), and 0.56 kg 
mm/mm2 (~61% decrease from 0 hr), respectively.  The average modulus of elasticity, however, 
increased with UV exposure at 1,000 hr but remained at the same range at 4,000 hr.  This 
indicated an initial growth in brittleness, which would be expected with UV exposure.  X-ray 
photoelectron spectroscopy showed surface degradation at the outermost thin layer with an 
increase in oxygen concentration.  Signor et al. also reported that the FTIR-attenuated total 
reflectance probe’s depth of penetration was limited to the top 3 to 5 µm (~0.1 to 0.2 mil). 
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Inspection 
 
From the point of view of bridge owners, an even more important concern is the reliable 

inspection of HCBs.  NCHRP Report 564 contains guidance for inspection of FRP bridge decks, 
where the main methods prescribed are visual inspection and tap testing that is analogous to 
chain dragging (Telang et al., 2006).  However, the authors warned that tap testing or any 
sounding technique could be very misleading because of the stiffeners and other unexpected 
geometry of the FRP material.  The study (Telang et al., 2006) also lists other nondestructive 
evaluation techniques, but they are essentially to detect delaminations and volumetric issues; 
none of the methods prescribed could detect or monitor the degradation of the FRP material. 

 
The important structural members, concrete arch and tension ties, are hidden behind the 

FRP shell.  Any degradation of the concrete and/or corrosion in tension strands may remain 
concealed until the damage has propagated severely.  In addition, given the importance of the 
FRP shell to the durability of the HCB, no clear way exists to inspect them other than visually.  
The main objective of this study was to find reliable ways to inspect HCBs and get an indication 
of the durability of the FRP shell. 
 
 

Task 2: Laboratory Accelerated Exposure 
 
Figures 10 through 12 show the laboratory specimens at 0 hr, 920 hr, and 2,000 hr of UV 

aging, respectively.  Visually, the specimens appear to become darker.  However, no damages 
such as pitting, cracking, or crumbling were observed except on Specimen 8, which developed a 
burn on the surface at 920 hr (Figure 11).  This black spot can be observed to grow bigger at the 
end of 2,000 hr of UV aging (Figure 12).  This might have been because of the presence of a thin 
delamination from the load testing at Virginia Tech.  Based on this, there was a suspicion that the 
accelerated exposure might be too aggressive in the later stages of the degradation and might not 
represent the actual conditions of the field structures, so the aging was stopped at this stage.   

 
FTIR 
 

Figures 13 and 14 show the FTIR scans of typical laboratory and field exposure 
specimens, respectively.  Qualitative observations of FTIR spectra for the accelerated exposure 
machine specimens revealed various levels of exposure or degradation; how the qualities of the 
spectra from laboratory exposure specimens may relate to the field specimens is discussed later.  
The attenuated total reflectance probe is surface sensitive and thus not a probe of bulk organic 
chemicals, since the evanescent wave probes into the surface only a bit less than 2 to 10 µm.  
This varies inversely with the wavenumber and frequency of the infrared light probe and 
proportionally with the wavelength. 
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Figure 10.  Laboratory Specimens at 0 Hours of Aging by Ultraviolet Radiation 
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Figure 11.  Laboratory Specimens at 920 Hours of Aging by Ultraviolet Radiation 
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Figure 12.  Laboratory Specimens at 2,000 Hours of Aging by Ultraviolet Radiation 
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Figure 13.  Fourier Transform Infrared Spectroscopy Scan of Laboratory Exposure Specimens 

 

 
Figure 14.  Fourier Transform Infrared Spectroscopy Scan of Field Exposure Specimens 
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Laboratory accelerated exposure specimens exhibited the following: 
 
• A strongly absorbing peak around 700 cm-¹ that appears to decrease in absorbance 

and eventually may be replaced with a peak around 725 cm-¹.  Another nearby peak, 
initially present at 750 cm-¹, seems to disappear sooner than the 700 cm-¹ peak. 

 
• Minor peaks around 840, 870, and 960 cm-¹ with the 870 cm-¹ peak appearing to grow 

a bit faster than the others and simultaneously with the substantial decrease of a peak 
at 1160 cm-¹.  A weak peak around 910 cm-¹ also seems to disappear (possibly into 
the tails of nearby peaks). 

 
• An increase in absorbance and a potential sharpening of 1100, 1120, 1250, and 1260 

cm-¹, along with the growth of 1340, 1370, and 1410 cm-¹ that is faster than 1450 
cm-¹.  In addition, the 1510 cm-¹ peak appears to be quite weak, whereas 1605 cm-¹ is 
observable. 

 
• A prominent peak around 2925 cm-¹ (wavenumber) for unexposed (nondegraded) 

specimens.  This is in fact the strongest of a triple peak at 2850, 2925, and 2950 
wavenumbers that is merely indicative of hydrocarbon content. 

 
• A broad peak around 3400 cm-¹ indicating increased hydrogen bonding.  This 

hydrogen bonding could be because of one or more of at least a few changes: increase 
in water content, hydrolysis of ester linkage to produce carboxylic acids, and maybe 
others.  Although hidden in this peak may be a narrower peak indicative of hydrogen 
bonding of alcohols, no clear conclusion could be drawn either way. 

 
Field specimens exhibited the following: 
 
• variable absorbance of 700, 725, and 750 cm-¹, with 700 and 725 cm-¹ being the most 

prominent 
 
• observable minor peak around 870 cm-¹ 
 
• strongly absorbing peaks at 1020, 1100, and 1245 to 1260 cm-¹ and sometimes a 

weaker 1120 cm-¹ peak, with a much weaker peak or near absence of a peak around 
1160 cm-¹ 

 
• minor peaks around 1340, 1410, and 1450 cm-¹ with just a bit of observable 

absorbance around 1510 cm-¹ 
 
• prominent 1610 cm-¹ peak that would have to be deconvoluted from the 1725 cm-¹ 

peak in order to be quantified 
 
• a 2950 cm-¹ peak that does not quite get lost in the tail of the 3400 cm-¹ peak. 
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These molecular bond–level changes can be used as a benchmark against which further 
degradations can be chemically quantified in future studies, even though many of these 
observations do not mean much for the integrity of resin at present. 
 

Around 1725 cm-¹, a shift toward lower wavenumbers of the carbonyl peak that is 
characteristic for esters (and carboxylic acids), as well as a weak increase in its absorbance with 
increasing exposure, was observed.  The broadening of this peak did not appear to be monotonic, 
since the peak width first increased and then decreased with further exposure. 

 
Thus, it appears that field specimens exhibit similar changes to exposure chamber 

specimens between 920 and 2,000 hr of exposure in the 1000 to 1300 cm-¹ range (the 
“fingerprint” region).  However the absorbance in the 700 to 800 cm-¹ range and for both 2950 
and 3400 cm-¹ is stronger for field specimens when compared to that for the exposure chamber 
specimens of 920 and 2,000 hr.  The higher absorbance for the 700 to 800 cm-¹ range and 2950 
cm-¹ may possibly be because of higher hydrocarbon content near the surface of field specimens 
when compared with laboratory exposure specimens.  The higher absorbance of the 3400 cm-¹ 
peak may indicate either greater water content (from humidity) or hydrolysis of esters that has 
progressed further for field specimens in comparison to laboratory exposure specimens. 
 
Colorimetry 

 
Spectrocolorimeter readings were made on all laboratory specimens at the three stages.  

Results from the statistical analysis of the colorimetry values L*, a*, b*, C*, and h° are shown in 
Figures 15 through 19, respectively.  An analysis of variance (ANOVA) was conducted for all 
parameters.  The results are shown in tabular form at the top right of the images.  The null 
hypothesis stated that the differences among the means of the three groups are not statistically 
significant.  For all parameters (Figures 15 through 19), the p-value was less than 0.0001, which 
is less than the significance level (α) of 0.05, indicating that there were statistically significant 
differences between some or all of the groups: 0 hr, 920 hr, and 2,000 hr. 

 
However, the actual differences among the groups cannot be found using this analysis.  

Therefore, a Tukey-Kramer test was conducted to understand the relative difference among the 
three sets of data. 

 
Figure 15 shows the results for the L* (lightness) parameter.  The plot shows the 

decreasing L* values with increasing duration of UV radiation exposure, almost in a linear 
fashion.  The connecting letters report on the right side of the one-way analysis plot shows the 
results from the Tukey-Kramer test.  The groups that are assigned the same letter are not 
significantly different, whereas the groups assigned different letters are significantly different.  In 
this case, Figure 15 shows a big drop in lightness at 920 hr from 0 hr, but the drop was not 
statistically significant.   
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Figure 15.  Statistical Means Comparison for D65 L* (Lightness) Values of Laboratory Specimens 

 
Figure 16 shows the results for the a* (green-red) parameter.  The plot shows increasing 

a* values with the increase in UV exposure, which is interpreted as an increase in the red 
component of the color.  The connecting letters report from the Tukey-Kramer test shows that 
the increase in a* or red color was statistically significant with increasing UV exposure 
durations. 

 
Figure 17 shows the results for the b* (blue-yellow) parameter.  The plot shows 

increasing b* values with the increase in UV exposure up to 920 hr, which is interpreted as an 
increase in the yellow component of the color.  No significant change was detected at 2,000 hr.  
The connecting letters report from the Tukey-Kramer test shows that the increase in +b* or 
yellow color was statistically significant at 920 hr from 0 hr but was not significant beyond that. 

 

 
Figure 16.  Statistical Means Comparison for D65 a* (Green-Red) Values of Laboratory Specimens 
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Figure 17.  Statistical Means Comparison for D65 b* (Blue-Yellow) Values of Laboratory Specimens 

 
Figure 18 shows the results for the C* (Chroma) parameter.  The plot shows increasing 

C* values with the increase in UV exposure up to 920 hr, which is interpreted as an increase in 
the saturation or purity of the color.  No significant change was found at 2,000 hr.  The 
connecting letters report from the Tukey-Kramer test shows that the increase in C* was 
statistically significant at 920 hr from 0 hr but was not significant beyond that. 

 
Figure 19 shows the results for the h° (hue) parameter.  The plot shows the decreasing h° 

values with increasing duration of UV radiation exposure, almost in a linear fashion.  This can be 
interpreted as the change in hue from near-yellow to brown as UV exposure increased.  The 
connecting letters report from the Tukey-Kramer test shows that the increase in h° was 
statistically significant with increasing UV exposure duration. 

 

 
Figure 18.  Statistical Means Comparison for D65 C* (Chroma) Values of Laboratory Specimens 
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Figure 19.  Statistical Means Comparison for D65 h° (Hue Angle) Values of Laboratory Specimens 

 
From the results, it is understood that the colorimetry process provided a better 

understanding about the quantification of the color change, which can be easily missed by the 
human eye. 

 
Spectrocolorimeter readings were made on two typical specimens from each of the field 

exposure sites at 1.7 years of exposure.  It was observed during an attempt to measure colors 
during the daylight outdoors that excessive light could affect the measurements.  This could be 
solved by using a simple light-blocking system around the spectrocolorimeter.  However, in this 
study, the selected specimens were brought back to the laboratory to measure the color, since this 
environment had controlled background lighting.   

 
Figures 20 through 24 show the results of the statistical analysis of L*, a*, b*, C*, and 

h°, respectively, from both laboratory and field exposure specimens.  The L* values for the field 
specimens were significantly lower (darker) than that for the specimens exposed for 2,000 hr 
from the connecting letters report of the Tukey-Kramer analysis.  This might appear as if the 
field specimens degraded more than the laboratory specimens with 2,000 hr of UV exposure.  
However, the color parameters cannot be evaluated individually.  In addition, it should be noted 
that the laboratory accelerated exposure cycle involves condensation for 4 hr after the UV cycle, 
which will clean the surface of the specimens regularly.  The field exposure specimens were 
exposed to sporadic precipitation and exposure to dust and other impurities, likely resulting in 
darker specimens.  This can be concluded only by considering the other color-related parameters. 

 
Figure 21 shows that the field specimens were lower on the a*, or red, scale and belong 

in the same level as the specimens that were never exposed and were significantly different from 
the exposed specimens.  In addition, Figure 22 shows that the field specimens were lower on the 
b*, or yellow, scale and the same level as the specimens that were never exposed and were 
significantly different from the exposed specimens.  Similarly, as shown in Figure 23, the field 
specimens were noted to have low Chroma values, significantly lower than the laboratory 
specimens exposed to UV radiation.  Likewise, the hue angle was significantly lower than the 
exposed laboratory specimens. 
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Figure 20.  Statistical Means Comparison for D65 L* Values of Laboratory and Field Specimens 

 

 
Figure 21.  Statistical Means Comparison for D65 a* Values of Laboratory and Field Specimens 

 

 
Figure 22.  Statistical Means Comparison for D65 b* Values of Laboratory and Field Specimens 
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Figure 23.  Statistical Means Comparison for D65 C* Values of Laboratory and Field Specimens 

 

 
Figure 24.  Statistical Means Comparison for D65 h° Values of Laboratory and Field Specimens 

 
Thus, the results from the statistical analysis showed that the field specimens at 1.7 years 

of exposure did not reach the level of changes observed in the accelerated exposure specimens in 
the laboratory. 

 
GPR 

 
One of the primary indications of deterioration in the HCB is moisture leakage into the 

beam interior.  This would point to breaches in the FRP shell and will eventually cause corrosion 
initiation in the steel strands, thus leading to the premature failure of its structural system. 

 
An initial attempt was made on an HCB bottom flange slab to detect moisture, similar to 

the slab shown in Figure 1a, to calibrate the device.  It is difficult to calculate the dielectric 
constants for a complicated structural member with layers of glass fiber–reinforced vinyl ester 
resin and polyurethane foam.  Therefore, the dielectric constant was experimentally found as 
slightly less than 2.0, using known depth and time of flight.  Since the equipment can be set only 
to a minimum dielectric constant of 2.0, it was set that way.  The depth of features seen on the 
scans will be slightly deeper than they appear. 
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Figure 25 shows a GPR scan in the longitudinal direction of the HCB in the middle.  The 
x-axis shows the longitudinal spatial length of the scan, and the y-axis shows the depth.  Then, 
moisture was applied using a brush on the same section for a 12-in length from the edge.  Figure 
26 shows the GPR scan with the 12-in-long moisture signature clearly.  It can be noted that the 
edge effect in the form of hyperbolas appears more prominent than the presence of water. 

 
To test the sensitivity of GPR in detecting moisture, three circles of moisture of different 

sizes were dabbed using a brush at three locations along the same longitudinal section: 5-in, 1-in, 
and 4-in diameter from the left.  Figure 27 shows the results from this scan.  The locations of the 
water locations, even the one as small as 1 in, are clearly visible except that the first location 
from the left (5 in) was partly hidden by the edge effect. 

 

 
Figure 25.  Ground Penetrating Radar Scan of Bottom Flange With No Moisture 

 

 
Figure 26.  Ground Penetrating Radar Scan of Bottom Flange With Moisture 
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Figure 27.  Ground Penetrating Radar Scan of Bottom Flange With Three Moisture Locations 

 
This laboratory experimentation proves GPR’s capability to detect even a trivial moisture 

presence inside the HCB. 
 
 

Task 3: Field Exposure 
Weather Data 

 
The weather data collected exhibited the expected seasonal trends.  Figure 28 shows the 

temperature behavior at both sites.  Clearly, the temperature is warmest at both sites in the 
summer and coldest during the winter.  The Harrisonburg site showed more extreme 
temperatures as compared to the Hampton Roads site.   

 
This was also observed with the relative humidity measurements (Figure 29), with 

Harrisonburg showing a greater range but both sites having a similar maximum value.   
 
Finally, Harrisonburg also showed the greatest amount of precipitation (Figure 30), but 

clearly both regions routinely received precipitation throughout the year.   
 
If these were the only variables measured, it would appear that the Harrisonburg site 

might have represented more aggressive testing of the materials listed in Table 1.  However, 
upon a review of the solar radiation (Figure 31) and UV index (Figure 32) data, the maximum 
solar radiation exposure occurred at the Harrisonburg site but the maximum UV index was 
recorded at the Hampton Roads site.  These trends were considered as each exposed sample was 
visually evaluated, which is discussed later. 
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Figure 28.  Temperature at Exposure Sites 

 

 
Figure 29.  Relative Humidity at Exposure Sites 



27 
 

 
Figure 30.  Precipitation at Exposure Sites 

 
 

 
Figure 31.  Solar Radiation at Exposure Sites 
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Figure 32.  Ultraviolet Index at Exposure Sites 

 
Visual Assessment 
 
Harrisonburg Site 

 
After 1 year and 8 months of exposure at the Harrisonburg site, the specimens showed 

some minor deterioration.  Figures 33 through 35 show the initial condition of the specimens and 
then again after 1 year and 8 months.   

 
Delamination of the glass layer was observed along a cut edge (Figure 33) in one sample, 

which was probably attributable to moisture penetrating the sample and expanding and 
contracting during seasonal cycles of freezing and thawing.  Most of the specimens, however, 
visually seemed to have performed well and did not show signs of substantial degradation.  This 
response was especially surprising for the foam specimens (Figure 35) since this component of 
the composite beam was somewhat protected from the weather because it was placed inside the 
fiberglass shell that makes up the beam. 
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Figure 33.  Comparisons of Fiberglass Specimens: (a) initially; (b) several specimens after 1 year and 8 
months; (c) close-up of delaminated edge after 1 year and 8 months 
 
 

   
Figure 34.  (a) Fiberglass with the exposed steel specimens, on upper sample line in each photograph, and 
fiberglass with the protected steel specimens shown along the lower sample line in each photograph with no 
exposure; (b) close-up of a typical protected steel sample after 1 year and 8 months; (c) close-up showing a 
typical exposed steel sample after 1 year and 8 months 
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Figure 35.  Comparisons of Foam Specimens: (a) initially; (b) after 1 year and 8 months 

 
Hampton Roads Site 

 
After 1 year and 8 months of exposure at the Hampton Roads site, the sample showed 

some minor deterioration but the amount of damage was greater than that at the Harrisonburg 
site.  Figures 36 through 38 show the initial condition of the specimens and then again after 1 
year and 8 months.   

 
Delaminations and damage to the exterior surface of the fiberglass layer were observed 

(Figure 36) in several specimens.  Other test specimens that exhibited damage also included the 
foam, which clearly exhibited more damage, as seen in Figure 38.  This was interesting since the 
weather data for this site were less extreme as compared to the Harrisonburg site with the 
exception of the UV index data.  Therefore, it appears that although the composite beam 
components showed only minor deterioration, UV exposure most likely contributed the most to 
damaging the exposed components. 
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Figure 36.  Comparisons of Fiberglass Specimens: (a) initially; (b) after 1 year and 8 months, exhibiting 
delamination and exposure of the fibers; (c) in an area that initially had some fibers showing; (d) observed to 
have grown larger after 1 year and 8 months 
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Figure 37.  (a) Fiberglass with the exposed steel specimens, on upper sample line in each photograph, and 
fiberglass with the protected steel specimens shown along the lower sample line in each photograph initially; 
(b) close-up showing a typical protected steel sample after 1 year and 8 months; (c) close-up showing a typical 
exposed steel sample after 1 year and 8 months 
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Figure 38.  Comparisons of Foam Specimens: (a) initially; (b) after 1 year and 8 months showing how foam 
has degraded and exhibits loss of material, especially along the edge because of exposure 

 

Task 4: Evaluation of Deterioration 
 
Since Ahsan (2012) discovered that the FRP shell ended up carrying about 80% of the 

load, because of the concrete arch failure when made composite with the beam, the importance 
of fiber within the FRP has increased with regard to the structural integrity of HCBs.   

 
The resin not only embeds the glass fibers to maintain the shape and pattern of 

reinforcement but also protects the fibers from exposure to the environment.  Figure 36 shows 
that the resin could wear away under exposure from freeze-thaw cycles and other environmental 
factors.  This can expose the embedded glass fibers that carry the entirety of tensile stress in the 
members.  In addition, scraping against flotsam such as tree branches under the bridge can easily 
wear away the resin and a few layers of glass fibers.  Since this type of deterioration is more 
likely to happen throughout the service life of the structure, rather than with a complete puncture, 
an investigation of scraping with the tensile strength of the material was carried out. 

 
For this investigation, the placement and orientation of the fibers inside the resin must be 

identified.  High-resolution optical imaging was performed on polished cross-sectional surfaces 
of specimens, as shown in Figure 39.  Identifying fiber layers and orientation was difficult 
because of the uneven resin concentration and translucence of the material.  Thus, better 
techniques were attempted to understand the sample composition. 
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Figure 39.  High-Resolution Optical Imaging of Polished Fiber-Reinforced Polymer Specimen 

 
SEM 

 
This technique uses a scanning electron microscope to produce extremely high-resolution 

images of specimens.  SEM focuses a beam of electrons on to the scanning surface.  The 
electrons interact with the atoms and produce signals proportional to the topography of the 
sample surface.  Resolution of the SEM can be from 1 to 20 nm (4 x 10-5 to 7.8 x 10-4 mils) 
depending on the instrument.  Figure 40 shows an SEM image of the polished surface of the 
same sample from Figure 39.  Although the SEM image provided more details and confirmations 
about fiber mat layers, it was still difficult to determine the fiber orientations. 

 
A magnified portion of Figure 40 is shown in Figure 41.  The fiber layers can be easily 

identified; however, as stated before, the fiber orientations appear vague.  In the same image, the 
bottom surface of the sample shows some rough edges that were not polished well.  It was 
ironically more useful in identifying the fiber strands and orientation.  The rough clump of fibers 
runs perpendicular to the plane of the image, as indicated by the circular cross section of the 
individual fiber strands.  It was found that unpolished specimens also provided less reliable 
visualization of the resin.   

 
Therefore, further specimens were polished mildly, to remove dirt and foreign material, 

before SEM imaging was performed, as shown in Figure 42.  However, the outer layer of FRP 
(top two-thirds thickness of Figure 42) showed irregular and scarce fiber content without a 
particular orientation.  It is possible that there were fiber mats in this layer, but was not visible on 
the surface. 
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Figure 40.  Scanning Electron Microscope Image of Highly Polished Fiber-Reinforced Polymer Sample 
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Figure 41.  Magnified Scanning Electron Microscope Image of Polished and Rough Edges 
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Figure 42.  Scanning Electron Microscope Imaging of Mildly Polished Sample 

 
This leads to the disadvantage of SEM and optical imaging, where only the surface of the 

sample can be studied.  If the surface contains irregularities compared to the rest of the material, 
this will lead to incorrect conclusions.  One laborious way to handle this is by slicing the 
specimen into thin layers and applying these techniques with each of them.  However, XCT, a 
nondestructive method, was used to scan the volume of the specimens. 
 
XCT 

 
XCT is a nondestructive technique used to create 3D geometry of the hidden features of 

solid objects.  This involves focusing X-rays at an object from multiple angles and measuring the 
variation in the radiation intensity at the detectors.  The resulting data are used to reconstruct the 
distribution of X-ray attenuation through the volume of the scanned object.  The resolution of the 
resulting image depends on the X-ray energy, acquisition time, and size of the object and 
detectors, but it is much smaller compared to SEM imaging resolutions. 

 
Figure 43 shows images of the longitudinal sections with distinct visualization of the 

fiber mat orientations.  The resolution was more than adequate, displaying particles as small as 
fiber strands.  The outer layer of the FRP sample was scanned to check for actual fiber content, 
as shown in Figure 44.  There were random fiber clumps present in the outer resin layer, but 
there were no fiber mats.  These could have been residues from the fiber mats.  Thus, their 
influence on the tensile strength is miniscule. 
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Figure 43.  X-ray Computed Tomography Imaging of Fiber Mats: (a) at 45 degree angle; (b) at 135 degree 
angle 
 

 
Figure 44.  X-ray Computed Tomography Imaging of Random Fiber Clumps at Outside Layer of Fiber-
Reinforced Polymer 
 
Tensile Testing 

 
The tensile loads in the HCB are still being carried by the strands in the bottom, whereas 

the fibers carry the shear load from traffic by means of 45° rotated orientation.  However, tensile 
testing was selected for characterizing the FRP specimens because of the ease and simplicity of 
testing.  Thus, the tensile test results for the FRP specimens should not be taken directly as a 
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substitute for shear strength, rather only as an indication of its contribution.  Three specimens 
were selected from each exposure site and laboratory.  Dog-bone shaped specimens were 
fashioned to meet the requirements of ASTM D638, Type IV (ASTM, 2014).  These specimens 
(shown in Figure 45) were tested for ultimate tensile strength.   

 
The results and specimen dimensions are shown in Table 3.   L# and LO# specimens are 

unexposed and exposed (2000 hr of accelerated exposure) laboratory specimens, respectively.  
HB# and HR# specimens are field exposure specimens from Harrisonburg and Hampton Roads, 
respectively.  A strong relationship between the specimen thickness and ultimate tensile strength 
was found, with R2 = 0.85, as shown in Figure 46.  No other correlation existed.  This indicates 
that the tensile strength depends mainly on the thickness or the fiber content in the cross section.  
From the thickness and tensile strength, the specimens can be separated into two categories: LO# 
or thick specimens (shown as bold in Table 3), and the rest of the thin specimens.   

 

 
Figure 45.  ASTM D638 Type IV Dog-bone Fiber-Reinforced Polymer Specimens 

 
 

Table 3.  Tensile Testing Results  
Sample 

ID 
Force 
(lb) 

Cross-section 
Area (in2) 

 
Width (in) 

Thickness 
(in) 

Ultimate Tensile 
Strength (ksi) 

LO1 2060 0.056 0.25 0.224 36.9 
LO2 1796 0.051 0.25 0.204 35.1 
LO3 1401 0.051 0.25 0.203 27.6 
HB3 209 0.033 0.25 0.133 6.3 
HB4 224 0.035 0.25 0.139 6.4 
HB5 206 0.034 0.25 0.136 6.1 
HR1 230 0.035 0.25 0.138 6.7 
HR2 217 0.036 0.25 0.142 6.1 
HR3 318 0.035 0.25 0.139 9.2 
L1 200 0.028 0.25 0.112 7.1 
L2 148.7 0.028 0.25 0.110 5.4 
L3 230 0.025 0.25 0.099 9.3 

Bold type indicates thicker specimens. 
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Figure 46.  Relationship Between Specimen Thickness and Ultimate Tensile Strength 

 
On average, the thickness of the LO# specimen was 65% greater than that of the rest of 

the specimens; however, their average tensile strength was about 374% greater.  By evaluating 
the SEM images of the cross sections, it was found that most of the tensile fiber content started at 
about 0.09 in (2.25 mm) from the outside surface of the FRP specimens.  This indicates for the 
sake of the inspection that if scraping damage is limited to the outer 2 mm or so, the strength of 
the material will not decrease significantly.  However, this finding might apply only to this case, 
since FRP construction may not be precise enough to have the exact cross section in every beam.   

 
In addition, it was established earlier that the FRP shell acts as an important load-bearing 

member; thus, the fiber content in the shell, being the principal tensile load-carrying material, 
must be preserved for structural integrity and expected load-carrying performance.  Thus, any 
fiber exposure must be sealed because of resin degradation as soon as possible for durability. 
 
Corrosion Possibility in Strands 

 
Corrosion of the tension-tie strands is a concern, since the unstressed strands in the beam 

bottom are only minimally embedded in concrete at their ends, which protects the steel with high 
pH levels.  Fortunately, in HCBs, the strands are embedded in a thin layer of vinyl ester resin in 
all directions, as seen in Figure 1b.  In case of moisture leakage from the top into the FRP shell, 
either from the concrete deck at the top or from accidental pierced holes in the side web, the 
moisture would flow through the foam and stagnate on top of the resin layer, which is 
embedding the strands.  Vinyl ester is a highly water-resistant material because of its resistance 
to hydrolysis reaction, which is why this FRP resin is typically preferred for boat making.  
Therefore, the resin layer will typically not allow moisture to reach the strands within the 
structure’s design life. 

 
In the event of an extreme case of piercing damage from the bottom that compromises the 

resin layers surrounding the strands during a flood event, moisture and oxygen may become 
available to the strands.  This can initiate corrosion, but the extent of exposure will determine the 
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rate of corrosion reaction.  In addition, corrosion will proceed only while moisture is available.  
If the steel strands eventually dry out, the corrosion reaction will slow down or come to a stop.  
Therefore, unless the strands are exposed to moisture, corrosion should not affect the integrity of 
the strands in the HCB. 

 
 

CONCLUSIONS 
 

• None of the composite beam components exhibited complete failure after 1 year and 8 
months of outdoor atmospheric exposure.  Therefore, for understanding the full degradation 
behavior, a longer duration of environmental exposure is needed. 

 
• GPR can detect even trivial amounts of moisture content with good sensitivity in the interior 

of an HCB.   
 

• If performed periodically, spectrocolorimeter readings can provide extensive information on 
the aging behavior of FRP shell specimens. 

 
• FTIR can provide in-depth, molecular bond–level information on the chemical structure of 

FRP.  However, FTIR can be used only as a research tool for special cases, because of the 
complexity in the interpretation of the results, not as a routine inspection technique.   

 
• Accelerated laboratory UV exposure served as a valuable way of simulating degradation of 

FRP specimens, especially for the beginning stages of deterioration.  However, when 
followed through, the accelerated exposure could lead to unnaturally aggressive exposure 
conditions compared to true environmental exposure, which then leads to an unnatural 
degradation behavior in the later stages of deterioration.   

 
• Loss of surface resin and subsequent exposure of tensile fiber are more likely to occur in the 

FRP material because of freeze-thaw cycles and scraping damages during flood events and 
freeze-thaw cycles.  Loss of tensile fiber mats can reduce the carrying capacity of the FRP. 

 
• Corrosion of strands in the beam bottom is less likely because of the embedding resin unless 

moisture penetrates the resin layers. 
 

 
RECOMMENDATIONS 

 
1. VDOT’s Structure and Bridge Division should prescribe periodic protective UV coatings on 

the FRP surface of the exterior of HCBs. 
 
2. VDOT’s Structure and Bridge Division should implement GPR as an inspection tool to detect 

moisture inside HCBs in use in VDOT structures.  The presence of moisture indicates a 
breach of the FRP shell, and the breach needs to be repaired to prevent further moisture 
penetration. 
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3. The Virginia Transportation Research Council (VTRC) should continue to monitor the HCB 
specimens at the Hampton Roads and Harrisonburg exposure sites for rate of degradation. 

 
4. VDOT’s Structure and Bridge Division should prescribe inspection of the HCBs for resin 

losses because of exposure and/or scraping damages on the FRP material in HCBs and 
immediately repair the lost section using epoxy-like material to avoid damage to the load-
carrying glass fibers. 

 
5. VTRC should evaluate the HCB bridge in VDOT’s Fredericksburg District with GPR for the 

presence of moisture and drill a drain hole at a low point in the bottom to verify the presence 
of moisture and provide for drainage. 

 
6. VDOT’s Structure and Bridge Division should pause further use of HCBs since there are still 

many unknowns about the late-stage deterioration mechanism of FRP and since neither 
visual nor nondestructive methods can fully assess the condition of the beams at this time. 

 

 
IMPLEMENTATION AND BENEFITS 

 
Implementation 

 
• Regarding Recommendation 1, for the FRP surface exposed to the sun, VDOT’s Structure 

and Bridge Division will prescribe an established UV-resistant coating material to be applied 
according to the manufacturer’s instructions.   
 

• Regarding Recommendation 2, by June 2020, the VDOT Structure and Bridge Division’s 
Inspection Team will specify GPR for detecting moisture penetration inside the FRP shell 
after flood events. 
 

• Regarding Recommendation 3, VTRC will periodically monitor the field exposure specimens 
to keep track of the deterioration behavior of the specimens until severe deterioration occurs. 

 
• Regarding Recommendation 4, by June 2020, VDOT’s Structure and Bridge Division will 

specify resin repair techniques in the event of resin degradation. 
 
• Regarding Recommendation 5, VTRC will work with VDOT’s Fredericksburg District to 

conduct a field evaluation of the HCB bridge by December 2019. 
 

• Regarding Recommendation 6, no further action needs to be taken. 
 

Benefits 
 

• Regarding Recommendation 1, UV radiation was concluded to be the most damaging factor 
for the FRP shell in the HCB.  Thus, periodically coating the beams with protective UV 
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coatings will slow down the UV-induced degradation.  This will provide a longer service life 
for HCB bridges. 

 
• Regarding Recommendation 2, GPR proved to be a reliable tool to detect even minor 

amounts of moisture inside HCBs.  By implementing this nondestructive evaluation 
technique, any leakage source can be detected and repaired in the early stages. This is a 
crucial inspection need for this type of bridge superstructure, without which no other method 
exists to warn VDOT of impending deterioration.  By detecting moisture earlier in the 
deterioration cycle and treating the problem, safety of traveling public can be assured and 
expensive late-stage rehabilitation or replacements, which can cost hundreds of thousands of 
dollars, can be avoided. 

 
• Regarding Recommendation 3, 1 year and 8 months proved to be a short duration for the 

degradation of the HCB specimens.  The specimens should be monitored periodically for 
signs of degradation.  This will provide a reliable set of data to predict the service life of 
HCB bridges. 

 
• Regarding Recommendation 4, this preventive measure can ensure the durability of HCBs by 

addressing problems with resin degradation well before the load-carrying fibers are exposed 
and damaged.  This preventive technique will save VDOT maintenance money and effort in 
the long run. 

 
• Regarding Recommendation 5, this will validate the GPR’s ability to detect moisture inside 

HCBs in a field environment and will verify if there is corrosion in the strands. 
 

• Regarding Recommendation 6, since there are many unknowns left about the deterioration 
mechanism of FRP, it will be safer to pause construction of HCB bridges until further 
information on the deterioration mechanism is available. 
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