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Abstract:  

 

This report describes the research performed by the Center for Sustainable Transportation Infrastructure (CSTI) at the 

Virginia Tech Transportation Institute (VTTI) to develop a pavement condition prediction model, using (negative binomial) 

regression, that takes into account pavement age and pavement structural condition expressed in terms of the Modified Structural 

Index (MSI).  The MSI was found to be a significant input parameter that affects the rate of deterioration of a pavement section 

with the Akaike Information Criterion (AIC) suggesting that the model that includes the MSI is, at least, 50,000 times more likely 

to be closer to the true model than the model that does not include the MSI.  For a typical pavement at 7 years of age (since the 

last rehabilitation), the effect of reducing the MSI from 1 to 0.6 results in reducing the critical condition index (CCI) from 79 to 

70. 

 

              The developed regression model predicts the average CCI of pavement sections for a given age and MSI value.  In 

practice, the actual CCI of specific pavement sections will vary from the model-predicted condition because many (important) 

factors that affect deterioration are not considered in the model.  Therefore an empirical Bayes (EB) method is proposed to better 

estimate the CCI of a specific pavement section.  The EB method combines the recorded CCI of the specific section with the CCI 

predicted from the model using a weighted average that depends on the variability of individual pavement sections performance 

and the variability of CCI measurements.  This approach resulted in improving the prediction of the future CCI, calculated using 

leave one out cross validation, by 21.6%. 
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ABSTRACT 

 

This report describes the research performed by the Center for Sustainable Transportation 

Infrastructure (CSTI) at the Virginia Tech Transportation Institute (VTTI) to develop a pavement 

condition prediction model, using (negative binomial) regression, that takes into account 

pavement age and pavement structural condition expressed in terms of the Modified Structural 

Index (MSI).  The MSI was found to be a significant input parameter that affects the rate of 

deterioration of a pavement section with the Akaike Information Criterion (AIC) suggesting that 

the model that includes the MSI is, at least, 50,000 times more likely to be closer to the true 

model than the model that does not include the MSI.  For a typical pavement at 7 years of age 

(since the last rehabilitation), the effect of reducing the MSI from 1 to 0.6 results in reducing the 

critical condition index (CCI) from 79 to 70. 

 

The developed regression model predicts the average CCI of pavement sections for a 

given age and MSI value.  In practice, the actual CCI of specific pavement sections will vary 

from the model-predicted condition because many (important) factors that affect deterioration 

are not considered in the model.  Therefore an empirical Bayes (EB) method is proposed to 

better estimate the CCI of a specific pavement section.  The EB method combines the recorded 

CCI of the specific section with the CCI predicted from the model using a weighted average that 

depends on the variability of individual pavement sections performance and the variability of 

CCI measurements. This approach resulted in improving the prediction of the future CCI, 

calculated using leave one out cross validation, by 21.6%.
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INTRODUCTION 

 

One of the main goals of the Virginia Department of Transportation (VDOT) is to keep 

the entire road network operating at a high serviceability level.  Accurate pavement performance 

prediction can significantly help pavement managers achieve that goal. Current pavement 

performance prediction models (also called deterioration models or deterioration curves) used by 

VDOT do not directly take into account how the pavement structural condition affects pavement 

performance. This will result in less than optimal decisions as research has shown that the 

pavement structural condition significantly affects the pavement performance (Bryce et al., 2013; 

Flora, 2009; and Zaghloul et al., 1998).  In 2007, Stantec Consulting Services Inc. with the 

cooperation of H.W. Lochner Inc., henceforth referred to as Stantec, developed default pavement 

deterioration models for VDOT.  The practice within VDOT is to use two types of performance 

prediction models: site specific models where sufficiently accurate site specific data are available 
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and default models where such accurate data are not available.  Data accuracy is determined 

through quality checks that predict the minimum and maximum service life, which are compared 

with a pre-defined range of acceptance. 

 

Although the pavement structural condition was not directly incorporated in the default 

deterioration models developed by Stantec, it was recognized that different pavement 

rehabilitation treatments have different effects on the pavement structural condition and hence 

future performance. Therefore, different default deterioration models were developed for the 

different pavement rehabilitation treatments. These rehabilitation treatments are grouped into 

four maintenance categories namely, preventive maintenance (PM), corrective maintenance 

(CM), restorative maintenance (RM), and reconstruction (RC). In summary, the approach 

followed by Stantec was to use the windshield pavement survey data and develop pavement 

performance models assuming all pavement sections had CM as a last treatment. The assumption 

of a last treatment was necessary as the windshield data did not record the type of the last 

treatment. Expert opinion from within VDOT was then combined with the developed model for 

CM to develop models for the remaining three maintenance categories (Stantec, 2007). 

 

 

 

PURPOSE AND SCOPE 

 

Purpose 

 

 The main purpose of this study was to develop a pavement deterioration regression model 

for bituminous sections of VDOT Interstate roads that take into account the pavement structural 

condition.  The developed regression model can be implemented by VDOT in their pavement 

management system (PMS) to better account for the effect of structural condition on pavement 

performance. 

 

The pavement structural condition accounts for some (significant) but not all of the 

variability of the performance of the pavement sections.  Therefore, a methodology that 

combines the model predicted Critical Condition Index (CCI) with the measured CCI to account 

for the unexplained variability by the model is also presented and validated by (leave-one-out) 

cross validation.  This additional step can be implemented separately from the regression. 

 

 

Scope 

 

 The data used in this project were obtained from the Interstate roads in Virginia.  This 

restriction was necessary because the primary and secondary roads in the VDOT network do not 

have network level structural evaluation measurements. A key aspect of this study was to adopt a 

model for the pavement deterioration process that can explain the observed data. The study 

found that a Negative Binomial model provides a good representation of the observed pavement 

condition (and much better representation than a model based on the normal distribution).  In 

addition to providing a good fit to the observed data, which will result in a better regression 

model, the Negative Binomial model can also take into account the fact that variation in the 
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observed pavement condition comes from two sources.  The first source is variation in 

performance of different pavement sections while the second source is variation due to 

variability in the measurement and reporting of the pavement condition.  

 

With these two sources of variations, an empirical Bayes (EB) approach that combines 

the pavement performance model obtained from the Negative Binomial regression with the 

condition of individual pavement sections is used to estimate the performance of each pavement 

section.  This estimate is better than what is separately achieved by either the model or the actual 

observations. 

 

 

METHODS 

 

There are two products from this research.  The first main product is the regression model 

that estimates the pavement CCI based on age and MSI, which is the ratio or effective structural 

number (SNeff) over required structural number (SNreq).  SNeff is calculated from falling weight 

deflectometer (FWD) data while SNreq is calculated based on the AASHTO 1993 design method 

for flexible pavements (see Bryce et al., 2013 for more details).  The second product is the EB 

estimate of CCI that combines the model predicted CCI with the measured CCI to provide an 

improved estimate of the CCI.   

 

 The first product of this research, the regression model, was developed as follows: 

 

1. From the recorded CCI, calculate the Deterioration Index (DI) as follows: 

 

 CCIDI 100                 (1) 

 

2. Using the DI, pavement age T, and MSI, perform a negative binomial regression to 

determine the relationship between DI and T, and MSI.  The regression provides an 

estimate modelDI of DI.  The modelCCI  can then be calculated from modelDI .  The form 

is given in Equation 3. 
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 The chosen model includes two terms for the pavement age T.  The first term, ln(T), 

is included so that at T = 0, the resulting deterioration is zero (i.e., DI = 0 and CCI = 

100).  The second term, T, is included because it was found that adding T results in 

the model having a typical observed shape of pavement deterioration (with just ln(T) 

the shape of the deterioration obtained from the model is not typical of observed 

pavement deterioration). In the end, adding the term T was also found to be 

statistically justifiable as it significantly improved the model fit. 
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The second product of this research was to combine DI with modelDI to give a better 

estimate EBDI  and EBCCI  and determine the future pavement condition.  This is performed as 

follows 

 

1. DI and modelDI  are combined to give EBDI  using Equation 4, which is the EB 

approach of combining observation with model estimate: 
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2. EBCCI , is then obtained using Equation 5: 

 

 EBEB DICCI 100                (5) 

 

3. The estimate of the following year’s condition (if no observation is available) can be 

obtained by estimating the pavement deterioration calculated using the developed 

model as shown in Equation 6: 

 

 
 iii

EB

i

EB CCICCICCICCI model

1

model

1                (6) 

 

In Equations 2 and 3, MSI refers to the Modified Structural Index developed by Bryce et 

al. (2013), T, the pavement age (since last treatment). The regression coefficients were calculated 

as β0, β1, β2 and, β3.  In Equation 3,  is a (overdispersion) parameter also obtained from the 

model regression, while α is a variance correction parameter that accounts for the deviations of 

the pavement condition data from the theoretical modeling procedure.  All these parameters were 

determined using the pavement condition data.  An example EB calculation is in Appendix A.  

 

This methodology was followed because it is more appropriate for the condition data of 

pavement sections. The reason it is more appropriate was justified as follows: 

 

1. Use of Negative Binomial distribution and regression: the empirical distribution of DI 

(100 – CCI) values obtained from the PMS was evaluated and found to be better 

represented by a Negative Binomial distribution than a normal distribution. 

 

2. Including MSI in the regression model: the Akaike Information Criterion (AIC) was 

used to validate the model, mainly to justify including the pavement structural 

condition along with pavement age as one of the parameters that determines 

pavement condition.  Adding regression variables always improves the fit of the 

model. The AIC penalizes the addition of regression variables so that only 

statistically significant variables are included. 
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3. Use of the variance correction parameter α: The Negative Binomial model results 

from a Poisson-Gamma model where the Gamma distribution represents the 

variability of the deterioration of different pavement sections while the Poisson 

distribution represents the variability in reporting of the pavement condition (error in 

the measured DI or CCI).  It was found that the Poisson distribution underestimates 

the variability in the reporting of the pavement condition, which justified the 

inclusion of the variance correction parameter α.  However, the Poisson distribution 

predicts that the variance of the reporting of the pavement condition is equal to the 

DI.  This implies a linear relationship with a slope of unity. Similarly, the data 

showed that the variance is linearly related to the DI but with a slope of α instead of 

unity. 

 

4. Validate the use of the EB approach: the EB approach was validated using leave-one-

out cross validation, which consists of leaving one observation out of the model 

building and then predicting the condition for the observation that was left out.  This 

process is repeated for every observation in the data set. The model prediction 

capability is estimated as the mean square prediction error and compared to the mean 

square error prediction obtained without any modeling of the pavement deterioration 

process. 

 

 

Step 1.  Data Collection and Distribution of Pavement Condition 

 

The MSI developed in Bryce et al. (2013) was calculated from network-level FWD data 

collected on the Interstate roads.  The MSI data were then supplemented with the pavement CCI, 

year of condition recording, and last year of maintenance data obtained from the VDOT PMS 

database for the years from 2007 to 2012, 2014, and 2015.  The data from the years 2007 to 2012 

were those initially available when the research project started and those data were used to 

develop and validate the model.  The data from 2014 and 2015 became available at the end of the 

research project and were incorporated into the final model.  However, they were not used in the 

validation of the model, as this would have required repeating the entire analysis.  The MSI 

incorporates the information about deflection testing, pavement thickness, and traffic.  The data 

were aggregated using the pavement management section currently in use.  From the PMS data, 

the age of the pavement was calculated as the difference between the year of condition reporting 

and the last year of recorded maintenance.  The total data consisted of 3,473 observations for the 

years from 2007 to 2012 and 1,560 observations from the years 2014 and 2015.  To evaluate the 

CCI distribution, the DI, which is the complement of the CCI, was defined as shown in Equation 

1.  The reason DI is defined is for mathematical convenience as it was found that the DI and not 

the CCI follows the Negative Binomial distribution. The probability density function of the 

Negative Binomial distribution, which is also a compound Poisson-gamma distribution, is given 

in Appendix B along with the Poisson and Gamma distributions.  
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Step 2. Development of Deterioration Model 

 

Because the distribution of the pavement DI was found to be well represented by a 

Negative Binomial distribution, the default pavement deterioration model was obtained using 

Negative Binomial regression, which is a form of a Generalized Linear Model (GLM) 

regression.  Other than the fact the DI values are distributed as a Negative Binomial distribution, 

one of the advantages of Negative Binomial regression is that its natural link function is the 

exponential function, which was used in 2007 by Stantec to develop the default pavement 

deterioration models.  The final model used is given by Equation 2. 

 

Pavement condition data consist of censored data, where censoring occurs because of 

treatments applied to the pavement.  This can lead to a biased deterioration model.  The key idea 

is to recognize that data at higher pavement ages are mostly those of pavement sections that 

performed well; pavement sections that did not perform well are generally treated before 

reaching an older age.  As such, data at older ages do not represent the performance of all 

pavement sections and are therefore biased. If not accounted for, this bias will result in a biased 

pavement deterioration model. For this reason, the model was fitted to a range of pavement age 

where this biasing effect is believed to be minimal. This was determined to be for data up to and 

including an age of 10 years. 

 

The model parameters were determined by maximizing the likelihood function. Because 

the sections have different lengths, the maximization is done with the proper weighting (section 

length) of the data. In the process of developing the model, the study investigated different linear 

relationships in the exponential function. The final chosen model resulted in the best fit 

(maximized the likelihood). Furthermore, taking the natural logarithm of the pavement age, T, 

ensures that the DI at year zero is zero (CCI at year zero is 100), which is a desirable property. 

The AIC, which penalizes adding variables to the model, was used to validate incorporating the 

MSI in the model.  Details of the AIC are presented in Appendix C. 

 

 

Step 3. Empirical Bayes Estimate of Pavement Condition  

 

Negative Binomial (Poisson-Gamma) Model 

 

The Negative Binomial regression gives the coefficients of the model parameters (T, 

MSI, and intercept) that, when substituted in Equation 2 give modelDI , which is the average 

response of pavement sections with the same age T and MSI.  Another parameter obtained from 

the Negative Binomial regression is what is referred to as the overdispersion parameter, . This 

parameter takes into account the variability of different pavement sections. For the Negative 

Binomial model, the variance, 2

s , of the pavement sections condition can be calculated from 

modelDI  and  as shown in Equation 7.  Under the Poisson error assumption, the variance of the 

error in condition reporting is equal to modelDI .  One way to justify the dependence of the 

variance on the pavement condition is to consider that it is easier to rate pavements in good 

condition than it is to rate pavements in poor condition.  This will lead to ratings of pavements in 

a poorer condition having higher variability (i.e., error).  This seems plausible given that there 
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are several combinations of distresses that can cause a pavement section to be in poor condition 

but there is essentially one way (no distresses) for a pavement section to be in perfect condition.  

The data support this observation as more variability is observed for pavement sections that are 

in worse condition.  Therefore, the total variance, 2

mod , of the model can be calculated as shown 

in Equation 8. 

 

 2model

2 DIs                   (7) 

 

 modelmodel

2

mod 1 DIDI                  (8) 

 

The mean, modelDI , variance, 2

mod , and overdispersion, , are related to the parameters of 

the Negative Binomial model.  The Poisson-Gamma model gives rise to a Bayesian model with 

the Gamma distribution prior. In practical terms, modelDI  is the prior, which represents the 

variability of the performance of different pavement sections.  Once the data, DI, are observed, 

the posterior distribution of the true pavement condition, EBDI , can be calculated using Bayes’ 

formula.  In the EB approach, the parameters of the prior are estimated from the data; in this 

case, by the Negative Binomial regression. The practical interpretation of Bayes’ formula is that 

it combines the (practical) experience that can be learned from observing the historical 

performance of all pavement sections with specific observations to come up with an improved 

estimate of the pavement condition. The information from the prior and observation are 

combined using Equation 9. Note that Equation 3 is similar to Equation 9 with the added 

parameter α, which is included because the observed data do not strictly follow the Poisson-

Gamma model.  

 DI
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




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Deviation from the Negative Binomial (Poisson-Gamma) Model 

 

The EB estimate in Equation 9 assumes the measurement error for reporting the CCI 

follows a Poisson distribution.  The difference sequence method, which is described in Appendix 

D, was used to independently evaluate the variance of the error in reporting the CCI and it was 

found that this error variance is larger than what is predicted by the Poisson distribution. A 

concern could then be raised towards the applicability of the EB approach since the model 

assumptions, mainly Poisson error distribution, are violated. However, even if the Poisson-

Gamma model is completely incorrect, as long as the variance of the error is not significantly 

overestimated, the EB estimate is still a better estimate than the actual measurement (either 

current or future).  This is a result of linear Bayes estimators, which guarantee that irrespective of 

the true distribution of pavement performance, as well as the true distribution of the error in the 

measurement of the pavement condition, the linear Bayes estimator (of which the Poisson-

Gamma model is one) improves on the estimate of the condition compared to just considering 

the measurement alone (see Hartigan, 1969, and Efron, 1973).  The improvement of the linear 

Bayes estimator is such that the mean square error is reduced by a factor of: 
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If the error variance, 2

Error , is underestimated, as is the case when assuming a Poisson 

error distribution, then the improvement of the EB estimate will be less than optimal.  Therefore, 

the EB estimate in Equation 9 is conservative and can be improved if the appropriate value for 

the error variance is used.  The linear EB estimator is calculated using Equation 11, which can be 

used for any two distributions and without knowledge of the appropriate distribution form: 

 

DIDIDI
Errors

s

Errors

s
EB 22

2

model22

2

1




















                       (11) 

 

Note the similarities between Equation 9 and Equation 11 and it can be shown that if 
22

PoissonError    (i.e., the error predicted from the Poisson distribution is different than the error 

in the data), then Equation 9 can still be used with   replaced by  c , which is the form of 

Equation 3.  

 

 

Step 4. Validating the Modeling Procedure 

 

Dependence of Error in DI Measurement on Pavement Condition  

 

Based on the difference sequence method, it was found that the Poisson distribution 

assumption underestimated the error variance of the observed data.  A correction factor, α, was 

used to adjust for the discrepancy as shown in Equation 12. However, since for the Poisson 

distribution, the variance is equal to the mean, the measurement error was checked relative to the 

average of the observation as shown in Equation 13. Finally, the total variance of the data is 

related to the variance of the pavement sections’ performance and the error variance as shown in 

Equation 14.  The factor 2

mod  is the total variance, which should be equal to the variance of the 

observed data. 

 
22

PoissonError                 (12) 

 
i

i DImodel

2
Error                (13) 

 

 222

mod Errors                 (14) 

 

Validating the Empirical Bayes Approach 

 

The optimal test to validate a modeling procedure would be to know the actual true value 

that is being estimated (here the pavement deterioration represented by either the DI or the CCI) 

and verify that the chosen modeling procedure gives a better estimate of the true value compared 
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to no modeling (i.e., just using the observations).  For real data, the true value is never known 

and this approach cannot be followed. An alternative approach is to compare the mean square 

error prediction with the criterion that the approach that results in a lower prediction error (of 

measurements not used in developing the model) is a better approach. We can think of the 

measurements used to estimate prediction error as measurements from future pavement surveys; 

clearly being able to better predict the pavement condition in future pavement surveys (for 

example next year’s survey), is a desirable quality of any model. The prediction error was 

evaluated as follows: 

 

1. Determine the prediction error for each pavement condition measurement as follows. 

 

2. Remove the pavement condition measurement from the data and determine the year, 

Y, and section identifier, S, of that measurement. 

 

3. Remove all pavement condition measurements from section S obtained after year Y.  

This step is essential because the problem of predicting next year’s condition implies 

that we don’t have access to the later years of conditions. 

 

4. Estimate the condition for the removed measurement from the remaining set of 

measurements. 

 

Five different approaches were evaluated to estimate the condition: 

 

1. Most recent observation on the section S (Method 1): this is the simplest estimation 

method where we predict the condition as the most recent observation.  The 

advantage of the method is that it takes into account the characteristics of the section 

S.  The drawback of the method is that it assumes no deterioration within the year:  

 
ii CCICCI 1  

 

2. Model predicted condition (Method 2): this estimation method uses the fitted model 

to predict the condition: 

 
11

model

  ii CCICCI
 

 

3. EB estimate of most recent observation on the section S (Method31):  

 
ii

EB
CCICCI 1  

 

4. Most recent observation on the section S with added deterioration estimated using the 

fitted model (Method 4):  

 

 iiii CCICCICCICCI model

1

model

1    
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5. EB estimate of most recent observation on the section S with added deterioration 

estimated using the fitted model (Method 5):  

 

 iii

EB

i

EB CCICCICCICCI model

1

model

1    

 

 

 

RESULTS AND DISCUSSION 

 

Step 1. Data Collection and Distribution of Pavement Condition 

 

The collected data consist of section MSI, section condition (CCI), and section age (age 

since last recorded treatment).  The distribution of the pavement sections’ ages is presented in 

Figure 1.  In total, there are 3,473 observations from 886 distinct pavement sections with 7 years 

being the most observed age. Figure 2 shows the distribution of the MSI.  In total, 39.5% of 

pavement sections had MSI values lower than one. Figure 3a shows the CCI values as a function 

of pavement age.  The mean of each age group with the two standard deviation range are also 

shown in the figure. Clearly, the two standard deviation range (which is used to approximate the 

95% confidence interval of normally distributed data) does not give an adequate representation 

of the data as it extends beyond the CCI limit of 100.  Figure 3b shows a box and whisker plot 

with the box representing the data between the 25th and 75th percentile and the whiskers 

extending to a maximum of 1.5 times the box range.  Data points that fall outside the maximum 

whiskers range are labeled with a “+” symbol. 

 

Figure 4 shows the distribution of the DI for all the data with different fitted theoretical 

distributions; mainly, a Poisson distribution, a Normal distribution, a Negative Binomial 

distribution, and a mixture of three Negative Binomial distributions.  The Poisson distribution is 

a discrete probability distribution for positive values and was considered because the DI values 

are discrete and positive and combined with the Gamma distribution results in the Negative 

Binomial distribution. The Poisson is restricted to having a variance equal to the mean of the 

distribution, which results in a poor representation of the data.  The Normal distribution allows 

the variance to be independent of the mean and gives a better representation of the data; 

however, it is not a discrete probability distribution, the fit is still not very good, and more 

important, it allows for negative DI values, which is not realistic.  The Negative Binomial 

distribution gives a better fit to the data and is restricted to positive DI values. 

 

Figure 5 shows the Negative Binomial Distribution fitted to DI observations obtained at a 

fixed age (ages of 1, 4, 7, and 10 are shown).  The fits for pavement ages 1, 4, and 7 years are 

almost perfect.  For the 10-year pavement age, the observed data deviate from the Negative 

Binomial distribution, although it is still reasonable for modeling purposes (at least much more 

reasonable than the Normal distribution assumption).  There is, however, a very plausible 

explanation for the lack of fit of the Negative Binomial distribution as the age increases.  The 

main purpose of a PMS is to keep the roads at an acceptable level of service.  When a pavement 

reaches an unacceptable condition level, action is taken to bring the condition back to acceptable 

levels.  This type of action biases the data, as only pavements that perform well are allowed to 

reach a higher age.  This means that if the condition of pavement sections at a given year, say 15 
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years, follows a certain distribution (in this case the Negative Binomial distribution), the 

observed data will deviate from that distribution because the poorly performing pavements will 

not be observed at 15 years because they would have already been treated.  

 

 
Figure 1. Distribution of Pavement Section Ages; the age is determined from the last recorded pavement 

treatment: a) Histogram; b) Cumulative Distribution   
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Figure 2. Distribution of MSI Values: a) Histogram; b) Cumulative Distribution   
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Figure 3. Pavement CCI as a Function of Age: a) Scatter Plot; b) Boxplot   
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Figure 4. Distribution of Pavement DI 

 

 
Figure 5. Comparison of Empirical Distribution of the Pavement CCI to Negative Binomial Distribution Fit at 

Different Ages; Top Left: 1 Year; Top Right: 4 Years; Bottom Left: 7 Years; Bottom Right: 10 Years 
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varies significantly due to the limited data).  This contradicts the common engineering sense, as 

it is known that pavements will continue to deteriorate.  The explanation in this case is that 

poorly performing pavements are treated before reaching year 11; the average CCI for 

pavements 11 years and older is a biased representation of the performance of all pavements as 

only good performing pavements are allowed to reach that age.  To reduce the biasing effect that 

pavement treatment has on model estimation, the regression model was fitted to data from 
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observations of pavement sections that had the last treatment performed less than 10 years prior 

to the observation. 

 

 

Step 2. Deterioration Model Development 

 

The estimate of the parameters of the model (Equation 2) were β0 = 1.7027, β1 = 0.0490, 

β2 = 0.0866, and β3 = 0.1595, as obtained from the weighted Negative Binomial regression with 

the data limited from 1 to 10 years (representing 76% of all the data).  The overdispersion 

parameter  was equal to 0.3135. The AIC weight, w, for the model with MSI and the model 

without MSI was less than 210
-5

 indicating that the model with the MSI is at least 50,000 times 

more likely to be closer to the true pavement deterioration than the model without the MSI. 

 

Deterioration curves for different MSI values are shown in Figure 6.  Note that for MSI 

larger than 1, the predicted performance is practically the same (for MSI large than 1, it is hard to 

distinguish the different deterioration curves in the graph) whereas the performance changes 

significantly as the MSI decreases below 1.  The limit for MSI increasing to infinity reflects the 

fact that pavement deterioration is not solely dependent on the MSI; other factors, such as 

environmental loading and top-down cracking, also play a role in pavement deterioration and 

these factors lead to deterioration no matter how strongly a pavement is designed. 

 

 
Figure 6. Pavement Deterioration for Different MSI values. The vertical dotted line indicates the last year of 

data used to fit the model (i.e., model predictions after year 10 are based on extrapolation and therefore 

should be used with caution). 
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Step 3. Empirical Bayes Estimate of Average Pavement Condition 

 

The EB approach combines the model estimate with the individual observations of DI, 

which does improve on the individual estimate of the pavement condition C.  The EB estimated 

condition takes into account the variability of the results of the pavement condition survey along 

with the variability of the performance of individual pavement sections that is not taken into 

account by the model to obtain a more accurate estimate of the pavement condition.  The better 

accuracy can be inferred from the fact that the EB estimate results in better prediction of future 

pavement condition, which is presented at the end of this section. 

 

EB Estimate of Pavement Condition Data 

 

Figure 7 shows for every observation, the recorded CCI, CCImodel, and CCIEB.  The net 

effect of the EB methodology is to pull the observed CCI toward CCImodel.  Figure 8 shows the 

difference between the measured DI and DIEB. 

 

 
Figure 7. Comparison of Measured CCI, Model Predicted CCI, and EB Estimate of CCI.  The EB estimate 

combines the measured CCI with the model predicted CCI to obtain a better estimate of the “true” CCI.  The 

plots of the EB CCI and the model CCI are shifted to visually distinguish between the different estimates of 

the CCI. 
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Figure 8. Difference between Measured Pavement Condition and EB Estimated Pavement Condition 
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better estimate of the true condition is prediction error (estimates that have lower prediction error 

are closer to the true value than estimates that have higher prediction error).  The reason why the 

EB estimate is better is because it reduces some of the variability in the condition survey data. 

Five methods to predict pavement condition were evaluated, and the mean square prediction 

error of each method is shown in Table 1.  Method 2, which uses the developed regression 

model, gives the worse prediction error.  This is because even after taking into account age and 
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the observation from a specific section (Method 1) is a better estimate to predict the following 

year’s condition.  Method 3 is the empirical Bayes estimate, which linearly combines (using a 

weighted average) the individual CCI values with the estimate from the regression model.  This 

combination improves the prediction of future condition.  Method 4 uses the individual CCI 

values along with the expected deterioration calculated from the regression model.  The 

performance of this method is slightly better (practically the same) than Method 3.  Method 5 

uses both the EB estimate and the expected deterioration calculated from the regression model (it 

can be seen as combining Method 3 and Method 4).  This method gives the lowest prediction 

error, which is significantly better than all other methods and 21.6% better than the estimate of 
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Table 1. Mean Square Error (MSE) of Prediction Using the Different Methods 

to Estimate Future Pavement Condition 

Method MSE Prediction MSE Ratio with Method 1 

1 143.2 1.000 

2 227.0 1.585 

3 130.9 0.914 

4 129.2 0.902 

5 112.2 0.784 

 

 

Step 4. Evaluating Model Assumptions 

 

For two independent Poisson-distributed random variables with means 1 and 2, the 

distribution of the difference (2 - 1) is given by the Skellam distribution (Skellam, 1946).  

Figure 9 shows the empirical distribution of the difference between two consecutive observations 

of the DI, the theoretical distribution based on the Poisson-Gamma model, and the best-fit 

Normal distribution.  Clearly the Normal distribution is not representative of the behavior of the 

data.  The Skellam distribution gives a much better representation.  The fit is, however, not 

perfect as the data exhibit more outlying observations than what is predicted by the model.  The 

difference between the observed empirical distribution and the theoretical Skellam distribution 

can be quantified with the standard deviation.  The standard deviation of the observed data is 

12.4 while the standard deviation of the theoretical distribution is 7.6, which underestimates the 

spread in the data.  Underestimating the standard deviation makes the EB results conservative.  

That is to say, the results can be improved if the procedure is adjusted to better reflect the true 

standard deviation.  The ratio of the standard deviations is 1.63 (12.4/7.6), which makes the ratio 

of the variances equal to 2.66. 

 

 
Figure 9. Comparison of the Empirical Distribution of the Difference Between Consectuve DI Values With 

Model Predicted Distribution and Best Fit Normal Distribution 
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Figure 10 shows that the estimated measurement error increases as a function of the 

estimated measurement condition.  For the Poisson distribution, the error variance is equal to the 

condition. A regression line with a zero intercept was fitted to the square of the error shown in 

Figure 10.  The slope of the fitted line was found to be equal to 2.88, which suggests that the 

error is not Poisson-distributed, with a variance larger than what is predicted by the Poisson 

distribution.  However, similar to the Poisson distribution, the error is linearly related to the 

condition.  The two factors of 2.66 and 2.88 are estimates of the deviation of the error variance 

from the Poisson distribution variance.  However, both estimates have drawbacks.  The estimate 

of 2.66 obtained from the comparison to the Skellam distribution includes the variance pavement 

deterioration and therefore is larger than the error variance.  The estimate of 2.88 obtained from 

the regression performed on the estimated square error uses all observations.  These include 

possible treatments that were not recorded, which inflate the estimated error variance.  The final 

estimate was obtained from observations that had a positive change in the DI, which precludes 

those sections missing a record of treatment that occurred.  The factor calculated from those 

observations, α was 2.59, meaning that the error variance is 2.59 times the error variance 

predicted from the Poisson distribution. 

 

The final verification consists of checking whether Equation 14 is satisfied;  was 

calculated as 190 while  was calculated as 22 for a total of 212.  The total variance of 

the data was estimated as 273, which shows that the model variance underestimates the data 

variance by 61 (273-212).  The estimate of the error variance of the data was obtained for the 

positive error because of possibly missing treatment records.  However, the total variance of the 

data includes observations with possibly missing records of treatment.  Therefore the variance of 

all the errors (positive and negative) was evaluated as 72 and added to  to give a total 

variance for the model  = 262, which is reasonably close to the total variance of 273 of the 

data.  This shows that the modeling approach is consistent, as the resulting model accounts for 

practically all the variance observed in the data. 

 

 
Figure 10. Measurement Error as a Function of Pavement Condition 
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CONCLUSIONS 

 

 The pavement structural condition (MSI parameter) is a significant parameter that affects the 

pavement condition: using the AIC criterion, the model that incorporates the pavement 

structural parameter as an explanatory variable of the pavement condition was more than 

50,000 times more likely than the model that does not incorporate the pavement structural 

condition. 

 

 The Negative Binomial distribution gives a good representation of the pavement condition: 

this allows for a better understanding and modeling approach to pavement condition where 

variability in pavement condition can be decomposed into variability due to different 

performance of different pavement sections and variability due to error in measuring the 

pavement condition.  The resulting model can be used for network-level pavement 

management. 

 

 Condition of pavement sections older than 10 years do not represent the typical (expected) 

performance of pavement sections: pavement sections are rehabilitated once they reach an 

unacceptable condition level.  Most pavement sections need some sort of treatment before 11 

years have passed since the last treatment and only pavement sections that perform well 

reach 11 years of age or more.  Therefore, those pavement sections give a biased 

representation of pavement condition after 10 years. 

 

 The optimal estimate of the pavement condition is one that combines the observed condition 

with the model predicted condition: the estimate is obtained by an EB approach, which 

combines the model estimate with the observed condition through a weighted average.  The 

weight is determined by the relative variability of the error in the measurement of the 

pavement condition and the variability of the performance of different pavement conditions.  

The model on its own gives an inaccurate estimate of the pavement condition with a mean 

square error that is about 1.58 times the mean square error prediction of future observations.  

However, combining the observations with the model resulted in an estimated mean square 

error prediction that is about 0.78 times the mean square error prediction of the observations.  

The estimate of the improvement is based on cross-validation where observations are held 

out and used to estimate the mean square error prediction. 

 

 

 

RECOMMENDATIONS 

 

1. VDOT’s Maintenance Division should implement the empirical Bayes method to determine 

the pavement condition of Interstate roads: the EB method was found to improve the 

prediction of future CCI measurements by an estimated average of 21.6%.  

 

2. VDOT’s Maintenance Division should develop a similar approach for the pavement 

condition of primary and high-volume secondary roads: the implementation for secondary 

roads that are only evaluated at 5-year cycles is especially needed, and for this purpose FWD 

data collection at the network level is suggested for these roads.  The EB method combined 
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with the modeled deterioration should provide for a better prediction of the conditions of 

secondary roads during the years when the condition is not collected. 

 

3. VDOT’s Maintenance Division should continue performing network-level pavement 

structural evaluation: The pavement structural condition summarized in terms of the MSI 

was found to affect the rate of pavement deterioration. 

 

 

 

BENEFITS AND IMPLEMENTATION 

 

Benefits 

 

The primary benefit of this study to VDOT is that VDOT will be able to predict more 

accurately the future condition of pavement sections on its network using the empirical Bayes 

approach.  Although no direct cost savings are anticipated, improved predictions should support 

more efficient use of resources through VDOT’s needs-based budgeting process. 

 

The empirical Bayes (EB) approach can further improve the estimate of the pavement 

condition.  The proposed approach can improve the mean square error prediction of the future 

(next year’s) pavement condition by 21.6%.  This improved estimate of the future pavement 

condition is expected to minimize the difference between network-level planning and project-

level treatment selection, which will result in more effective management of the pavement assets. 

 

 

Implementation 

 

With regard to Recommendations 1 and 2, VDOT’s Maintenance Division will work in 

cooperation with VDOT’s Information Technology Division to implement the suggested 

methodology within the PMS and apply these steps wherever recent and reasonable data are 

available.  It is expected that this will have an impact on the results of the network level analysis; 

maintenance and rehabilitation recommendations from the PMS; and budgetary needs and other 

reports currently prepared by VDOT.  VDOT’s Maintenance Division should further perform 

sensitivity analyses on the final results and recommend changes to the current methodologies and 

allocation wherever applicable.   

 

With regard to Recommendation 3, VDOT plans to continue collecting network level 

structural condition data.  VDOT is a participating agency in Transportation Pooled Fund Study 

TPF-5(282), Demonstration of Network Level Pavement Structural Evaluation with Traffic 

Speed Deflectometer.  This pooled fund study is anticipated to be complete by the end of the 

fourth quarter of calendar year 2016 and will provide suggestions to VDOT as to how best to 

accomplish this testing. 
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APPENDIX A 

 

MODIFIED STRUCTURAL INDEX METHODOLOGY 

 

This appendix presents the methodology to calculate the modified structural index (MSI) 

from FWD data and describes  how to update the MSI based on applied pavement treatment. 

 

Calculating the Modified Structural Capacity Index (MSI) 

 

The MSI is defined in Equation A.1 
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where 

 

D0 = the FWD deflection under the applied load 

Hp = total pavement depth (i.e., measured from the top of the pavement to the top of the 

subgrade) 

D1.5Hp = FWD deflection at a distance equal to 1.5 times the total pavement depth 

Mr = resilient modulus calculated using FWD measurements 

ESAL = total accumulated truck traffic over a total design period of 20 years. 

 

Detailed steps to calculate of D1.5Hp, Mr, and ESAL are as follows: 

 

1. The FWD measurements should be normalized to 9,000 lb load deflections. 

 

2. The deflections at an offset of 1.5 times the total pavement depth (from top of surface 

to top of subgrade) are calculated using the following interpolation shown in Equation 

A.2: 
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where x is the distance from the applied load to 1.5 times the depth of the pavement 

(Hp), A, B and C are the three points where the deflection is measured from the FWD 

that are closest to x such that A < x < C (and B < x or x < B are valid configurations), 

and DA, DB, and DC are the deflections at points A, B and C respectively (see Figure 

A.1).   
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Figure A.1. Schematic for the Calculation of D1.5Hp 

 

3. Estimate the design resilient modulus from the FWD measurements using Equation 

A.3: 
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 where C = 0.33 (AASHTO, 1993), P is the applied load in pounds. 

 

4. Calculate the ESAL using Equation A.4: 

 

 
YLDGTAADTTESAL f  365            (A.4) 

 

 where 

 

AADTT = average annual daily truck traffic 

Tf = truck factor for flexible pavements obtained from Table A.1 

G = growth factor set to 1.3435 (3% annual growth over a 20 years period) 

D = directional factor set at 0.5 

L = lane factor set at 0.9 

Y = is the number of years in the design period set to 20. 

 
Table A.1. Statewide Average Truck ESAL Factors (from Smith and Diefenderfer, 2009) 

Pavement Type Single-Unit Trucks Combination Trucks 

Flexible 0.46 1.05 

Rigid 0.59 1.59 

 

Updating the Modified Structural Capacity Index (MSI) Based on Pavement Treatment 

 

The MSI for flexible pavements is based on the ratio of the required structural number 

(SNReq) to the effective structural number and (SNEff).  Therefore, any significant maintenance 

actions are expected to affect (increase) the SNEff.  In order to update the MSI value, equation 5 

may be used when the depth of the maintenance does not exceed the depth of the asphalt layers.  

If the maintenance exceeds the depth of the asphalt layers, the numerator in equation A.5 should 

be replaced by the SNEff from the pavement design documents. 
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where MSIUpdated is the updated value for the MSI, MSI0 is the original value of the MSI, dplaced is 

the depth of the asphalt layer (in inches) placed, dmilled is the depth of the milled asphalt layer (in 

inches), and c is a factor based on the condition of the pavement (Huang 2004).   

 

Recommended values for c are as follows: 

 

c = 1.0 for existing pavement in good overall structural conditions with little or no 

cracking 

 

c = 0.75 for existing pavement with initial transverse and corner cracking due to loading 

but without progressive structural distress or recent cracking 

 

c = 0.35 for existing pavement that is badly cracked or shattered structurally. 
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APPENDIX B 

 

PROBABILITY DENSITY FUNCTIONS 

 

This appendix gives the probability density functions for the Negative Binomial 

Distribution, the Poisson distribution, and the Gamma distribution given in Equation B.1, 

Equation B.2, and Equation B.3, respectively.  An alternative parametrization of the Gamma 

distribution is given in Equation B.4.  The definition of the Negative Binomial distribution in 

terms of the Poisson and Gamma distributions is given in Equation B.5. 
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APPENDIX C 

 

MODEL FITNESS 

 

The AIC assesses the fitness of a model based on the log-likelihood value of the model, L, 

and a penalty term related to the number of parameters, p.  The AIC is calculated as shown in 

Equation C.1: 

 

   pLAIC 2ln2             (C.1) 

 

The AIC does not give an indication whether the model is the true model that generated 

the data.  It can only be used to compare models and evaluate which one is more likely to be 

closer to the true model.  This is done by calculating the exponential of half the relative 

difference between the AIC of two models being considered as given in Equation C.2 

 








 


2
exp 2min AICAIC

w            (C.2) 

 

where w is the relative likelihood of model 2, compared to the model with the lowest AIC (model 

1), of being the model closer to the true (unknown) model that generated the data compared to 

the model with lowest AIC (Burnham and Anderson, 2004). 

 

The two models evaluated in this report are the model with only the pavement age as a 

predictor of pavement condition and the model with pavement age and MSI as predictors of 

pavement condition. 
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APPENDIX D 

 

DIFFERENCE SEQUENCE METHOD 

 

The difference sequence method estimates the error standard deviation by taking the 

difference between consecutive measurements. Given the pavement condition of two consecutive 

years DIi and DIi+1, the difference can be calculated as follows 

 

  11111   iiiiiiiii CCCCDDI       (D.1) 

 

where C represents the pavement condition (without error in the measurement) and  is the 

measurement error and  is the difference in the error.  If  has variance 2

Error  then  has 

variance 22 Error .  In general 11   iii CC   and therefore, 

 

11   iii DDI           (D.2) 

 

This approximation can be improved by noting that the deterioration predicted by the 

model can be used to estimate ii CC 1  as follows 

 

ii CCDIDI  



1

1i

model

1i

model          (D.3) 

 

Therefore, 

 

  1

1i

model

1i

model1 



  iii DIDIDDI          (D.4) 

 

and Equation D.4 is a better estimate of  than Equation D.2 and can be used to estimate the 

measurement error variance 2

Error
.
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APPENDIX E 

 

SKELLAM DISTRIBUTION AND BESSEL FUNCTION 

 

The Skellam distribution is given in Equation E.1: 
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where Ix is the modified Bessel function of the first kind given by Equation E.2 
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APPENDIX F 

 

EMPIRICAL BAYES APPLICATION 

 

This appendix describes application of the empirical Bayes (EB) method using the 

measured CCI and the CCI obtained from the regression model CCImodel to obtain CCIEB. 

 

Input: 

 

CCI = 45; T = 7 years; MSI = 0.7 

 

β0 = 1.7027, β1 = 0.0490, β2 = 0.0866 and, β3 = 0.1595,  = 0.3135 and α = 2.59 (these were 

determined from the PMS data) 

 

Solution: 

 

Calculate CCIDI 100  
 

 DI = 100 – 45 = 55 

 

Calculate DImodel 
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Calculate DIEB 
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Calculate CCIEB 

 

 CCIEB = 100 – CCIEB = 100 – 46.3 = 53.7 
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