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ABSTRACT 
 
 Climate change is projected to increase the risk of flooding, which can cause severe 
damage and threaten lives. This increased risk makes it even more important to accurately 
forecast potential flooding impacts. The report details efforts by the University of Virginia to 
enhance key aspects of the Virginia Department of Transportation’s (VDOT) Regional River 
Severe Storm Model (R2S2) that aims to forecast potential flooding impacts in real-time for 
transportation infrastructure. This model serves as a planning tool for a large portion of the 
Hampton Roads District to assist residency administrators in efficiently allocating scarce 
resources to close roads and to assist first responders in accessing flood prone areas. It represents 
a cutting-edge flood modeling system and could be implemented for other VDOT districts, once 
it is tested and refined for Hampton Roads District. 
 
 The specific project tasks described in this report were to (1) evaluate the current R2S2 
based on real historical observations to access its accuracy; (2) enhance the model through 
calibration to improve its accuracy; and (3) automate the cloud-based flood warning system from 
end-to-end (forecasts to projected bridge impacts) so that it is able to provide timely information 
for the decision makers within VDOT.   
 
 In Task 1, the model was evaluated against stream data collected by the United States 
Geological Survey (USGS) for two storms and, based on this evaluation, a plan was designed 
and implemented to improve the model accuracy through the enhancement of key underlying 
datasets and calibration of model parameters. In Task 2, this plan to improve the model accuracy 
was implemented and the model was reassessed against the stream data for two different storm 
events. The calibrated model resulting from Task 2 shows good predictive capability for the 
majority of the study region, while the easternmost portion of the watershed, which has very flat 
terrain, remains the most difficult region to model accurately. In Task 3, the cloud-based system 
used to provide end-to-end automation of flood warning for bridges and culverts in the region 
was successfully automated. The system is now available for implementation by VDOT for use 
during extreme weather events. 
  

The study recommends that VTRC brief executives in the Department of Natural 
Resources on the work accomplished to date on R2S2.  The briefing should include the 
capabilities of the current model, its current limitations, and potential modifications that could 
improve the model.  In the spring of 2019, the Governor and the General Assembly determined 
that coordinated state agency research activities in the areas of climate change, sea level rise, 
roadway flooding attributable to storm surge, and roadway management strategies in flooding 
events are desirable.  The Department of Natural Resources has been identified as the lead 
agency for these initiatives; the study’s recommendation reflects that new interagency approach. 
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INTRODUCTION 
 

Climate change introduces significant challenges, especially for the low-relief coastal 
plain areas (Nicholls and Cazenave, 2010). These challenges include sea-level rise and the 
increased occurrence of extreme rainfall events (Sweet and Park, 2014). Severe flooding from 
extreme rainfall events can cause significant damage and threaten lives (Kates et al., 2006; 
Galarneau et al., 2013). Hurricanes Florence, Irma, and Harvey, which recently affected coastal 
area in North Carolina, Florida, and Texas, respectively, are examples of high return period 
rainfall events that have caused significant impacts. Infrastructure is vulnerable to the increase of 
extreme rainfall events (Schreider et al., 2000); however, there is little information about how 
these extreme rainfall events affect the integrated transportation system (Suarez et al., 2005). 
There is a need to accurately and quickly project potential flooding from forecasted rainfall 
events. This will allow decision makers to take steps to maximize the safety and minimize 
damages to the transportation infrastructure including bridges and culverts (Morsy et al., 2018; 
Sadler et al., 2018). 

 
This report describes a project recently completed by the University of Virginia aimed at 

accomplishing key enhancements to the Virginia Department of Transportation’s (VDOT) 
Regional River Severe Storm Model (R2S2). This model serves as a planning tool to assist VDOT 
residency administrators in efficiently allocating scarce resources to close roads and to assist first 
responders with accessing flood prone areas. It represents a cutting-edge flood modeling system 
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that is ready to be implemented by VDOT for the project study domain, a portion of the 
Hampton Roads District.  

 
This study builds on a prior study completed for VTRC, referred to in this report as Phase 

I of the project (Morsy et al., 2017). A key recommendation of Phase I was to determine the 
accuracy of the flood predictions derived from a version of the R2S2 model that was speeded up 
50 times faster in Phase I by using a Graphical Processing Unit (GPU) solver. As part of this 
accuracy assessment, the Phase I final report recommended that the model be further calibrated 
to ensure that it produces accurate and actionable outputs for VDOT decision makers. A second 
recommendation of this prior study was to further automate data exchanges internal to R2S2 to 
streamline data processing tasks and make the system a fully automated flood forecasting 
system. This study, referred to as Phase II, aimed to address these recommendations in order to 
produce a version of the flood forecasting model that can be implemented by VDOT for decision 
making during extreme weather events. Throughout this process, the team communicated with 
VDOT’s Hampton Roads District to ensure that modifications to R2S2 meet the district’s needs. 

 
 

 
METHODS 

 
Purpose and Scope 

 
The purpose of this research was to further improve the R2S2 model by addressing 

recommendations from Phase I of the project (Morsy et al., 2017). To achieve this goal, four 
tasks were completed in this Phase II of the project. Task 1 was to further evaluate the R2S2 
model output for accuracy. Task 2 was to further calibrate the R2S2 model to improve its 
predictive accuracy for historical flooding events. Task 3 was to create new automated 
workflows internal to R2S2 so that the model can run end-to-end with minimal human 
intervention before, during, and after extreme weather events. Finally, Task 4 was to create this 
final report detailing the results of Phase II of the project.  
 
 

Study Area 
 

The study area is in the portion of the Chowan River basin that is within VDOT’s 
Hampton Roads District, Virginia. The area is about 2,230 square miles (Figure 1), and includes 
the Nottoway River, the Blackwater River, and the Meherrin River. The longest flowpath 
according to the National Hydrography Dataset (NHD) is approximately 109 miles with a slope 
that varies from 0% to 21%. The study area includes 493 georeferenced VDOT bridges and 
culverts.  Because a high portion of the study area consists of low-relief terrain, especially the 
easternmost portion of the study area, R2S2 uses a two-dimensional (2D) hydrodynamic model 
called Two-dimensional Unsteady Flow (TUFLOW) (Syme, 2001) (https://www.tuflow.com/). 
The area upstream of the project domain (2,010 square miles) consists of high-relief that can be 
adequately modelled using a spatially lumped hydrologic model. This upstream area is modeled 
using Hydrologic Engineering Center–Hydrologic Modeling System (HEC-HMS) to generate the 
inflow boundary conditions for the 2D domain when calibrating and evaluating the model using 



 

3 
 

historical weather events. When run in a flood warning system mode, the National Water Model 
flood forecasting product replaces the HEC-HMS model to retrieve and generate the inflow 
boundary conditions for the 2D domain.   

 

 
Figure 1. The study domain consisting of a 2D hydrodynamic model and 11 Subwatersheds that contribute 

the boundary inflow to the 2D model domain 
 

 
Task 1: Model Evaluation 

 
Prior to Phase II of this project, there was limited understanding about the accuracy of the 

R2S2 model. It was run for the Hurricane Sandy storm event with results that generally matched 
well with observed flooding at streamflow gauging stations. The R2S2 model had not been 
evaluated for other historical storm events in order to understand predictive accuracy and limits 
of the model’s forecasting capabilities. These so called “hindcasts,” where the computational 
forecasting model is run for historical storm events using the best available information for 
reconstructing these events, are important step in documenting the model’s accuracy and utility 
as a decision support tool.  

 
In Phase I of the project, an evaluation had been done to check the model accuracy 

between using different numerical solvers: TUFLOW CPU and GPU. Continuing this evaluation 
for Hurricane Sandy, in Phase II, the effect of changing the grid cell size and the Manning’s 
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coefficient values on the model results was investigated. Then, based on the outcomes from this 
investigation and the available observation data, another storm event, Hurricane Matthew (2016), 
was chosen that had a significant impact on the study area to evaluate the model performance 
before beginning the calibration process in Task 2. 

 
Figure 1 shows the available USGS stations in the study area. By contacting USGS and 

with the help of a USGS employee (R. Russell Lotspeich), the available unpublished provisional 
water stage data for these stations were obtained. Table 1 shows the available water stage data 
for each USGS station. The data were cleaned-up and pre-processed to be compared with the 2D 
model outputs. TUFLOW has three different approaches to apply the rainfall to the 
computational cells. In Phase I, these approaches were explored and a decision made to use the 
gridded rainfall data with specific spatial and temporal resolution rather than the gauged rainfall 
data assigned to a fixed number of polygons covering the study domain. In this study, the direct 
rainfall data technique, using gridded rainfall data, was used to apply input rainfall values to 
every cell in the 2D hydrodynamic model. When the rainfall is directly applied to the cells, the 
model routes flow based on the cell topography on a cell by cell basis (Huxley and Syme, 2016). 
This is the same rainfall approach used in the flood warning system that was designed in Task 3 
that uses the National Weather Service High-Resolution Rapid Refresh (HRRR) forecast rainfall 
data (Morsy et. al, 2017). 
 

Table 1. USGS stations data availability in the study domain 
  

ID 
  

USGS Station 
Stage Depth Data 

Availability 
start End 

OS-A 02045500 NOTTOWAY RIVER NEAR STONY CREEK, VA 10/1/2003 Current Date 
OS-B 02047000 NOTTOWAY RIVER NEAR SEBRELL, VA 10/1/2002 Current Date 
OS-C 02052000 MEHERRIN RIVER AT EMPORIA, VA 10/1/2003 Current Date 
OS-D 02052090 MEHERRIN RIVER NEAR BRYANTS CORNER, VA 11/26/2012 Current Date 
OS-E 02047500 BLACKWATER RIVER NEAR DENDRON, VA 10/1/2003 Current Date 
OS-F 02047783 BLACKWATER RIVER AT ROUTE 620 NEAR ZUNI, VA 4/25/2013 Current Date 
OS-G 02049500 BLACKWATER RIVER NEAR FRANKLIN, VA 10/1/2005 Current Date 
OS-H 02050000 BLACKWATER RIVER AT HWYS 58/258 AT FRANKLIN, VA 6/30/2010 Current Date 
OS-I 02047370 NOTTOWAY RIVER NEAR RIVERDALE, VA 7/11/2013 Current Date 
OS-J 02053200 POTECASI CREEK NEAR UNION, NC 10/1/1985 Current Date 
OS-K 02051500 MEHERRIN RIVER NEAR LAWRENCEVILLE, VA 10/1/2002 Current Date 
OS-L 02051000 NORTH MEHERRIN RIVER NEAR LUNENBURG, VA 10/1/2003 Current Date 
OS-M 02044500 NOTTOWAY RIVER NEAR RAWLINGS, VA 10/1/2003 Current Date 
OS-N 02046000 STONY CREEK NEAR DINWIDDIE, VA 10/1/2003 Current Date 

 
The 2D hydrodynamic model’s finite volume schemes are heavily dependent on the grid 

cell shape and size (LeVeque, 2002; Caviedes-Voullième et al., 2012). The TUFLOW model 
GPU solver uses only a Cartesian grid with the capability of changing the grid cell size. This 
allows parallelizing the computation on multiple GPUs. To assess the model performance with 
different grid cell sizes, the TUFLOW model was executed using the GPU solver with grid cell 
sizes of 50m (Original model grid cell size in Phase I), 40 m, 30 m, and 20 m. Then, based on the 
model results, the appropriate grid cell size was selected to optimize the model performance and 
execution time.  
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In addition to selecting the appropriate grid cell size, the Manning coefficient (n) was 
also adjusted throughout the model domain based on the land cover to test its sensitivity and 
ability to improve matching observed peak stages obtained from the six USGS stations. This is 
considered part of the evaluation process to inform the team on how this parameter affects the 
model results. The model initially had Manning coefficient values determined based on the study 
area land use. To assess the sensitivity of the model to changes in the Manning coefficient, this 
coefficient was changed to be a proportion of its original value: 0.6n, 0.8n, 1.0n, 1.4n, and 1.8n. 

 
The model was tested on Hurricane Matthew, which had a significant impact on the study 

domain. Hurricane Sandy, which was originally used to develop the model, had a smaller impact 
on the study domain, even though it was one of the most destructive hurricanes to hit the east 
coast of the US. There were three additional USGS observation stations that recorded the impact 
of Hurricane Matthew than there were for Hurricane Sandy, making nine available USGS 
observation stations in total. The peak water level observed during Hurricane Matthew at most of 
the USGS stations was higher than the observed peak water level for Hurricane Sandy. 
Therefore, Hurricane Matthew was chosen for evaluating the current model status and used it for 
the calibration process. For the evaluation and calibration process, Google Cloud Platform (GCP) 
computational resources were used to run the model using the most powerful GPUs available at 
the time (4 GPUs NVIDIA P100). One run for hurricane Matthew takes about 10 hours using 
these powerful GPUs, making calibration of the model possible but still challenging.  

 
The rainfall data from Hurricanes Sandy and Matthew were obtained from the Tropical 

Rainfall Measuring Mission (TRMM). This data, collected by satellites, has a resolution of 0.25 
x 0.25 degrees, resulting in 16 cells covering the entire study area. Rainfall data from the Next 
Generation Weather Radar (NEXRAD) provided by NOAA was hoped to be used given its 
higher resolution, but there was no data available for the dates of Hurricane Sandy for the study 
area. This missing radar data can be due to scheduled maintenance at the radar sites, unplanned 
downtime due to severe weather, communications problems, or archive problems (NEXRAD, 
2018). 

 
The inflow boundary conditions from the upstream regions (sub-watersheds) of the 2D 

model domain were prepared for Hurricane Matthew using the HEC-HMS modeling software. 
Figure 2 shows the 2D model domain along with the structure of the HEC-HMS model for the 
sub-watersheds. In the HEC-HMS model, the runoff generated by rainfall inside the sub-
watershed domain is calculated based on the SCS curve number. The hydrograph is determined 
by the Clark Unit Hydrograph method. When USGS stream stations are available upstream of 
the sub-watershed outlets, the outflow at the outlets is generated from two sources: (1) discharge 
routed from the upstream USGS station using the Muskingum routing method and/or (2) flow 
generated from the rainfall inside the sub-watershed (e.g., sub-watershed 29B). If no upstream 
USGS stream station is available, rainfall is used to drive the HEC-HMS model and predict 
outflow (e.g., 23B).  Figure 3 shows the hydrograph generated at the outlet of the Subasin29B 
(39C in Figure 2) where USGS station OS-K is located as an example. 
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Figure 2. The HEC-HMS model components for the 11 subwatersheds that contribute the boundary inflow to 
the 2D model domain 
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Figure 3. An example of the generated hydrograph combining the flow routing from USGS station OS-K and 
generated runoff at the Subbasin 29B 
 
 

Task 2: Model Calibration 
 

Given the limited available data, especially the scarcity of operating river gauges and 
available data for event-based calibration, it is a challenge to calibrate such a large study area. 
Model calibration is done in conjunction with model evaluation (Task 1) using well established 
best practices in hydraulic and hydrologic modeling (Refsgaard, 1997) so that decision makers 
can have confidence in the model results. In some instances, 2D models are not used due to the 
low resolution of the available spatial data and the difficulties of calibrating the model 
parameters (Caviedes-Voullième et al., 2012). A higher resolution digital elevation model 
(DEM) is required for 2D models due to the sophisticated approaches used to predict smaller 
hydraulic processes (Nicholas and Mitchell, 2003; Horritt et al., 2006). Additionally, it is 
important to identify the appropriate Manning’s roughness coefficient, which has a significant 
effect on the 2D modeling results. There are available standard tables of Manning’s values 
(Chow, 1959) that are considered a good way to assign the roughness in 1D models, but using 
these values directly with 2D models may not always be appropriate (Horritt et al., 2006). Also, 
roughness values may depend on the topography input data resolution, and the values change 
when the resolution changes. 

  
Another challenge is the availability of the observation stream flow and stage data, which 

is compared to the model output to verify the model accuracy. As an example, this large study 
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area includes only six USGS gauges that recorded Hurricane Sandy stream stage observation. 
Three of these stations are located on the same main stream in the eastern portion of the study 
area, one is in the middle of the study area, and the other two are located in the western part of 
the study area. More gauges with wider spread throughout the study domain would help improve 
the calibration of such a large 2D model.  Therefore, in this task, the work focused on another 
more significant historical storm event to the study area, hurricane Matthew (2016), for which 
more USGS observation records were available.  Because there were other storm events prior to 
Hurricane Matthew, an assumption was made about running the model with saturated initial 
conditions. Results of this step also highlight future opportunities for data enhancements that can 
be targeted in future work to further improve the accuracy of the model. 

 
The model resulting at the end of Phase I had the following limitations: coarse resolution 

DEM, stream flowline with poor representation of reality, coarse resolution land use, and sparse 
rain gauge observation used for modeling historical storm events rather than using the gridded 
rainfall. Thus, during Phase II of this project, the main task for model calibration was focused on 
addressing these limitations by applying the following steps: 1) enhancing the model input by 
including the available higher resolution datasets and 2) conducting site visits to survey stream 
cross-sections for some bridges where USGS stations located at the low-relief east portion of the 
study domain. (This was conducted in addition collecting the bridges deck elevation. This 
information was a step to compensate for the lack of the bathymetry data.).  Finally, step 3 
included verifying the model outputs after applying the previous two steps by further 
investigating the applied rainfall datasets and methods.  Final adjustments and model 
enhancements were also made to have the best calibration based on the current available 
resolution of the input data. These steps are detailed below. 

 
Prepare and Pre-process High Resolution Input Datasets 

 
In the first step, any available high-resolution data was considered, including higher 

DEM resolution, better representation of the stream flowlines, road network crossings at the 
main stream flowlines, and higher land use resolution. The gridded rainfall data was also 
considered rather than using just observation stations with a polygon method that lacks the 
spatial variability of the rainfall distribution. Figure 4 shows the main enhancements made to the 
input data for the model. 
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Figure 4. R2S2 flood warning model enhancements in Phase II 

 
High Resolution DEM 

 
The accuracy of the modeled stream flow is directly related to the accuracy of the 

topography data that is used and the available DEMs (Horritt et al., 2006).  Light detection and 
ranging (LiDAR) systems are becoming commonly used as a remote sensing method to generate 
higher resolution floodplain topography for flood inundation modeling (Marks and Bates, 2000; 
Cobby et al., 2001). High resolution LiDAR data is available for the entire eastern portion of 
Virginia (Virginia LIDAR, 2018). The resolution of LiDAR data in Virginia varies from 0.76 m 
to 1.52 m, which is much higher than the resolution of the DEM used in the original version of 
the model (10 m). The LiDAR data is available for most of the study domain except for the 
western portion (as shown in Figure 5). The procedure to generate a high resolution DEM for the 
study region is provided in Figure 5. For areas where LiDAR data is available, the LiDAR data 
was resampled to 1 m DEM and all values were merged together. For the area where the high 
resolution LiDAR data was not available, the original 10 m DEM was kept but resampled to a 
1m DEM and merged with the other processed high resolution LiDAR data. For this portion of 
the study area, using a DEM with 10m resolution is sufficient since the changes in the 
topography for the high relief terrains can be captured by the 10 m DEM resolution. 
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Figure 5. LiDAR availability in the study domain and the procedure to generate DEM with uniform cell size 

 
Figure 6 shows a comparison between the original 10 m DEM and the new 1m DEM 

using a bridge cross-section in the study domain as an example. Overall, the cross-section at the 
bridge location from the 1m DEM is a better representation of the reality, and it also provides 
more detailed topographical features of the bridge cross-section. 

 



 

11 
 

 
Figure 6. Comparison between the original 10m DEM and the new 1m DEM using a bridge cross-section as 
an example 
 
Stream Flowline Modification 
 

The stream flowline is one of the most important features in the 2D hydrodynamic model. 
The 2D model uses the stream flowline to define the clear passway for flow generated in 2D 
domain. A better representation of the stream flowline can greatly enhance the performance of 
the model. The original stream flowline represents the overall trend of the stream network, but it 
has several obvious errors. First, the stream flowlines do not align with the natural river for some 
locations in especially flat terrains. Second, some of the significant streams are not included in 
the streamline system. Third, some stream flowlines are not located at the center of streams. All 
these errors could reduce the accuracy of the model. To address these limitations, a new version 
of the stream flowline system was generated based on the latest available NHDPlus database 
(USGS, 2018). This stream flowline data has been modified manually to ensure the high quality 
of the stream flowline system and its alignment with the newly generated high-resolution DEM. 
The difference between the original and new version stream flowline representation is shown in 
Figure 7. 
 



 

12 
 

 
Figure 7. Streamline modified to have better representation of stream network 

 
Road Network 
 

In the 2D model, it is important to define the topography of the road network to mimic 
the reality of the overland flow and runoff. To represent the roads in the 2D model, the latest 
available centerline of the roads was used. This centerline data was obtained from the Virginia 
Geographic Information Network (VGIN) as indicator of the path of the road network, and 
survey points were extracted from the created high-resolution DEM to define the road elevations 
along this path. The new version of road network includes roads not only near bridge locations, 
but also across the entire floodplain (Figure 8). It was determined that it would be best to apply 
the road network only near bridge locations and across the floodplain (rather than across the 
entire study domain). If the entire road network is used, the model would treat roads as levees for 
the small stream tributaries that might be not represented in the stream flowline dataset. 
Therefore, the new version of the road network includes roads near bridge locations and across 
the entire floodplain but not throughout the study domain.    
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Figure 8. New version of the road network defined in the 2D model 

 
Land Use and Manning’s Coefficient 

 
Manning’s coefficient in the 2D model is defined by land cover maps. To have a better 

surface roughness representation, especially channel and floodplain roughness, two sources of 
land cover data with better spatial resolution were used to replace the original land cover in the 
previous version of the model. The first source is the National Land Cover Database (NLCD 
2011: https://www.mrlc.gov/nlcd2011.php). The second source is the Virginia Land Cover 
Database (VLCD 2015), which is provided by VGIN (Virginia Geospatial Services, 2018). The 
NLCD 2011 has a spatial resolution of 30 m, and the VLCD 2015 has a spatial resolution of 3 m 
in the study region. The NLCD 2011 is used to define the Manning’s roughness values for areas 
outside of the floodplain while the VLCD 2015 is used to define the Manning’s coefficient 
within the stream channel and floodplain. Even though using the high resolution VLCD 2015 
land cover map is more accurate, doing so for the entire study domain is problematic because it 
takes more than 10 minutes for the model to read the entire VLCD 2015 land cover map. 
Therefore, this high-resolution land cover map is only applied for the channel and floodplain to 
lower the model run time. The procedure to generate the land cover map for the TUFLOW 
model is shown in Figure 9. First, a 1 km buffer is created around the main streams. Second, the 
land cover map is extracted from VLCD 2015 underneath the 1km buffer. Finally, the extracted 
land cover map is merged with NLCD 2011. The Manning’s coefficient defined for each type of 
land cover is provided in Table 2 and were taken from Kalyanapu et al., 2010. These values were 
used as initial values but further modifications were applied to them as part of the model 
calibration described in Task 3. 
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Figure 9. Procedure to merge National Land Cover Database 2011 and Virginia Land Cover Database 2015 

 
Table 2. Manning’s coefficients for different land cover types (Kalyanapu et al., 2010) 

Land Cover 
Code 

Land Cover Description Manning's 
Coefficient (n) 

11 Waterbody 0.035 
21 Developed, open space 0.040 
22 Developed, low intensity 0.068 
23 Developed, medium intensity 0.068 
24 Developed, high intensity 0.040 
31 Barren land 0.011 
41 Deciduous forest 0.360 
42 Evergreen forest 0.320 
43 Mixed forest 0.400 
52 Shrub/scrub 0.400 
71 Grassland/herbaceous 0.368 
81 Pasture/hay 0.325 
82 Crop/vegetation 0.323 
90 Woody wetlands 0.086 
95 Emergent herbaceous 

wetlands 
0.183 

 
Conducting Site Visits 

 
For the second step, site visits were conducted, particularly focusing on the low relief 

area in the eastern portion of the model domain, which includes the Blackwater River that has a 
lack of bathymetry data. During these visits, cross section information and bridge deck elevation 
were collected where the USGS stations are located. This collected data was compared to the 
high-resolution DEM that was created, and the streamflow line evaluation points were adjusted 
accordingly to improve the model accuracy. All the USGS stations on the east portion of the 
model were visited (OS-E, OS-F, OS-G, OS-H, and OS-I). Figure 10 shows an example of 
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collected cross sections upstream and downstream of the USGS station OS-H and the bridge 
0871972-000000000029234 that were located at 36.68044, -76.9183.  

 

 
Figure 10. An example of the a) upstream, and b) downstream cross section at the USGS OS-H collected 
during the site visit 

 
Further Enhancement to the Model 

 
After comparing the modeled and observed stage depth at the USGS stations, there was a 

suspicion that there might be missing runoff volume. Therefore, for the final step, the gridded 
rainfall data from TRMM was compared with gauged rainfall data before making any further 
adjustments to the model parameters. This was accomplished by collecting the recorded rain 
gauge data available from 12 NOAA gauges (Table 3), which was used as inputs to generate 
model output; this model output was compared to the model output from using the TRMM 
gridded rainfall data. This was done due to the coarse spatial (0.25 x 0.25 degrees) and temporal 
(3 hr) resolution for the gridded rainfall data that is available for hurricane Matthew. The gauged 
rainfall data was collected for the duration of Hurricane Matthew from the NOAA gauges, which 
have the complete rainfall data records for this storm. Then, by using an Inverse Distance 
Weighting (IDW) method available within the TUFLOW model, this rainfall data was converted 
to gridded rainfall data with higher spatial (500 x 500 m) and temporal resolution (~20 min). 
This was done to take into consideration the spatial distribution of the storm event. Then this 
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data was applied to the model to verify the quality of the used gridded rainfall data used during 
Tasks 1 and 2.  

 
Table 3. NOAA stations with the availability of Hurricane Matthew rainfall data for the study domain 

 
  

ID 

  
NOAA Stations 

Rainfall Data Availability 
start End 

RG-A 72027803704 EMPORIA-GRENVLE RGNL ARPT, VA 1/1/2006 Current 
RG-B 72401993773 WAKEFIELD MUNICIPAL ARPT, VA 1/1/2006 Current 
RG-C 72308313763 FRANKLIN MUNICIPAL-JOHN BEVERLY ROSE AIRPORT, VA 10/16/1994 Current 
RG-D 72077799999 LAWRENCEVILLE BRUNSWICK MUNI, VA 6/25/2014 Current 
RG-E 72401599999 ALLEN C PERKINSON BLACKSTONE AAF / FT PICKETT, VA 9/22/2003 Current 
RG-F 72401493714 DINWIDDIE COUNTY AIRPORT, VA 1/1/2006 Current 
RG-G 72400703719 SUFFOLK MUNICIPAL AIRPORT, VA 1/1/2006 Current 
RG-H 72307993796 TRI-COUNTY AIRPORT, NC 1/1/2006 Current 
RG-I 72411893797 MCKNBRG-BRUNWICK RGNL ARPT, VA 1/1/2006 Current  
RG-J 72308793735 FELKER ARMY AIRFIELD, VA 11/1/1960 Current 
RG-K 72049999999 HAMPTON ROADS EXECUTIVE AIRPORT, VA 5/3/2011 5/20/2018 
RG-L 72308693741 NWPT NEWS/WIMBURG INTL APT, VA 1/1/2000 Current 

 
Further enhancement and calibration were done for the model by refining the hydraulic 

features and parameters of the model like the Manning coefficient and stream flowline width 
based on the available imagery data for the study domain. As a second calibration check, the 
modeled flow data at the USGS stations were compared to the observations. This gave an 
indication of the current model status for modeling the stage depth and flow throughout the study 
domain. 

 
 

Task 3: Workflow Automation 
 

This task focused on further automating data flows internal to the R2S2 model and design 
of a cloud-based, real-time modeling system for a 2D hydrodynamic model. This is to support 
decision-makers in assessing flood risk in Hampton Roads District area. Amazon Web Services 
(AWS) was used to build the flood warning system prototype. The prototype includes cloud-
based execution for the 2D hydrodynamic model with high spatial resolution input data, 
utilization of GPUs for model execution speed-up, and a web front-end for dissemination of 
results and model initiation. The system is designed to run automatically if an extreme weather 
event is forecasted and produce results in near real-time. 

 
There are two main forcing data sources used as inputs to the system: 1) the gridded 

forecast rainfall data and 2) the inflow boundary conditions for the 11 sub-watersheds 
surrounding the study area. In Phase I (Morsy et al. 2017), the HRRR data was chosen as the 
source for the gridded forecast rainfall data to the flood warning system. This HRRR data is 
missing the real-time rainfall data that the system uses for the first running time step. Also, using 
the HEC-HMS to generate the inflow boundary condition for the study area during operation as a 
flood warning system would increase the uncertainty in the forecasts. To address these issues, a 
decision was made to benefit from data available through the National Water Model (NWM), a 
new federal modeling effort, for the study domain. Using the NWM data would reduce the 
uncertainty of using the HEC-HMS model to prepare the boundary condition for the 2D model. 
This is because the NWM conduct assimilation for its results with the available USGS stations.   
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The NWM was also used to obtain the missing real-time rainfall layer within the HRRR data to 
the system. This rainfall data is pre-processed and prepared as an input to the NWM.  

 
The NWM is a multi-agency effort in collaboration with the academic community and 

sponsored by NOAA to improve river and flood forecasts (Maidment, 2017) 
(http://water.noaa.gov/about/nwm). A key component of the NWM is a model called Routing 
Application for Parallel Computing of Discharge (http://rapid-hub.org/) that was developed to 
operate on the 2.67 million NHDPlus catchments and uses parallel computing to solve the 1D 
Muskingum flow equations on this large river network (Maidment, 2017). The NWM has made 
large strides in providing flood forecasting information on a large scale. However, the coarse 
resolution of the NWM and the use of a 1D hydrological model may not be sufficient for low 
relief terrains, such the coastal plain of Virginia. Running the R2S2 flood warning system in 
conjunction with the NWM allows the system to automatically obtain and pre-process the inflow 
boundary condition from the 11 sub-watersheds whenever the flood warning system is initiated 
due to forecasts extreme weather conditions. Moreover, The NWM was also used to obtain and 
pre-process the real-time rainfall data automatically whenever the system starts. This real-time 
rainfall data was used along with the 18 forecasted rainfall layers for the upcoming 18 hours 
from the HRRR data. Scripts were written using the Python programming language to 
automatically retrieve and pre-process the real-time rainfall data that is required for the first-time 
step of running the TUFLOW model and the inflow boundary condition. These scripts prepared 
both datasets in the required format for the TUFLOW model.  

 
In summary, the goal of this task was to deliver a system that can (a) constantly monitor 

weather conditions, (b) automatically trigger model runs when extreme weather is forecast, and 
(c) provide VDOT with timely and actionable information on potential impacts throughout the 
duration of the flooding.  
 

 
RESULTS AND DISCUSSION 

 
Task 1: Model Evaluation 

 
The TUFLOW model was executed using the GPU solver with different grid cell sizes 

using 50 m (Original model grid cell size in Phase I), 40 m, 30 m, and 20 m. For Hurricane 
Sandy, the output data from each of these runs with different grid cell sizes was compared to the 
available observed data for hurricane Sandy at six of the USGS stations. This comparison also 
includes the model results from executing the model using the CPU solver with cell size of 50 m. 
The modeled peaks using the GPU solver with 50 m grid cell size were significantly higher than 
the observed data and the model peaks using CPU solver at four USGS stations (OS-A, OS-B, 
OS-C, and OS-E). However, at one of the USGS station (OS-H), the modeled peak using the 
GPU solver with 50 m grid cell size was significantly lower than the observed data and the 
modeled peak using the CPU solver. Finally, at another USGS station (OS-G), the modeled peak 
using the GPU solver with 50m grid cell size was almost the same as the model peak using the 
CPU solver; however, both the peaks were significantly lower than the observed data. The 
differences between the modeled and observed peak stages could be due to the original coarse 
DEM resolution (10 m) and the lack of adequate bathymetry data in the major rivers and 
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tributaries. For all of the minor tributaries and some stretches of the main rivers, bathymetry had 
to be assumed because no bathymetry data was available for the whole study domain.  

 
Decreasing model grid cell size improved the matching of observed peaks at four of the 

six observation sites. Therefore, a decision made to use a smaller cell size in the model 
application. The drawback of a smaller cell size is an increase in model execution time. Figure 
11 shows the model execution time using the GPU solver with different grid cell sizes (50 m, 40 
m, 30 m, and 20 m). Figure 11 also shows the Mean Absolute Error (MAE) generated from 
comparing the model output using a GPU solver with different grid cell sizes and the model 
output using the CPU solver with the 50 m grid cell size. Based on these results, the 30 m cell 
size was chosen since there is only a small difference in the results using the GPU solver with a 
20 m grid cell size model and there is a significant increase in the model run time (2.8x from 
10.2 hours to 28 hours for Hurricane Sandy). 

 
Figure 11. Model run time using GPU solver with different grid cell sizes and the corresponding MAE versus 
CPU solver (Morsy et al., 2018) 

 
In addition to decreasing the grid cell size to 30m, the Manning coefficient was also 

changed to be 0.6n, 0.8n, 1.0n, 1.4n, and 1.8n of the original value. As the Manning coefficient 
value decreased, the modeled peak stages became closer to the observed peaks at stations OS-A, 
OS-B, OS-C, and OS-E. After reducing the grid cell size from 50 m to 30 m and the Manning’s 
coefficient to 0.6n, the model came the closest to matching observed peak river stage. This 
represents a preliminary calibration of the model that was further investigated in Task 2. 

 
Figure 12 shows the results of using the gridded rainfall data provided by TRMM for 

Hurricane Sandy when executing the model with grid cell size of 30 m and 0.6n using the GPU 
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solver. Using the gridded rainfall data with this coarse resolution produces results very similar to 
those found when using the rainfall gauge data and the polygon method (Morsy et al., 2017). The 
model results nearly match the observation peaks at OS-A, OS-B, OS-C, and OS-E USGS 
stations. The other two USGS stations, OS-H and OS-G, where the modeled peaks are further 
from the observed peaks, are located on the same stream at the eastern portion of the study area 
along with Station OS-E. This area is the most low-relief terrains in the study domain. At OS-E 
station, the model predicts a slightly higher peak than the observed data and the modeled peak 
using the CPU model. The second station (OS-G) has a much lower peak than the observed data. 
However, the modeled peak using the CPU solver is even lower than the modeled peak using the 
GPU solver. The peak at station OS-H is much higher than the observed peak and the modeled 
peak using the CPU solver. The variation between the observed and modeled peaks at these three 
stations could be due to the coarse DEM resolution (10 m) used in the model. The slightly higher 
peak at OS-E may be due to slopes derived from the DEM being milder than the real slopes. The 
much lower peak and lower volume at OS-G could be due to having slopes derived from the 
DEM that are much steeper than the real slopes. Like with OS-E, the much higher peaks at OS-H 
may be due to the DEM-derived slopes, which are milder than the real slopes. This would 
explain why the absolute differences in the peaks at stations OS-G and OS-H are nearly the 
same, but the one is below and the other is above the observed peak. If the slopes of the 
contributing areas to station OS-G were milder, the peak there would be higher and the peak at 
the downstream station (OS-H) would be lower, making both closer to the observed data. This 
might improve if a higher DEM resolution is used within the model than what was applied in 
Task 2. 
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Figure 12. Comparisons between the observed stage depth data and the modeled depth generated from using 
a GPU solver with 30 m cell size and 0.6n Manning coefficient values (Morsy et al., 2018) 

 
To test the model on another storm event with much more serious impact on the study 

domain, the model was tested on Hurricane Matthew (2016). The peak water level observed with 
Hurricane Matthew at most of the USGS stations was higher than that observed with Hurricane 
Sandy. Therefore, Hurricane Matthew was chosen for evaluating the current model status (with 
30 m computational cell size) and it was used for the calibration process. The model was tested 
on Hurricane Matthew and the results were compared with water level observations from the 
nine USGS stations, as shown in Figures 13 and 14. Overall, the performance of the model was 
found to be much better than its performance with Hurricane Sandy. The results show a fairly 
good fit at stations OS-A, OS-C, OS-E, and OS-F. The model outputs captured the general trend 
of observation from station OS-B, OS-D, and OS-G. The model did not perform well at station 
OS-H and OS-I, possibly because these two stations are located on the flattest region of the study 
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domain. It is very challenging to conduct flood modeling for this region due to the lack of 
topographic relief. For these reasons, in Task 2, further calibration work was done to enhance 
and improve the accuracy of the model. 

 

 
Figure 13. Model evaluation on Hurricane Matthew by comparing with USGS observations at OS-A, OS-B, 
OS-C, OS-D, OS-E, and OS-F 
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Figure 14. Model evaluation on Hurricane Matthew by comparing with USGS observations at OS-G, OS-H, 
and OS-I 

 
Task 2: Model Calibration 

 
In this task, the focus was on calibrating the model to address the limitations and 

inaccuracies of the model identified through Task 1. It was found that the most significant factors 
affecting the model performance were the DEM spatial resolution, the streamflow line 
representation and its consistency with the DEM, and the land use resolution with its 
corresponding Manning’s coefficient. 

 
After enhancing the model input by including the available higher resolution datasets 

described in the Methods section, the model outputs showed better fit with observations at the 
USGS stations OS-A, OS-C, OS-B, OS-D, OS-E, and OS-F (Figure 15). The initial water level 
from the current version of the model is much closer to the observed initial water level. As the 
most important factor for assessing the impact of flooding to bridges, the peak water level 
simulated from the calibrated model is much more accurate at most of the USGS stations. 
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Figure 15. Model output for Hurricane Matthew before and after the high resolution inputs was implemented 
at USGS stations OS-A, OS-C, OS-B, OS-D, OS-E, and OS-F 

 
However, the model still had poor accuracy at the three stations located on the southeast 

portion of the model, as shown in Figure 16, which is the flattest region in the study domain. Due 
to the lack of reliable bathymetry or river cross-section survey in this region, it is difficult to 
define the correct geometry features of rivers, i.e., river bed elevation and width. The historical 
cross-section survey for some bridges in this region was provided by VDOT (specifically by 
John H. Matthews). Also, the bridge cross-section was surveyed for this region in mid-June 
2018. Both sources of the bridge cross-section survey were taken into consideration to determine 
the river geometry features of this region.  
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Figure 16. Model output for Hurricane Matthew before and after the high resolution inputs was implemented 
at USGS stations OS-G, OS-H, and OS-I 

 
Since the rainfall data is a critical input to the model, before making further changes to 

the model parameters as part of the calibration work, first the quality of the TRMM gridded 
rainfall data was verified. This was accomplished by running the model with gauged rainfall data 
obtained from NOAA. First the data quality collected from the available NOAA gauges (12 
NOAA gauges) was investigated. This step was also taken to verify that significant runoff 
volume was not missed. Figure 17 shows the collected cumulative rainfall data at each of the 12 
NOAA gauges. There were some gauges that did not match the trends of their neighboring 
gauges. In significant rainfall events, such as Hurricane Matthew, sudden flat lines result in this 
cumulative rainfall data that typically means a gauge was non-operational for that period. Gauge 
RG-I appears not to have been operational until after the main event passed, after comparing this 
gauge’s cumulative rainfall to another gauge in close proximity (RG-D). The first value for the 
gauge RG-I was on October 9, 2016. At this time, Gauge RG-D had received over 150mm while 
RG-I was dry. Gauge RG-H appears to have failed right before the main storm hit, as shown in 
Figure 17 with the flat line in the graph. Gauge RG-K had one of the largest rainfall totals, 
though it also dropped its signal for a short period near the end of the event. If this rainfall 
dataset was used as is, it would likely add errors and uncertainty to the model output, as this 
dataset was used to generate the gridded rainfall data for Hurricane Matthew using the IDW 
methods available with the TUFLOW model. This issue was solved by excluding gauges RG-I, 
RG-J, and RG-K and only using the data from the nearby gauges RG-D, RG-L, and RG-G, 
respectively. Because there was no nearby gauge to RG-H, its data was substituted with the 
gauge RG-C. After applying these changes, a significant improvement was noticed to the 
modeled hydrographs at the USGS stations OS-G, OS-H, and OS-I. This significant 
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improvement strongly suggests that the gridded rainfall data generated from using the IDW 
interpolation method with the gauged rainfall data provides a better representation of the rainfall 
than using the TRMM data. This could be due to the finer temporal resolution (~20 min) and 
spatial resolution (500 x 500 m) used with the generated gridded rainfall data. Figure 18 shows 
the selected NOAA gauges with the hyetographs used for Hurricane Matthew for the rest of the 
calibration process. Most of the rainfall volume were recorded at 4 NOAA gauges (RG-B, RG-C, 
RG-G, and RG-H), which are located mainly on the eastern half of the study domain. 

    

 
Figure 16. Cumulative rainfall data at each of the 12 NOAA gauges for Hurricane Matthew (2016)  

 
After validating the rainfall data, the hydraulic features were fine-tuned (e.g., the 

streamflow line width) and parameters (e.g. Manning’s coefficient) in the study domain to have a 
better calibrated model. The main streamflow line widths were adjusted based on the available 
imagery data. This imagery data was also used to judge the Manning’s coefficient values around 
the USGS stations that had model outputs incommensurate with the observations. Regarding the 
Manning’s coefficient values used, it was noticed that these values were excessively high and 
much higher than industry standards for some of the land covers. Because of the large domain of 
the study area, it was impractical to conduct a site visit to the entire area. However, a 
combination of the highly accurate available land cover, and imagery data and photos available 
from Google Maps was used to adjust the Manning’s coefficient values appropriately. The new 
Manning’s coefficient values were used, which are recommended by the TUFLOW model 
developers (Brisbane City Council, 2018). After several runs with adjusting the Manning’s 
coefficient values, Table 4 shows the final Manning’s coefficient values used in the calibrated 
model.  
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Figure 18. The selected NOAA gauges with the hyetographs used for Hurricane Matthew (2016)  
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Table 4. Modified Manning’s coefficients values for Different Land Cover Types based on the calibration 
process 

Land Cover 
Code 

Land Cover Description Manning's 
Coefficient (n) 

11 Waterbody 0.035 
21 Developed, open space 0.040 
22 Developed, low intensity 0.068 
23 Developed, medium intensity 0.068 
24 Developed, high intensity 0.040 
31 Barren land 0.011 
41 Deciduous forest 0.12 
42 Evergreen forest 0.10 
43 Mixed forest 0.15 
52 Shrub/srcub 0.15 
71 Grassland/herbaceous 0.12 
81 Pasture/hay 0.10 
82 Crop/vegetation 0.10 
90 Woody wetlands 0.086 
95 Emergent herbaceous 

wetlands 
0.15 

 
The model was rerun after each enhancement of the hydraulic features and parameters 

until an acceptable match was found between the modeled and observed stage depth (see Figures 
18-a and 18-b). Figures 19 and 20 show an excellent fit with observations at all USGS stations 
with a maximum difference of about 0.5m between the observed and modeled stage depth 
hydrographs. The initial water level from the current version of the model is much closer to the 
observed initial and final water levels. The overall trend of the stage depth hydrographs 
generated from the calibrated model showed a better match with the observations, especially for 
the USGS stations OS-G, OS-H, and OS-I. 
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Figure 19. Final model output for Hurricane Matthew at USGS stations OS-A, OS-C, OS-B, OS-D, OS-E, and 
OS-F 
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Figure 20. Final model output for Hurricane Matthew at USGS stations OS-G, OS-H, and OS-I 
 
For bridge management purposes during flooding events, the calibration process was 

specifically conducted so that the modeled stage depths would match the observed stage depths. 
At the same time, the flow rate simulated at bridge locations was also considered so that it can be 
used for other future studies and so that it provides more confidence in the model’s accuracy. 
Therefore, a second evaluation check was conducted by comparing the modeled flow rate at the 
USGS stations with the USGS observations. Figures 21 and 22 show the match of the modeled 
flow to the observed flow rate hydrographs. At the majority of the USGS stations, the modeled 
flow rate shows a good match with the observed flow rate (i.e., OS-A, OS-C, and OS-D). 
However, the peak flow rate simulations at a few of the USGS stations (OS-B, and OS-E) show 
about 20 to 60 𝑚𝑚3/𝑠𝑠 difference to the observations with relative error of -20.15% and 110.72% 
respectively. Sometimes these differences in the peak flow could be due to the model 
computational cell resolution. To generate the modeled flow rate hydrographs, a line across the 
desired location was defined to aggregate the flow rate within the computational cells that were 
covered with this defined line. At some points due to the resolution of the model (30 m), the 
exact flow pass was not obtained at the desired cross section. The flow rate simulation for USGS 
stations shown in Figure 20 shows the flow rate simulation for the USGS stations located at the 
Blackwater River at the east portion of the model. The hydrographs were ordered from the 
upstream to downstream of the Blackwater River with the first station of OS-E and the last 
station of OS-I. Other than station OS-E, the modeled flow has an acceptable match with the 
observed flow for all of the USGS stations. The modeled flow rate hydrograph at OS-E matches 
the observed hydrograph for the rising and recession limbs, until a specific point. At this point, a 
higher spike was shown of the flow compared to the observations. Overall, however, the model 
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provides fairly accurate results for the calibration of such a large region, especially given the 
challenges involved in working with a 2D model. 
 

 
Figure 21. Final model flow output for Hurricane Matthew show higher peaks than the observations at USGS 
stations OS-A, OS-B, OS-C, and OS-D 
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Figure 22. Final model flow output for Hurricane Matthew show good matching to the observations at USGS 
stations OS-E, OS-F, OS-G, OS-H, and OS-I 

 
 
 

Task 3: Workflow Automation 
 
Figure 23 shows the design of the automated workflow for the cloud-based flood warning 

system. This system uses three AWS resources: (i) A low cost EC2 t2.micro instance running a 
Linux operating system, (ii) An EC2 G2 or P2 instance with a Windows operating system, and 
(iii) A S3 Bucket. The EC2 t2.micro instance has two roles in the workflow. First, the instance 
continuously monitors rainfall forecasts to identify an extreme weather event. When an extreme 
weather event is identified, the EC2 t2.micro instance starts the EC2 G2 or P2 instance and a 
model run is initiated. Second, the EC2 t2.micro instance serves the webpages used to visualize 
and disseminate the model results computed by the larger EC2 G2 or P2 instance. The EC2 G2 
or P2 instance includes all of the model components. The EC2 G2 or P2 instance retrieves, 
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preprocesses, prepares the forecast rainfall data and the NWM data, and executes the 2D 
hydrodynamic model. After the model runs, the EC2 G2 or P2 instance sends model outputs to 
the EC2 t2.micro instance for visualization and dissemination. The pre-processed inputs, rainfall 
and boundary condition data, and the model outputs are also sent to the S3 bucket for archiving 
and reproducibility purposes. 
 

 
 

Figure 23. Design of the automated workflow for flood warning model using AWS resources 
 

There are two classes of users that can access the model outputs via the web application 
running on the EC2 t2.micro instance: regular users and power users. Regular users can access 
the current flooded locations and can register to receive alerts via email whenever locations are 
forecast to flood. In the current implementation, regular users do not need to authenticate with 
the system. Power users have more privileges than regular users, including access to all the 
archived inundation maps from the S3 bucket and the ability to run the model at any time via a 
powershell script or through the website hosted by the t2.micro instance. 

 
The main application in the web framework runs on the EC2 t2.micro instance. Code was 

added to this script for monitoring and accessing the other EC2 G2 or P2 instance. In this code, a 
process is run every hour to check the HRRR rainfall data (which is updated hourly). If the 
rainfall is over a certain threshold value, the code will start the EC2 G2 or P2 instance that 
includes the hydrologic model. Then the EC2 t2.micro instance keeps monitoring the EC2 G2 or 
P2 instance to make sure that it is fully started. Then the EC2 t2.micro instance initiates a batch 
file on the EC2 G2 or P2 instance that runs the main workflow for retrieving the data, executing 
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the model, and generating the output (Figure 24). The 2D hydrologic model takes about 10 
minutes to run using model grid resolution of 50m (Morsy et. al, 2017). The 2D hydrologic 
model takes about 38 minutes to run using the model grid resolution of 30m. The model running 
time is varied based on the number and type of the used GPUs. 

 

 
Figure 24. The structure of the batch file that is responsible for running the whole workflow automatically 

 
This batch file automates the model execution and operates as follows. First, the HRRR 

data is retrieved and processed. Then, the real-time rainfall and boundary condition data is 
retrieved from the NWM and processed. Once the input data is retrieved and is available for the 
2D model, the model is run and the maximum water level at each computational cell within the 
study area is computed and recorded for the duration of the simulation period. Once the 
maximum water level output file is available, a KMZ file is generated from the model output file. 
This KMZ file includes the following: 1) information about each bridge and culvert provided by 
VDOT, 2) the maximum water level predicted by the model, and 3) by how much each bridge 
would be overtopped. The KMZ file is sent to the t2.micro instance to be used for visualization 
on the website. A log file is generated that includes a record of the parameters and scripts used in 
the whole process as a reference for users or decision makers. This is helpful to record any errors 
that could happen while running the workflow. The log file is sent to both the EC2 t2.micro 
instance and the S3 Bucket for archiving. Finally, any files generated from running the whole 
workflow are deleted to minimize the storage on the EC2 G2 or P2 instance. 

 
Figure 25 shows the architecture of the current system’s website. On the main view, the 

website contains a navbar allowing the selection of which data to view, a link to the log file, a 
login page, and a page to register for email alerts. The Google Maps JavaScript Application 
Programing Interface (API) was used to easily display an accurate and up to date base map along 
with bridge condition forecasts. When a user clicks on a marker signifying a bridge, they are 
presented with a box containing more information about that bridge and potential flooding 
events. Users can sign up for flood alerts. The application will detect when flooding is possible 
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and send an email to everyone registered. Through the website, power users can display output 
data archived in the AWS S3 bucket without having to store output in the t2.micro instance, 
which has a limited amount of storage. The power user also can initiate a model run anytime as a 
second option to run the system as an alternative to the power shell script. 
 

 
Figure 25. EC2 t2.micro instance and the web framework used to build up the website (Morsy et al., 2018) 

 
The system was designed to be transferable to any cloud computing provider that has 

better services or prices. The system can also be run on-premises instead of in the cloud if 
resources are available and security is a concern. Several cloud computing providers were 
compared and it was found that Google Cloud Platform (GCP) best met the needs of the project. 
While comparing cloud services, it was found that GCP provided additional benefits over AWS 
in a couple of key areas. The first key area and biggest benefit is cost. The cost for one hour of 
the model instance on GCP was around $4.50, which was cheaper than the AWS GPU machine 
($8.70/hr) at the time. Additionally, AWS has slower GPUs than GCP. At the time of 
experimentation, AWS charged a full hour of compute time whenever a machine was started. For 
the short model runs this led to paying for a lot of computing time that was not used. GCP, 
however, only charges to the nearest minute. GCP allows full customization of the technical 
specifications of the instances. This allowed the team to specify an instance with the high-
performance GPUs necessary for the model run but not to waste resources on CPUs and 
Memory. The second key area is the implementation. The GCP ecosystem is also very integrated 
within itself and allows for easy API calls between instances. This allowed the transfer of data 
between compute resources to be easier and more secure. While all of these benefits point 
towards GCP being a better solution at the time of experimentation, the cloud computing market 
is rapidly growing with each competitor changing their feature sets daily. The solution was 
designed to be platform independent to allow it to be run on the best available option. 
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A Version 2 web application has been created which is based on a ReactJS single page 
application and replaces the KMZ files with a PostgresSQL database to store model results at 
each VDOT structure location (VFIS, 2018). During this enhancement, a water stage time series 
was generated at each bridge location in the study area rather than just relying on the maximum 
water elevation raster. This will allow the system to track exactly what is happening at each 
bridge location. This V2 web application will provide a much faster and more user-friendly 
experience. This will also allow the team to expand the system with more statistical analysis and 
assessment studies to compare the system forecast with the real events. This new web interface 
will also allow for comparison between the different available options for flood forecasting (e.g., 
national vs regional flood forecasts) to better inform decision makers. 

 
 

 
CONCLUSIONS 

 
● The quality of the input data, in particular topography, bathymetry, rainfall, and surface 

roughness, has significant impact on the model calibration process and model performance. 
 
● Conducting site visits and surveying stream cross-sections, rather than relying solely on 

remotely sensed LiDAR data, was very important in improving the model accuracy, 
especially for the lowest-relief regions.  

 
● The calibrated models shows a good match for the observed water elevation and flow at most 

of the observation stations. After the calibration process, relative error was within the range 
of -0.6% to 17.6% between the observed and modeled water surface elevation. However, the 
eastern-portion of the watershed, which has very flat terrain, remains the most difficult 
region to model accurately.  

 
● Even with the efforts to speed up the model and advancements in currently available GPUs, a 

big challenge of the calibration process remains the model run time. For Hurricane 
Matthew, which was a 430 hour simulation period, the model takes on average 10 hours to 
run using the current available high-end GPUs. This limits the number of different scenarios 
that could be tested during the calibration process. 

 
● Using the available cloud computing resources, an automated end-to-end flood warning 

system (i.e., from forecasts to projected bridge impacts) was designed and built with a 
customized website to support decision makers in near real-time.   
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RECOMMENDATIONS 
 
 As this report was being finalized in the spring of 2019, the Governor and the Virginia 
General Assembly determined that coordinated state agency research activities in the areas of 
climate change, sea level rise in coastal areas, roadway flooding due to storm surge, and roadway 
management strategies in flooding events are desirable.  The Department of Natural Resources 
has been identified as the lead agency for these initiatives.  This study’s recommendation 
therefore reflects that new interagency approach. 
 
1. The Virginia Transportation Research Council should brief the executives in the Department 

of Natural Resources (DNR) on the work accomplished to date on the R2S2 model.  The 
briefing should include the capabilities of the current model, its current limitations, and 
potential modifications that could improve the model.   

 
 
 

IMPLEMENTATION AND BENEFITS  
 

Implementation 
 
  Recommendation 1 will be implemented by the VTRC Deputy Director of Research in 
fy20.  The Chief Resiliency Officer and/or the Special Assistant to the Governor for Coastal 
Adaptation in DNR will be contacted about a potential meeting date to discuss the R2S2 model as 
a tool to forecast potential flooding impacts in real-time for roadway management responses in 
coastal areas.  If appropriate, the discussion can also include a discussion of additional efforts 
which would further test the model’s accuracy and/or expand the model to additional regions of 
Virginia.   
  
 If additional effort is warranted as a result of the discussion with DNR, the ways in which 
R2S2 could be improved include the following : (1) develop system enhancements to provide 
longer-range forecasting (i.e., 3-5 days vs. 18 hours) of flooding impacts to anticipate potential 
impacts of major storm events such as hurricanes further in advance; (2) include additional 
bridge cross-section data and river bathymetry when available in the coastal study region to 
improve the model accuracy, especially in the easternmost portion of the study area that has very 
low relief terrain; (3) provide additional model evaluation using VDOT records of bridge and 
culvert road closings due to flooding in the coastal study region. Other potential R2S2 

enhancements include making use of river forecasting information from the National Water 
Model, and exploring the possibility of flash flood forecasting for small catchments that are 
flood prone.    
 
 

Benefits 
  

If the R2S2 flood warning system is judged to be worthy of implementation by DNR, 
VDOT officials and potentially local public works officials in much of the Hampton Roads 
District could be provided with advance information on forecasted flooding impacts to bridges 
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and culverts. This information can be used for road and bridge closure decisions, ultimately 
increasing driver safety during storm events. For VDOT, use of the R2S2 model could also allow 
improved prioritization of the use and timing of limited VDOT maintenance resources and would 
provide VDOT and coastal localities with additional time to plan for major storm events. 
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