
Virginia Transportation Research Council, 530 Edgemont Road,
Charlottesville, VA 22903-2454, www.vtrc.net, (434) 293 -1900

http://www.virginiadot.org/vtrc/main/online_reports/pdf/10-r22.pdf

Final Report VTRC 10-R22

research report

JOHN S. MILLER, Ph.D., P.E.
Associate Principal Research Scientist

NICHOLAS J. GARBER, Ph.D., P.E.
Professor of Civil Engineering

Department of Civil and Environmental Engineering
University of Virginia

SANTHOSH K. KORUKONDA
Graduate Research Assistant

Causal Factors for
Intersection Crashes
in Northern Virginia

Virginia Transportation Research Council



Standard Title Page - Report on Federally Funded Project  
1. Report No.: 2. Government Accession No.: 3. Recipient’s Catalog No.: 
FHWA/VTRC 10-R22 
 

  

4. Title and Subtitle: 5. Report Date: 
June 2010 
6. Performing Organization Code: 

Causal Factors for Intersection Crashes in Northern Virginia 

 
7. Author(s):   
John S. Miller, Ph.D., Nicholas J. Garber, Ph.D., and Santhosh K. Korukonda 
 

8. Performing Organization Report No.: 
VTRC 10-R22 

10. Work Unit No. (TRAIS): 
 
11. Contract or Grant No.: 

9. Performing Organization and Address: 
Virginia Transportation Research Council 
530 Edgemont Road 
Charlottesville, VA 22903 
 

80574 

12. Sponsoring Agencies’ Name and Address: 13. Type of Report and Period Covered: 
Final 
 
14. Sponsoring Agency Code: 

Virginia Department of Transportation 
1401 E. Broad Street 
Richmond, VA 23219 
 

Federal Highway Administration 
400 North 8th Street, Room 750 
Richmond, VA 23219-4825 

 
15.  Supplementary Notes: 
 
16. Abstract: 

Intersection crashes cost the nation more than $40 billion annually, account for more than one-fifth of all highway crash 
fatalities nationally, and totaled almost 75,000 in the Virginia Department of Transportation’s (VDOT) Northern Virginia 
District for the period 2001 through 2006.  Although VDOT maintains several databases containing more than 170 data elements 
with detailed crash, driver, and roadway attributes, it was not clear to users of these databases how these data elements could be 
used to identify causal factors for these intersection crashes for two reasons: (1) the quality of some of the data elements was 
imperfect, and (2) and random variation is inherent in crashes.  This study developed an approach to address these two issues. 

 
To address the first issue, the completeness and accuracy of the 179 data elements that comprise the VDOT 

CRASHDATA database were assessed.  For the 76 data elements for which the quality of the data was imperfect, eight rules for 
using these elements were developed.  The rules indicate which data elements should be used in certain circumstances; which 
data elements are incomplete; and how to manipulate the data for certain applications. 
 

To address the second issue, classification trees and crash estimation models (CEMs) were developed.  The trees 
showed that specific causal factors, such as the approach alignment or surface condition, successfully indicate whether a given 
crash was a rear-end or angle crash.  By extension, the trees suggested that intersection crashes were not purely random.  
Accordingly, it was feasible to develop CEMs that for 17 intersection classes predicted the number of crashes for a 1-year period 
for four crash types: rear-end, angle, injury, and total.  The 68 CEMs showed deviance-based pseudo R-square values between 
0.07 and 0.74, suggesting that the causal factors explained some, but not all, of the variation in intersection crashes.  The CEMs 
varied by intersection class. 

 
Two actions with regard to crash data analysis may be taken as detailed in this report.  First, the eight crash data quality 

rules developed in this study should be considered for use on a case-by-case basis for studies requiring intersection crash data.  
Second, when they are collected at the crash scene, the variables that successfully classified rear-end and angle crashes may be 
given increased attention such that every effort is made to ensure these data elements are accurately recorded. 

 
 
 
 
 
 

17 Key Words: 18. Distribution Statement: 
Safety management, safety programs, transportation safety, 
planning, safety conscious planning, urban planning  

No restrictions.  This document is available to the public 
through NTIS, Springfield, VA 22161. 

19. Security Classif. (of this report): 20. Security Classif. (of this page): 21. No. of Pages: 22. Price: 
 Unclassified Unclassified 61  

  Form DOT F 1700.7 (8-72)                                                                                            Reproduction of completed page authorized 



FINAL REPORT 
 

CAUSAL FACTORS FOR INTERSECTION CRASHES IN NORTHERN VIRGINIA 
 
 

John S. Miller, Ph.D., P.E. 
Associate Principal Research Scientist 

 
Nicholas J. Garber, Ph.D., P.E. 
Professor of Civil Engineering 

Department of Civil and Environmental Engineering 
University of Virginia 

 
Santhosh K. Korukonda 

Graduate Research Assistant  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Cooperation with the U.S. Department of Transportation  
Federal Highway Administration 

  
Virginia Transportation Research Council  

(A partnership of the Virginia Department of Transportation  
and the University of Virginia since 1948)  

 
June 2010 

VTRC 10-R22



 

 
 

ii

DISCLAIMER 
 

The contents of this report reflect the views of the authors, who are responsible for the 
facts and the accuracy of the data presented herein.  The contents do not necessarily reflect the 
official views or policies of the Virginia Department of Transportation, the Commonwealth 
Transportation Board, or the Federal Highway Administration.  This report does not constitute a 
standard, specification, or regulation. 

 
 

 
 
 
 
 
 
 
 
 
 
 

Copyright 2010 by the Commonwealth of Virginia. 
All rights reserved. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
 

iii

ABSTRACT 
 

Intersection crashes cost the nation more than $40 billion annually, account for more than 
one-fifth of all highway crash fatalities nationally, and totaled almost 75,000 in the Virginia 
Department of Transportation’s (VDOT) Northern Virginia District for the period 2001 through 
2006.  Although VDOT maintains several databases containing more than 170 data elements 
with detailed crash, driver, and roadway attributes, it was not clear to users of these databases 
how these data elements could be used to identify causal factors for these intersection crashes for 
two reasons: (1) the quality of some of the data elements was imperfect, and (2) and random 
variation is inherent in crashes.  This study developed an approach to address these two issues. 

 
To address the first issue, the completeness and accuracy of the 179 data elements that 

comprise the VDOT CRASHDATA database were assessed.  For the 76 data elements for which 
the quality of the data was imperfect, eight rules for using these elements were developed.  The 
rules indicate which data elements should be used in certain circumstances; which data elements 
are incomplete; and how to manipulate the data for certain applications. 
 

To address the second issue, classification trees and crash estimation models (CEMs) 
were developed.  The trees showed that specific causal factors, such as the approach alignment 
or surface condition, successfully indicate whether a given crash was a rear-end or angle crash.  
By extension, the trees suggested that intersection crashes were not purely random.  Accordingly, 
it was feasible to develop CEMs that for 17 intersection classes predicted the number of crashes 
for a 1-year period for four crash types: rear-end, angle, injury, and total.  The 68 CEMs showed 
deviance-based pseudo R-square values between 0.07 and 0.74, suggesting that the causal factors 
explained some, but not all, of the variation in intersection crashes.  The CEMs varied by 
intersection class. 

 
 Two actions with regard to crash data analysis may be taken as detailed in this report.  
First, the eight crash data quality rules developed in this study should be considered for use on a 
case-by-case basis for studies requiring intersection crash data.  Second, when they are collected 
at the crash scene, the variables that successfully classified rear-end and angle crashes may be 
given increased attention such that every effort is made to ensure these data elements are 
accurately recorded.
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INTRODUCTION 
 
Intersections represent one of the most complex situations that drivers encounter because 

of their many conflict points.  Drivers must perform a series of complex tasks—maintaining 
proper lane position; responding to signs, signals, and markings; evading conflicting or adjacent 
traffic, pedestrians, and bicyclists; and increasing or decreasing their speed as appropriate.  At 
least in part because of this heavy cognitive burden, crashes at intersections accounted for 44% 
of all reported crashes on the national highway network (Federal Highway Administration 
[FHWA], 2004); more than one-fifth of all fatalities nationally (FHWA, 2008); and annual 
societal costs of $40 billion (FHWA, 2002).  It has also been reported that for drivers aged 64 
and above, 60% of injury crashes and 37% of fatal crashes occur at intersections (Hauer, 1988).  
According to the Virginia Department of Transportation’s (VDOT) CRASHDATA database, 
there were 154 fatal intersection crashes in Virginia in 2006.  For the 6-year period from 2001 
through 2006, there were 75,000 crashes at signalized, stop-controlled, and yield-controlled 
intersections in VDOT’s Northern Virginia District (NOVA District) as found in the VDOT 
CRASHDATA database.  It is not surprising, therefore, that Virginia’s Strategic Highway Safety 
Plan (Virginia’s Surface Transportation Safety Executive Committee, 2007) lists intersection 
safety as an emphasis area.  

 
One possible resource for obtaining a better understanding of the causes of intersection 

crashes is the VDOT CRASHDATA database —a centralized repository containing extensive 
crash, geometric, and roadway data.  With 179 data elements for each crash (e.g., driver age, lane 
width, and vehicle type as shown in Appendix A), almost 33,000 total crashes (not just 
intersection crashes) in the NOVA District, and approximately 18 years of data, an extensive 
amount of information is readily available.  To take advantage of this database, however, two 
challenges must be met.   

 
First, the extent to which these data are reliable needs to be understood.  For example, the 

data quality for an element based on a law enforcement officer’s record at the time of a crash 
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(e.g., weather condition) may not be identical with the data quality of an element based on a 
roadway inventory (e.g., the lane width).  Even data elements that are collected at the same time 
(e.g., weather and surface condition) may not necessarily have the same level of quality. 

 
Second, this large amount of information must be translated into useable findings given 

the risk of a crash is a probabilistic process.  For example, given that a crash has occurred, is it 
possible to identify geometric characteristics that will tend to affect rear-end crashes as opposed 
to angle crashes?  Alternatively, is it the case that the random variation is so large that no 
predictor variables can be identified?  If it is feasible to identify key predictor variables, to what 
extent is it possible to predict the number of rear-end (or angle, injury, or total) crashes as a 
function of geometric and traffic characteristics over which VDOT exerts some influence? 

 
Meeting both of these challenges can provide a tangible safety benefit: reduced data 

collection costs when intersection safety countermeasures are evaluated.  If reliable data 
elements can be identified (or if how to render other data elements reliable in certain situations 
can be ascertained) and used to determine the expected number of crashes, it should be possible 
to evaluate intersection safety countermeasures without having to collect as much comparison 
site data.  
 

 
PURPOSE AND SCOPE 

 
The purpose of this research was twofold: (1) to identify the most beneficial variables in 

the VDOT CRASHDATA database that can be used to estimate crashes in the NOVA District 
and, in doing so, (2) o use the VDOT CRASHDATA database to the maximum extent possible 
given Virginia’s investment in the database.  The study had three objectives: 

 
1. Determine which data elements in the VDOT CRASHDATA database have adequate 

data consistency and completeness, and devise rules for working with those data 
elements for which the data quality in terms of the two dimensions is inadequate. 

 
2. Determine the minimum set of data elements that classifies crash types, i.e., the 

particular data elements that indicate collisions at an intersection will tend to be rear-
end rather than angle crashes and injury rather than non-injury crashes. 

 
3. Develop crash estimation models (CEMs) that predict the number of crashes as a 

function of intersection characteristics.  
 

The scope of the study was limited to intersection crashes that occurred in the Virginia 
counties of Fairfax, Prince William, and Loudoun during the period 2000 through 2005. 

 
 
 

METHODS 
 
 Four tasks were conducted to achieve the study objectives: 



 

 3

1. Conduct a literature review of the relevant literature. 
 
2. Collect, reduce, and assess the quality of the crash data available for Northern 

Virginia intersections. 
 
3. Develop and evaluate classification trees for classifying crashes as rear-end (or not 

rear-end), angle (or not angle), and injury (or not injury) 
 
4. Develop CEMs. 

 
 

Literature Review 
 
 Literature relating to the following three areas was identified through the use of TRIS and 
other search engines and reviewed: 
 

1. crash data quality, including limitations of existing datasets and the identification of 
variables that are essential to safety-related studies 

 
2. classification trees, including methods for developing such trees and their practical 

application 
 
3. CEMs, including the mathematical form and specification of critical parameters. 

 
 
 

Collection, Reduction, and Assessment of Quality of Crash Data 
 

For every reported crash in Virginia, data elements from the Police Crash Report (Form 
FR300) are stored in the VDOT CRASHDATA database.  These data elements include crash 
location, severity, driver behavior, vehicle characteristics, and prevailing environmental 
conditions at the time of the crash.  VDOT also maintains the Traffic Monitoring System (TMS), 
which contains annual average entering volumes for intersections, annual average daily traffic 
(AADT), and heavy vehicle truck percentages.  VDOT’s Highway Traffic Records Inventory 
System (HTRIS) contains, for each link, geometry, traffic control, and operations data.  To place 
these data in a form suitable for analysis, eight steps were followed: 

 
1. Extract crash and roadway data elements.  
2. Eliminate dimensional heterogeneity. 
3. Create intersection variables. 
4. Extract or interpolate intersection-entering volumes. 
5. Manually obtain selected geometric data elements. 
6. Categorize discrete and continuous data into homogenous bins. 
7. Tabulate crashes by collision type, severity type, and intersection characteristics. 
8. Document data deficiencies and related solutions. 
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1.  Extract crash and roadway data elements.  
 

Data were extracted from the VDOT CRASHDATA, TMS, and HTRIS databases.  The 
extraction required the creation of 24 queries in the Structured Query Language (SQL) 
environment.  Each year of data had to be extracted individually.  Further, because a crash could 
occur either upstream or downstream of a given node that is the reference for the crash, two 
queries—one for upstream and one for downstream—were needed.  In addition, one query was 
needed to extract data from the VDOT CRASHDATA and TMS databases and a separate query 
was needed to extract data from the HTRIS database.  Intersection crashes were selected by 
obtaining crashes within 0.03 mi (about 150 ft) of the intersection. 
 
2.  Eliminate dimensional heterogeneity. 
 

The VDOT CRASHDATA database is composed of several linked data tables, such as 
CrashDocument, CrashVehicle, and CrashPedestrian.  When a single crash involves two 
vehicles, the dimensions of the data are heterogeneous because whereas only one value for each 
attribute is required from the CrashDocument table (e.g., one intersection location or one speed 
limit), two values for each attribute are required from the CrashVehicle table (e.g., two sets of 
driver’s ages or two vehicle types).  To eliminate this dimensional heterogeneity, the entry from 
the CrashVehicle table that had an errant driver action was selected.  For 3.1% of the two-vehicle 
crashes and 8.8% of the multiple-vehicle crashes, two or more errant driver actions were listed.  
In those cases, an entry from the CrashVehicle table was chosen randomly.  A similar process 
was used for crashes with two or more pedestrians. 
 
3.  Create intersection variables. 
 

The intersection variables were created from HTRIS.  HTRIS data are stored by link 
rather than intersection.  As a consequence, eight variables that classify the intersection by area 
type (rural versus urban), traffic control (signalized versus stop-controlled), access type (e.g., 
undivided two-way), administrative roadway type (primary versus secondary), and functional 
class (e.g., local or arterial) were developed.  The latter three variables are repeated for the major 
and minor approaches.  These variables were based on the link characteristics stored in HTRIS.  
Intersections that had neither signalized control nor stop control, such as interstate ramps and 
uncontrolled driveways, were not included in the database. 

 
4.  Extract and interpolate intersection-entering volumes. 
 

Intersection-entering volumes were obtained from the TMS database.  For some years 
and at some intersections, a traffic volume was unavailable, and in some other cases, the traffic 
volumes changed dramatically.  In these cases, volumes were projected based on previous or 
later volumes.  For example, if data at an intersection were available for 2003 but not for 2000 
through 2002, the missing values were projected based on the 2003 volume and an average 
growth factor (based on 2004 and 2005).  A similar approach was applied if the annual volume 
change was greater than 25% (and the data were thus deemed inconsistent).  The decision to 
exclude volumes that changed by 25% or more represented a tradeoff between the possibility that 
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a dramatic change was the result of an error and the possibility that such a dramatic change 
reflected a change in land development.   
 
5.  Manually obtain select geometric data elements. 
 

Although some geometric data elements were available in HTRIS, other geometric data 
elements that are not routinely collected or are part of the roadway inventory that was not fully 
completed at the start of the project (e.g., number of lanes) had to be obtained manually by 
examining aerial photographs obtained from Google Maps.  These attributes were the number of 
approaches for an intersection (e.g., three-way versus four-way), number of turn lanes, type of 
channelization, presence of frontage roads, presence of curb cuts, presence of on-street parking, 
and number of lanes (1, 2, or more than 2).  It was possible for the intersection geometry to 
change during the study period (2000-2005).  Although it was possible to include changes in 
attribute values for those attributes stored in HTRIS (e.g., pavement width), the fact that 
photographs from Google Maps reflected only the latest year (2005) meant that the attributes 
collected manually would not necessarily reflect the earlier intersection geometry if changes to 
this geometry occurred from 2000 through 2005.  In some cases, when it was difficult to view 
the roadway network, VDOT’s GIS Integrator (Figure 1) was used to verify the information from 
Google Maps. 
 

 
Figure 1.  Intersection of Occoquan Road and Jefferson Davis Highway in Prince William County  
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6.  Categorize discrete and continuous data into homogenous bins. 
 

Because the data are a combination of continuous variables and discrete variables, and 
because some of the discrete variables had numerous bins (categories), it was necessary to 
transform these data into discrete variables with a comparable number of bins.  (Having too 
many bins for a given variable greatly increases computational time.)  For example, the 
DRIVERACTION variable (with 43 bins) was collapsed into 10 bins, and driver age (a 
continuous variable with hence an infinite number of bins) was collapsed into five categories: 
<= 19, >19 to 25, >25 to 50, >50 to 65, and >65.  This dataset was used to develop the 
classification trees. 
 
7.  Tabulate crashes by collision type and severity type for each intersection. 

 
An aggregate dataset was created by summing crash frequencies by collision type (e.g., 

rear-end or angle) and severity type (e.g., fatal, injury, or property damage only) for each 
intersection over the 6-year period.  For approximately 2% of the intersections, an intersection-
level attribute changed during the  period.  In those situations, the intersection was represented as 
two 6-year equivalent data points.  For example, if intersection A had one left turn lane and 40 
crashes for the first 3 years and two left turn lanes and 35 crashes for the remaining 3 years, the 
intersection would be represented as two data points: one intersection with one left turn lane and 
80 crashes (over a 6-year period) and one intersection with two left turn lanes and 70 crashes 
(over a 6-year period).  This dataset was used to develop the CEMs.  Because the annual crash 
frequencies were added and because the traffic volumes were averaged, the initial CEMs 
predicted a 6-year crash frequency; however, the final models in Appendix B predict a 1-year 
crash frequency.   
 
8.  Document data deficiencies and related solutions. 
 
 The first seven steps, summarized in Figure 2, led to a single 6-year database (2000-
2005) containing 72,218 crashes occurring at more than 6,000 intersections.  In the course of 
creating this database, data deficiencies such as missing or contradictory data elements and rules 
that could overcome these deficiencies were identified and documented.   
 
 

Development and Evaluation of Classification Trees 
 
Classification trees were used to identify the minimum set of data elements for 

classifying crash types.  Four steps comprised this process. 
 

1. Develop classification trees. 
2. Induce rules regarding the necessary variables from the classification trees. 
3. Assess the accuracy of the classification trees. 
4. Identify the most important variables with regard to the rules.  
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Figure 2.  Summary of Data Collection and Reduction.  VDOT Oracle Crash Database = VDOT’s Crash Report 

Database. 
 

As discussed previously, the reason for developing the classification trees was to 
determine if a minimum set of variables could classify crashes.  If so, this may lead to two 
decisions if effective trees can be developed: (1) focus future data collection on just those 
minimal variables, and/or (2) use those minimal variables in developing CEMs, thereby ignoring 
the rest of the dataset.    

 
1.  Develop classification trees. 
 

In this report, a classification tree (Han and Kamber, 2001) refers to a hierarchical set of 
decisions that predicts whether a given crash is a specific crash type.  For each of 17 intersection 
types, three classification trees were developed to predict whether or not a given crash was rear-
end, angle, or injury.  As a consequence, a total of 51 trees were developed.  Rear-end and angle 
crashes were chosen because these were believed to indicate the predominant types of crashes 
occurring at intersections.  For example, a cursory review of crashes in Loudoun County for the 
period 2006 through 2008 where traffic control was designated by a stop sign or traffic signal in 
VDOT’s Crash Report Database indicated that 41% of crashes were rear-end and 45% were 
angle.  Injury crashes were chosen because these were believed to be a useful indication of risk 
of personal harm, as opposed to fatal crashes, which tend to be so few in number that it is 
difficult to use them to assess the impact of a wide variety of causal factors.  

 
 The Gini impurity index (Shmueli et al., 2007) was used to split nodes, and the optimal 

tree size was identified through the minimal-cost complexity cross-validation pruning algorithm 
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proposed by Breiman et al. (1984).  Purity denotes the extent to which node splitting results in 
members of each resulting category having the same value of the dependent variable.  For 
example, with a simple classification tree consisting of only one node (e.g., driver action) and 
one dependent variable (e.g., whether the crash type is rear-end or not rear-end), driver action is 
used to split the crashes into two categories: rear-end and not rear-end.  To say that purity was 
achieved means that the values of driver action used to split the data were chosen such that, to 
the extent possible, one category of crashes was entirely rear-end and the other category was not 
rear-end.  However, if purity were the only goal when a classification tree was created, the result 
would be a complex tree that classified every crash correctly in the training set.  Thus, in the 
creation of such trees, two competing goals are considered: purity (e.g., the accuracy with which 
training data are classified) and simplicity (e.g., the ability to create a classification tree with a 
relatively modest number of nodes and branches).  Breiman et al. (1984) offered a method for 
considering both goals, and this method is incorporated in the software used for this project to 
develop classification trees.    
 

Figure 3 shows the classification tree for rear-end crashes at rural three-way signalized 
intersections on four-lane roads. In Figure 3, each node contains an identification number (ID), 
the number of data points that belong to the node (N), a histogram representing the frequency of 
rear-end crashes, and a 1 or 0 signifying whether the tree represents rear-end or non rear-end 
crashes.  For example, the top node indicates that there were 475 crashes in the dataset; these 
crashes are initially partitioned based on the driver action as follows: 274 points where the driver 
action has a value of 1, 4, 6, 7, or 10 and 201 data points where the driver action has a value of 0, 
2, 3, 5, or 8.  Each node similarly divides crashes into rear-end and non–rear-end; e.g., with 
respect to the aforementioned 274 points (or crashes since each crash is one point), two sub-
datasets are created: one with 260 crashes (if APP_ALIGNMENT = 1, 4, 0, or 2) and one with 
14 crashes (if APP_ALIGNMENT = 1, 3, or 8).  The utility of these subdivisions becomes 
evident when rules are induced as shown in Step 2. 

 
 
2.  Induce rules from the classification trees. 

 
Rules were induced from each tree to predict rear-end, angle, and injury crashes.  For 

example, in Figure 3, Rule 1 may be traced by starting with the top node (node 0) and working 
down to the leftmost node (node 8).  Rule 1 is: 

 
IF   (DRIVER_DRAC = 4, 6, 7, 10, or 1)   AND 

(APP_ALIGNMENT = 1, 4, 0, or 2)   AND 
(VEH_SPEED <= 50.5000)    AND 
(CR_TRCONTROL = 5, 6, 7, 0, 1, or 4) 

 
THEN  the crash is of type rear-end. 
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Figure 3.  Classification Tree for Rear-End Crashes at Rural Signalized 3-Way Intersections on 4-Lane Roads.  Rules are heuristics for classifying crashes 

as rear-end based on select attributes.  For example, Rule 1 indicates that a crash is of the type rear-end if the crash has the attributes of CR_TRCONTROL, 
VEH_SPEED, APP_ALIGNMENT, and DRIVER_DRAC shown in the figure.
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A qualitative translation of Rule 1 is as follows: 
 

IF   (Driver action is following too close; failure to maintain proper control, improper lane 
change, or overcorrection; driver inattention; avoiding pedestrians, animals, or 
vehicles, or other improper action; or exceeded speed limit, exceeded safe speed.)  

AND (Alignment is horizontal level; curved grade; curve straight and level or straight 
grade.) 

AND  (Vehicle speed is less than or equal to 50.5 mph.)   
AND  (Traffic control is no passing lanes; yield sign; others [e.g., not stop sign 
and not slow or warning sign]; none; traffic signal; or traffic lanes marked.) 
 
THEN  the crash is of type rear-end. 
 
Note that in Figure 3, two additional rules can be induced for predicting rear-end crashes 

starting at node 10 (shown as Rule 2) and node 14 (shown as Rule 3). 
 
3.  Assess the accuracy of the classification trees. 
 

The classification trees were developed using only 75% of the available crashes; these 
comprised the “training” dataset.  The accuracy of these trees was determined by using the trees 
to classify crashes for the remaining 25% of the crashes—hence the “test” dataset.  For example, 
whereas the classification tree in Figure 3 classified approximately 88% of crashes correctly in 
the training dataset, it classified approximately 84% of crashes correctly in the test dataset.  

 
4.  Identify the most important variables. 
 

The importance of each rule in a tree may be determined from its gain, which is the 
number of data points classified by the rule.  For example, the gain from Rule 1 is 219, since the 
rule properly classifies 219 data points as shown in node 8.  By contrast, the gain from Rule 2 is 
6 (as shown in node 14), and the gain from Rule 3 is 5 (as shown in node 10).  Thus, Rule 1 is 
the most important rule (since it has the largest gain) and Rule 3 is the least important rule (since 
it has the smallest gain).  Note further that the variable ENV_LIGHTING appears only in Rule 2 
and that the variable APP_CURBGUTTER appears only in Rule 3.  For this example only, the 
variable ENV_LIGHTING (which contributes to Rule 2 with a gain of 6) is more important than 
the variable APP_CURBGUTTER (which contributes to Rule 3 with the smaller gain of 5).  In 
practical terms, if one of these two variables had to be dropped, APP_CURBGUTTER (and hence 
lose a rule with a gain of 5) rather than ENV_LIGHTING (and hence lose a rule with a gain of 6) 
would be the preferred drop.  For each tree, the 10 most important variables were identified to 
develop the minimal set of variables for classifying crashes.   

 
The rules also show the influence of each variable on crash classification.  For example, 

the main reason Rule 1 has a substantially higher gain than the other two rules is simply that a 
large proportion of the rear-end crashes in this particular dataset occurred on facilities with 
vehicle speeds less than or equal to 50.5 mph (see node 6 with 229 crashes) than on roads with 
speeds more than 50.5 mph (see node 7 with 21 crashes).  (Generally, these speeds are integers 
and are estimated by law enforcement officers after the crash; thus a speed might be recorded as 
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50 mph or 55 mph but not 50.5 mph.  Thus the “equal to 50.5” is noted here merely for the sake 
of completeness.) 

 
 

Development of Crash Estimation Models 
 

CEMs were developed that predicted intersection angle, rear-end, injury, and total 
crashes over a 1-year period for 17 classes of intersections.  (Initially a 6-year period was chosen 
because it reduces the number of intersections with zero crashes and the correlation of dependent 
variables, both of which may adversely affect model estimation; however the CEM in Appendix 
B gives a 1-year crash frequency.)  The functional form of the CEM is given by Equation 1. 

 
⎟
⎠
⎞⎜

⎝
⎛

==
XB

expb)Volume(ai  siteat  crashes of number Expectedŷi                          [Eq. 1] 
 
where 
 
 a, b, and B = parameters 
 volume =  total entering daily volume of the intersection 
 X = a vector of intersection attributes found to be statistically significant.   
 
To estimate a, b, and B, negative binomial generalized linear models were used with a log link 
function and the fit of these models was judged by their deviance R-squared (R2

DEV) measures. 
 

A justification for this goodness-of-fit measure is given in the literature (Cameron and 
Windmeijer, 1996; McCullagh and Nelder, 1989).  In classical linear models, maximum 
likelihood estimation finds the parameters (a, b, and B) that minimize the difference between the 
predicted crashes iŷ  and the actual crashes yi.  Such linear models presume that the errors are 
normally distributed with zero mean and a constant variance; further, the actual crashes yi are 
normally distributed with a constant variance.  Accordingly, maximum likelihood estimation for 
linear models seeks to minimize Equation 2.  Negative binomial models, however, do not 
presume that yi follow this normal distribution; instead, it is presumed that yi follow the negative 
binomial distribution as shown in Equation 3 (SAS Institute Inc., 2009), where µ is the expected 
value of the response variable and k is the dispersion parameter.  Accordingly, maximum 
likelihood estimation with the negative binomial model seeks to minimize Equation 4 (Hardin 
and Hilbe, 2007). 
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For these types of models, Cameron and Windmeijer (1996) suggested evaluating the 
goodness of fit based on Equation 5. 

 
( ) ( )
( ) ( )ylyl

ylŷlR 2
DEV −

−
=            [Eq. 5] 

 
In Equation 5, ( )yl , ( )ŷl , and ( )yl  are the log-likelihood values of the null, current, and saturated 
models.  The null model is equivalent to taking a guess in that all of the independent variables 
are set to zero; the current model is the one for which the goodness of fit is to be evaluated, and 
the saturated model consists of the same number of parameters as the number of data points and 
in effect simply replicates the observed dependent values. 

 
SAS software was used to implement Equation 4, which yielded the parameters for the 

CEMs in Equation 1 and the goodness-of-fit measures in Equation 5. 
 

 
 

RESULTS AND DISCUSSION 
  

Literature Review 
  
Crash Data Quality 
 

It has been shown that multiple variables are needed to explain crash causation, including 
those related to roadway geometry (Campbell and Knapp, 2005; Wang et al., 2003), traffic 
volume (Wang et al., 2003), and the vehicle and driver factors (Kaysi and Abbany, 2007).  For 
example, Yan et al. (2005) used a relative accident involvement ratio to measure crash 
propensity and the significance of driver, vehicle, and roadway factors.  Abdel-Aty et al. (2006) 
found that an increase in the number of lanes led to an increase in crash frequency, where it 
appears that the number of lanes represented intersection complexity.  Improper driver behavior 
was found to be the principal cause of crashes at urban signalized intersections in Riyadh, Saudi 
Arabia (Al-Ghamdi, 2003).  A model that predicted aggressive driver behavior included binary 
variables such as whether the driver’s age was less than 26 and whether the vehicle was a sports 
car (Kaysi and Abbany, 2007).  Thus, the literature shows that a wide range of highway, 
geometric, vehicle, and driver variables may be needed for studies of crash causation. 

 
The literature also highlights specific data deficiencies, such as the need for more detailed 

crash data and location information (Al-Ghamdi, 2003), the lack of integrated crash and 
geometric data (Campbell and Knapp, 2005), the problem of underreporting crashes (Kumara et 
al., 2003), crash models where important variables were omitted (Lord et al., 2005; Oh et al., 
2003), and the use of poorly measured or surrogate variables (Oh et al., 2003).  The manner in 
which the studies have been conducted also emphasizes the need for disaggregate crash, traffic, 
and geometric data, as was suggested by Wong et al. (2007).  Thus, the literature suggests that 
data quality is a national issue and not unique to Virginia.  The challenge of integrating data from 
disparate datasets (Campbell and Knapp, 2005) also appears applicable to Virginia’s situation of 
gathering data from disparate databases. 
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Classification Trees 
 

The literature suggests that classification trees may hold promise for safety-related 
studies.  Kim et al. (2007) demonstrated that rural intersection crash data are hierarchical in 
structure, categorizing explanatory variables at two levels: crash and intersection.  Classification 
trees have been implemented for the purposes of analyzing intersection crashes (Keller et al., 
2006); relating injury levels to driver, vehicle, environmental, and crash variables (Chang and 
Wang, 2006; Tesema et al., 2005); and identifying freeway rear-end crashes (Pande and Abel-
Aty, 2005). 

 
Extensive literature is devoted to the different steps required to create an effective 

classification tree (Breiman et al., 1984; Han and Kamber, 2001; Shmueli et al., 2007).  When a 
large number of variables is present, a key challenge is deciding when to split the nodes.  
Although multiple approaches are feasible (Han and Kamber, 2001), one technique is the Gini 
impurity index, which is given as Equation 6 (Shmueli et al., 2007). 

 

∑
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For example, if there are 60 rear-end crashes and 40 angle crashes, m = two distinct classes,  
s1 = 60, s2 = 40, s = 100, p1 = 0.60, and p2 = 0.40.  

 
When a sample is split using a given attribute (e.g., driver action), the reduction in 

impurity is given by Equation 8: 
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Classification tree algorithms applying the Gini impurity index select attributes for each node 
split by maximizing the reduction in impurity shown in Equation 8. 

 
In practice, Equations 6 through 8 are not implemented by hand but rather with software.  

Although splitting the nodes is a critical decision in tree building, it is not the only decision: 
another step is postpruning, where a full tree is developed and then selected branches are 
removed (Breiman et al., 1984; Han and Kamber, 2001).  The reason for this step is that 
classification trees are prone to overfitting: in the extreme, a tree that accurately predicted every 
rear-end crash in Figure 3 would have a large number of nodes and would reflect the noise in the 
training set such that the tree would not be valid for a subsequent class of data.  Thus, testing the 
accuracy of these trees on a different dataset is a necessary step to ensure the tree is valid. 
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Crash Estimation Models 
 

In developing CEMs, the state of the art is to assume that crashes follow the negative 
binomial distribution.  It has been suggested that when modeling crashes, multiple linear 
regression is not appropriate (Jovanis and Chang, 1986) and Poisson regression (Joshua and 
Garber, 1990; Miaou and Lum, 1993) is preferred.  This is because linear models, which assume 
the normal distribution, are not appropriate for crash frequencies that are not normally distributed 
(Miaou and Lum, 1993).  However, the Poisson assumption also has limitations: although valid 
for cases where a crash probability is quite low, it may be the case that the variance is greater 
than the mean and hence the Poisson assumption is not appropriate (Lord et al., 2004; Miaou and 
Lum, 1993).  In response to this large variance, one option is to explore zero-inflated Poisson 
(ZIP) models (Miaou, 1994), although others have suggested that the appearance of a large 
number of zeroes in crash data that initially made ZIP models attractive is the result of data 
problems, such as a high percentage of missing crashes or the grouping of low- and high-risk 
crash sites, such that ZIP models should not be used (Lord et al., 2005).  In response, models 
based on the assumption that crashes follow a negative binomial distribution have gained 
popularity, with many studies recommending or using models based on the negative binomial 
distribution (Abdel-Aty and Radwan, 2000; Garber et al., 2005; Miaou, 1994; Poch and 
Mannering, 1996; Shankar et al., 1995).  The literature (Cameron and Windmeijer, 1996; 
McCullagh and Nelder, 1989) provides guidance on how to evaluate such models based on the 
negative binomial distribution. 

 
Variations in modeling persist, however.  Kumara et al. (2003) applied a random-effect 

negative binomial model to identify intersection crash causal factors.  However, while modeling 
crash frequencies with a multiyear panel of cross-sectional data, Ulfarsson and Shankar (2003) 
reported that negative multinomial models performed better than negative binomial and random-
effects negative binomial models.   

 
Further, negative binomial models use a dispersion parameter (which explains the extent 

to which the variance is greater than the mean and hence that the negative binomial, rather than 
the Poisson, distribution is appropriate).  The literature suggests a constant dispersion parameter 
across sites and time periods should not be assumed as this limits the predictive power of the 
crash models (Miaou and Lord, 2003).  The aforementioned data quality problem of omitting 
important variables also affects this dispersion parameter (Mitra and Washington, 2007).  

 
Guiding Principles From the Literature Review 
 

The literature review suggests four principles that should guide an analysis of Virginia 
intersections: 

 
1. In terms of data quality, a wide variety of disaggregate data elements may be 

required; thus, every effort should be made to link, where possible, crash, geometric, 
vehicle, and driver data.   
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2. Unless Virginia data are different from those of other states, the quality of some data 
elements will be a limitation; thus, procedures are needed to assess the quality of the 
data.   

 
3. To the extent that intersection crashes are hierarchical in nature as has been suggested 

(Kim et al., 2007), it should be feasible to use regression trees to identify the most 
important rules and, by extension, the most important variables, for determining 
intersection crash causality.  Before such trees can be used, however, it is essential 
that they be tested on a dataset different from that used to create them to ensure the 
trees reflect true underlying relationships and not noise within the data. 

 
4. The form of the CEM should be one that is based on the negative binomial 

distribution, but the model should allow for different dispersion parameters rather 
than presuming a constant value.  Because it is believed that Poisson models are 
appropriate for variation by time at a given site, it appears likely that dispersion 
parameters will need to vary by site as opposed to varying by year.  Thus, it is 
reasonable to develop CEMs for specific intersection classes rather than specific 
intersection years. 

 
 

Completeness and Consistency of Crash Data 
  
Data Elements With Adequate Completeness and Consistency 
 
 Two dimensions of data quality were considered: completeness (i.e., whether a value for 
the data element is consistently given) and consistency (i.e., if the data element is completed, 
whether the value used is consistent with the manner in which the variable is defined).  The 
complete list of variables examined in this fashion from the CRASHDATA and HTRIS 
databases, in addition to information with regard to whether they passed the accuracy and 
completeness test, is provided in Appendix A in Tables A1 through A4.   
 
 Some variables in these databases, such as INTERSECTIONTYPE (in the CrashDocument 
table), are not routinely completed, whereas others, such as WORKZONE, were available only 
after September 2003.  Neither variable passed the completeness test.  Other variables, such as 
ACCIDENTCITY and ACCIDENTCOUNTY (in the CrashDocument table), did not pass the 
consistency test as there are some instances where both a county and city were identified and 
these locations were inconsistent.  Variables that did not pass either test were not necessarily 
discarded, as is discussed later.   
 
 Overall, Table 1 suggests that of the 179 data elements in the four tables, 103 (58%) 
showed no problems with regard to completeness or consistency.  Seventeen (9%) of these data 
elements had no data, and 33 (18%) had missing data.  The single largest reason for data being 
missing was imperfections with the geographic referencing system for locating crashes.  For 6 of 
the data elements (3%), additional categories are available for crashes occurring after September 
2003, and for 20 (11%), the data elements themselves were available only for crashes occurring 
after September 2003. 
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Table 1.  Summary of Data Completeness and Consistency in the Four Crash Database Tables (Tables A1-A4 
in Appendix A)a 

 
Status of Data Element 

CrashDocument
Table 

CrashVehicle 
Table 

CrashPedestrian 
Table 

EyRoad 
Table 

 
Total 

No problems 21 22 7 53 103 
No data 5 3 1 8 17 
Incomplete data b24 1 0 8 33 
New categories after 9/03 3 3 0 0 6 
Available after 9/03 5 15 0 0 20 
Total 58 44 8 69 179 
aEach cell shows the number of data elements or variables.  For example, 21 variables in the CrashDocument table 
have no issues with regard to data completeness and consistency as noted by the authors. 
bFor the CrashDocument table, these 24 data elements denote the following: no data for crashes without reference 
nodes (12 data elements), incomplete data for crashes without reference nodes (1), inappropriate reference system 
(3), other incomplete data (5), and data inconsistencies (3). 
  
Eight Rules for Working with Data Elements 
 
 Eight rules for using data elements with inadequate data quality were developed.  The 
primary reason for the rules was that for some of the weaker data elements, the quality of the 
data element was not so poor that it had to be discarded.  For example, in the aforementioned 
instance of both a county and city being noted, of 33,201 total crashes (not just intersection 
crashes) in the VDOT CRASHDATA database that occurred in the NOVA District for year 
2005, 770 (about 2%) had both a city and a county filled in.  With certain caveats, some data 
elements may be used for certain studies.  (For example, a study relating seat belt use to injury 
prevention in a given city may not be adversely affected if the node is not known.)  A secondary 
reason for the rules is that they illustrate how to obtain data for specific intersections.   
 
 Rules 1 through 5 are solutions that analysts can implement to improve the quality of the 
data in their specific study.  Rules 6 thought 8 are observations that analysts should consider as 
they decide which time period and which data elements a given study should include.  The eight 
rules are as follows:  
 

1. Use the PHYSICALJURISDICTION variable rather than the CITY or COUNTY 
variable to determine the jurisdiction where a crash is located. 

 
2. Use the TRAFFICCONTROL variable rather than the INTERSECTIONTYPE variable 

to determine whether an intersection is signalized. 
 
3. Manually extract volumes for intersections that contain a one-way street rather than 

using the IntersectionEnteringVolume function.  
 
4. Use the NODE and OFFSET variables from the CrashIntersection table rather than 

from the CrashDocument table. 
 
5. Create intersection variables based on link variables as necessary. 
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6. Recognize that 20 variables will not have crash data until sometime after September 
2003 and/or that these data may be available in another location than those studied 
here. 

 
7. Recognize that new categories were added for six existing variables in September 

2003.   
 
8. Recognize that the node variable is incomplete for about one-third of the crashes. 

 
1. Use the PHYSICALJURISDICTION variable rather than the CITY or COUNTY variable to 

determine the jurisdiction where a crash is located. 
 

For some crashes, both the CITY and COUNTY variables contain a value.  This might 
happen either because a reporting officer entered the name of both the city and the surrounding 
county on the FR300 or because a data entry error occurred while the electronic database was 
updated.  Having both CITY and COUNTY coded, however, might lead to confusion regarding 
whether the crash should be located in the city or the county.  Although a nested query can be 
developed to identify crashes as being located in cities if and only if the city field is not null, a 
more straightforward approach is simply to merge the CrashJurisdiction table (which includes 
the PHYSICALJURISDICTION variable) and the CrashDocument table and then use the 
PHYSICALJURIDICTION variable.  (When both a county and a city were indicated for a given 
crash, the FR300 was examined to ascertain the correct location of the crash.) 
 
2. Use the TRAFFICCONTROL variable rather than the INTERSECTIONTYPE variable to 

determine whether an intersection is signalized. 
 

The INTERSECTIONTYPE variable is defined by categories that are not mutually 
exclusive as shown in Table 2.  For example, the values for INTERSECTIONTYPE for a 
signalized T-intersection crash should be both 1 and 3; however, only one code can be specified 
in the database.  Thus, the absence of a 1 does not guarantee the intersection is not signalized. 

 
To determine whether an intersection uses a signal, the TRAFFICCONTROL variable, 

which specifies the type of traffic control present on the intersection approach where a crash 
occurred, may be used.  As shown in Table 3, the intersection is signalized if at least one crash 
has the code “03” for TRAFFICCONTROL.  Theoretically, there are two situations where this 
 

Table 2.  Possible Values for the INTERSECTIONTYPE Variable 
INTERSECTIONTYPE Description 

0 Crossover in median not at intersection 
1 Signalized Intersection  
2 Crossing (All crossroads at grade regardless of intersecting angle) 
3 "T" (Leg enters between 80 degree and 100 degree angle) 
4 Branch (One leg enters at angle other than "T" angle) 
5 Offset (All offset intersections when offset does not exceed 150 feet) 
6 5 way or more 
7 Major channelization (Include traffic circle) 
8 Interchange (Grade separation of intersection leg)  
9 Not stated or not applicable.   
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Table 3.  Possible Values for the TRAFFICCONTROL Variable 
TRAFFICCONTROL Description 
01 No Traffic Control 
02 Officer or Watchman 
03 Traffic Signal 
04 Stop Sign 
05 Slow or Warning Sign 
06 Traffic Lanes Marked 
07 No Passing Lanes 
08 Yield Sign 
09 One Way Road or Street 
10 Railroad Crossing with Markings and Signs 
11 Railroad Crossing with Signals 
12 Railroad Crossing with Gate and Signals 
13 Other 
14 Pedestrian Crosswalk 
15 Reduced Speed—school zone 
16 Reduced Speed—work zone 
17 Special Corridor 

 
rule could incorrectly indicate that a signalized intersection is unsignalized: (1) at a signalized 
intersection where there was also a yield control for right turning vehicles and the officer 
indicated that traffic control consisted only of the yield sign and (2) where a traffic signal was 
installed at some point during the study period.  
 
3. Manually extract volumes for intersections that contain a one-way street rather than using 

the IntersectionEnteringVolume function.  
 

For most intersections, the AADT entering an intersection may be extracted from the 
TMS database using the IntersectionEnteringVolume function of the PkgCrashRate package.  
(This query is implemented in SQL and uses the intersection node plus applicable dates.)   If the 
intersection includes a one-way street, however, which was the case with 2.7% of the study 
intersections, this function will return a null value.  In such a situation, another method for 
obtaining the volume should be used, such as obtaining the volume from VDOT’s TMS database 
without using this function.   
 
4. Use the NODE and OFFSET variables from the CrashIntersection table rather than from the 

CrashDocument table. 
 

Intersection crashes can be referenced in two ways: by NODE in the CrashDocument 
table or by NODE in the CrashIntersection table.  In the CrashDocument table, crashes that are 
offset from a node are referenced to the node lying to the immediate west (for an east-west link) 
or south (for a north-south link); in the CrashIntersection table, the crashes are referenced to the 
nearest node regardless of direction.  Thus, the reference nodes of the CrashDocument table  
might not refer to the intersection nearest the crash location.  In such cases, the NODE values in 
the two tables do not match, which was the case for 18.6% of all crashes in the study dataset.  
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For example, Figure 4 shows 2004 crashes in the proximity of nodes 704392 (node A) and 
546262 (node B), which are located on Route 640, an east-west link.   

 
As expected from Figure 4, the CrashDocument table will reference crash 1 to node A 

and crash 4 to node B as these crashes do not have an offset but rather occurred directly at the 
node.  However, crashes 2, 3, and 5 do have an offset as they occurred between nodes.  The 
CrashDocument table will reference crashes 2 and 3 to node A because node A is the closest 
node located west of these crashes.  The CrashDocument table will reference crash 5 to node B, 
again because node B is the closest node located west of crash 5.  

 
However, the CrashIntersection table will reference only crash 1 to node A, whereas 

crashes 2 through 5 are referenced to node B.  The reason is that the CrashIntersection table uses 
the closest nodes to an intersection regardless of whether that node is located east or west of the 
crash. 

 
If one tries to identify intersection crashes by using node offset information from the 

CrashDocument table, crash 2 will appear far away from its reference node (node A) and will not 
be considered an intersection crash.  To avoid this issue, when data for intersection crashes are 
extracted, the CrashDocument and CrashIntersection tables should be merged and only NODE 
and OFFSET values from the CrashIntersection table used for identifying intersection crashes.  It 
should be noted that other intersection-level variables in the CrashDocument table, such as 
INTERSECTIONTYPE and NODETYPE, do not necessarily pertain to the intersection nearest to 
the crash and thus could not be used in this study. 
 

 
Figure 4.  Representation of Intersection Crashes 
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5. Create intersection variables based on link variables as necessary. 
 
 The HTRIS database contains link variables such as rural or urban, primary or secondary, 
functional class (e.g., local, collector, arterial, or freeway), signalized versus stop-controlled, and 
facility type (one-way, undivided two-way, divided with partial access control, and divided with 
total access control).  However, a similar classification is not available for intersections.  The 
solution was to use these link variables as a surrogate for constructing intersection variables as 
shown in Table 4.  

 
Table 4.  Creation of Intersection Variables From Link Variables 

Intersection Variable Method to Create Intersection Variable 
INT_RURALURBAN:  
Classifies location of intersection as rural 
or urban 

The rural or urban link variable (RURALURBAN) of 1 of the downstream or 
upstream links from the link inventory table (EYROADXX) is examined.  If the 
link is classified as rural (RURALURBAN = 1), the intersection is classified as 
rural. 

INT_CLASSIFICATION: 
Classifies intersection as primary or 
secondary a 

The route prefix values (ROUTEPREFIX) of all upstream and downstream links 
from the link inventory table (EYROADXX) are queried.  If at least 1 of the links 
is a primary road (e.g., ROUTEPREFIX = US or SR or FR), the intersection is 
classified as primary. 

INT_FUNCTIONALCLASS: 
Specifies functional class of intersection as 
local, collector, arterial, or freeway 

The functional classification (FUNCTIONALCLASS) of all downstream and 
upstream links from the link inventory table (EYROADXX) is queried. and the 
highest classification among them is recorded.  The ascending order of functional 
class as used in this study is local (lowest classification), collector, minor arterial, 
principal arterial, and urban freeway or expressway (highest classification). 

INT_SIGNALIZATION: 
Classifies intersection as signalized or 
stop-controlled 

Since the link inventory tables (EYROADXX) do not have the traffic control 
information for links, the TRAFFICCONTROL link variable from the 
CRASHDOCUMENT table is used as a surrogate for classifying intersections on 
the basis of signalization.  The TRAFFICCONTROL attribute values of all 
upstream and downstream crashes for each intersection are obtained through a 
query.  The intersection is classified as signalized if at least 1 of the crashes at the 
intersection showed the traffic control to be a signal (TRAFFICCONTROL= 3); 
otherwise, the intersection is classified as stop-controlled.  (The possibility exists 
that a signalized intersection might be incorrectly classified as stop-controlled if all 
crashes specify a traffic control measure other than the traffic signal that was also 
present at the intersection.  This can occur if the additional traffic control measure, 
such as a yield sign at 1 of the signalized right turn approaches, was cited by the 
police officer as being a contributor to the crash.) 

INT_MINOR_CLASSIFICATION: 
Indicates whether minor road is a primary 
or a secondary road 

The route prefix values (ROUTEPREFIX) of all upstream and downstream links 
from the link inventory table (EYROADXX) are queried.  If at least 1 of the links 
is a secondary road (as indicated by the variable ROUTEPREFIX containing the 
number corresponding to a county, e.g., 29 (Fairfax County), the minor approach is 
classified as secondary; otherwise, it is classified as primary.  

INT_MINOR_FUNCTIONALCLASS: 
Specifies functional class of minor 
intersection approach 

The functional classification (FUNCTIONALCLASS) of all downstream and 
upstream links from the link inventory table (EYROADXX) are queried, and the 
lowest classification among them is recorded.   The ascending order of functional 
classes is local (lowest), collector, arterial, and freeway (highest).   

INT_MAJOR_FACILITY: 
Specifies facility type of major intersection 
approach as 1-way, undivided 2-way, 
divided 2-way, or full access controlled 
divided roada 

The facility types (FACILITY) of all downstream and upstream links from the link 
inventory table (EYROADXX) are queried, and the highest FACILITY type 
observed is recorded as the INT_MAJOR_FACILITY.  

INT_MINOR_FACILITY: 
Specifies facility type of minor intersection 
approach 

The facility types (FACILITY) of all downstream and upstream links from the link 
inventory table (EYROADXX) are queried, and the lowest FACILITY type 
observed is recorded as the INT_MINOR_FACILITY.  

aNote that the higher volume approach is the major approach and the lower volume approach is the minor approach.  A primary 
road is one that has a route number below 600 (e.g., Route 29); a secondary road is one that has a route number above or equal to 
600 (e.g., Route 729). 
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6.   Recognize that 20 variables will not have crash data until sometime after September 2003 
and/or that these data may be available in another location than those studied here. 

 
Five of these variables (WORKZONE, WORKERSPRESENT, VDOTPROPERTY, 

DMVSURFACETYPE, and TRAFFICCONTROLWORKING) are in the CrashDocument table.  
Fifteen of these variables (DRIVERAIRBAG, PASSENGERAIRBAG, DRIVEREMSTRANSPORT, 
PASSENTEREMSTRANSPORT, DRIVERSAFETYEQUIPMENT, DRIVERDISTRACTION, 
ALCHOHOLDETERMINATION, DRUGUSE, EMERGENCYVEHICLETYPE, 
EMERGENCYVEHICLESTATUS, OVERSIZE, CARGOSPILL, OVERRIDE, UNDERRIDE, and 
VEHICLECMVHAZINDICATOR) are in the CrashVehicle table.  One reason is that in 
September 2003, the FR300 was updated to include these new variables (except for the variable 
SafetyEquipment, where a new category 8—child safety seat—was added to the FR300). 

 
DRIVERSAFETYEQUIPMENT, which appears in the CrashVehicle table, has a blank 

value for crashes before January 1, 2004.  For crashes occurring in 2004 and later, 
DRIVERSAFETYEQUIPMENT has a value; however, this value does not appear to correspond to 
the FR300.  For example, for one crash for which the FR300 was examined, the motorcycle 
driver was wearing a helmet (hence code 6 according to the FR300) but the 
DRIVERSAFETYEQUIPMENT field shows a value of 5.  Because a pattern could not be 
discerned for the other values of DRIVERSAFETYEQUIPMENT, it is not recommended at this 
time that this variable be used. 
 

However, since this study was completed, the variable SAFETYEQUIPMENT was added 
to two new tables: CrashPerson and CrashInjury.  In those tables, the value of 
SAFETYEQUIPMENT generally appears to correspond to the FR300 with one exception 
regarding the use of code 8.  For crashes that occurred prior to January 1, 2004 (when the 
September 2003 revised FR300 would have taken effect), code 8 appears to mean “unknown.”  
For crashes that occurred January 1, 2004, or later, code 8 correctly matches the definition shown 
on the September 2003 FR300, i.e., the use of a booster seat.   
 

 The recommended practice for determining restraint use as captured by the 
SAFETYEQUIPMENT variable is summarized as follows: 
 

• Do not use the variable DRIVERSAFETYEQUIPMENT in the CrashVehicle table. 
 
• For crashes occurring on or after January 1, 2004, use the SAFETYEQUIPMENT 

variable in the CrashInjury and CrashPerson tables. 
 
• For crashes occurring prior to January 1, 2004, recognize that a code of 8 shown in 

the SAFETYEQUIPMENT variable in the CrashInjury and CrashPerson tables does 
not indicate the use of a booster seat.  Instead, the code of 8 for such crashes prior to 
January 1, 2004, indicates that the safety equipment is unknown. 
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7. Recognize that new categories were added for six existing variables in September 2003.   
 

Three of these variables are in the CrashDocument table (TRAFFICCONTROL, 
ALIGNMENT, and SURFACECONDITION), and three are in the CrashVehicle table 
(VISIBILITYOBSTRUCTION, DRIVERACTION, and FIXEDOBJECT).  Similar to Rule 6, the 
reason for the new categories being in the database is that the FR300 was updated in September 
2003. 
 
8. Recognize that the node variable is incomplete for about one-third of the crashes. 
 

The variable NODE is critical for locating intersection crashes, but for 35.7% of crashes 
in the entire database, there is no entry for NODE (i.e., NODE = 999999).  For example, of 
33,201 total crashes (not just intersection crashes) in the VDOT CRASHDATA database that are 
noted to occur in the NOVA District for year 2005, 2955 (about 9%) had a node value of 
999999.  A very small portion (40 crashes) was located in a city or town; the others were coded 
as being in the counties of Arlington (1,062 crashes), Fairfax (693 crashes), Loudoun (830 
crashes), or Prince William (330 crashes).  For those crashes, it was noted that attributes that 
would logically rely on node information, such as impact zone, shoulder width, and functional 
class, were not known.  These attributes are ROUTEPREFIX, ROUTENUMBER, 
ROUTESUFFIX, NODEOFFSET, NODETYPE, SURFACETYPE, SURFACEWIDTH, 
SHOULDERWIDTH, FACILITY, INTERSECTIONTYPE, IMPACTZONE, SYSTEM, and 
FUNCTIONALCLASS. 
 

In the absence of reference node information, it is not possible to pinpoint the location of 
crashes through querying.  Instead, such crashes must be located manually.  This manual 
procedure entails four steps:(1) identify their document numbers in the VDOT CRASHDATA 
database, (2) obtain the image of the corresponding FR300 from VDOT’s Crash Report 
Database, (3) review the location description provided by the law enforcement officer, and (4) 
use VDOT’s GIS Integrator to locate the intersection and extract the NODE value from GIS 
Integrator.  This method is manually intensive and infeasible for a study that deals with 
thousands of crashes but may be feasible for safety studies using smaller datasets. 
 
Option for Future Work  
 

Although the eight rules are targeted toward crash analysts, there remains an option for 
database designers: in the future, consider adding intersection variables to the existing node 
inventory table.   
 

Several geometric attributes that are directly relevant to intersection-based analyses, such 
as number of left, through, and right lanes; channelization (e.g., none, median only, painted 
islands, and raised islands); presence of frontage roads, curb cuts, and on-street parking; etc., are 
not maintained in the link inventory tables.  These variables are essential for intersection studies 
such as this one.  In this effort, such intersection information was obtained directly through a 
manual data collection effort using aerial photographs from VDOT’s GIS Integrator.  A more 
comprehensive solution would be to add such information to the node inventory tables. 
 



 

 23

Identification of Minimum Set of Crash Causal Factors 
 
 The minimum set of variables that identify crash causal factors was determined through 
developing classification trees, so named because they identified the factors that determined 
whether or not a crash was any one of the following:  a rear-end crash, an angle crash, or an 
injury crash.  (Note that the rear-end and angle categories are mutually exclusive as a crash 
cannot be both rear-end and angle.  However, the injury crash can also be rear-end, angle, or 
neither.)  Because there were three crash types (angle, rear-end, and injury) and 17 intersection 
types (e.g., urban stop-controlled four-way intersections on four-lane roads, urban signalized 
four-way intersections on multi-lane roads, etc.), a total of 51 trees were developed.   
 
 Three types of results are discussed: the size of the classification trees, the variables that 
are the important predictors of crash types (rear-end versus not rear-end, angle versus not angle, 
and injury versus not injury) in these trees, and the relative accuracy of these trees with regard to 
their ability to predict crash types.  These results may be used to identify a minimum set of crash 
causal factors, although the utility of such a set has practical limitations as discussed.  
 
Size of Classification Trees 
 
 Each of the 51 trees has multiple branches that may be used to classify a crash as being a 
crash type.  The tree for classifying whether crashes at rural signalized three-way intersections 
on four-lane roads are rear-end or not may be used as an example.  The three branches of this 
tree, shown previously in Figure 3, are as follows: 
 

• Branch 1: A crash is likely to be a rear-end crash as opposed to not being a rear-end 
crash if it meets the following four criteria: 

 
1. Driver action is code 4 (following too close), 6 (failure to maintain proper control, 

improper lane change, or overcorrection), 7 (driver inattention), 10 (avoiding 
pedestrians, animals, vehicles, or other improper action), or 1 (exceeded speed 
limit or exceeded safe speed). 

2. Approach alignment is code 1 (horizontal level curve), 4 (straight hill crest), 0 
(straight and level), or 2 (straight grade). 

3. Vehicle speed is less than or equal to 50.5 mph. 
4. Traffic control is code 5 (no passing lanes), 6 (yield sign), 7 (other), 0 (none), 1 

(traffic signal), or 4 (traffic lanes marked). 
 
• Branch 2.  A crash is likely to be a rear-end crash if it meets the following five 

criteria: 
 

1. As with branch 1, driver action is code 4 (following too close), 6 (failure to 
maintain proper control, improper lane change, or overcorrection), 7 (driver 
inattention), 10 (avoiding pedestrians, animals, vehicles, or other improper 
action), or 1 (exceeded speed limit or exceeded safe speed). 

2. As with branch 1, approach alignment is code 1 (horizontal level curve), 4 
(straight hill crest), 0 (straight and level), or 2 (straight grade). 
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3. As with branch 1, vehicle speed is less than or equal to 50.5 mph. 
4. Contrary to branch 1, traffic control is code 2 (stop sign). 
5. Curb and gutter is code 0 (no curb and gutter). 

 
• Branch 3.  A crash is likely to be a rear-end crash if it meets the following five 

criteria: 
 

1. As with branches 1 and 2, driver action is code 4 (following too close), 6 (failure 
to maintain proper control, improper lane change, or overcorrection), 7 (driver 
inattention), 10 (avoiding pedestrians, animals, vehicles, or other improper 
action), or 1 (exceeded speed limit or exceeded safe speed). 

2. As with branches 1 and 2, approach alignment is code 1 (horizontal level curve), 4 
(straight hill crest), 0 (straight and level), or 2 (straight grade). 

3. Contrary to branches 1 and 2, vehicle speed is greater than 50.5 mph. 
4. As with branches 1 and 2, traffic control is code 1 (traffic signal). 
5. Environmental lighting is code 0 (daylight) or 1(dawn or dusk). 

 
As discussed previously, the gain differs for each rule: the gain for Rule 1 is large, i.e., 

219 (it properly classifies 219 rear-end crashes); the gains for Rules 2 and 3 are smaller, i.e., 6 
and 5, respectively.  

 
The three branches show that capturing just six variables allows one to classify a rear-end 

crash versus a non–rear-end crash at this intersection.  The six variables that comprise the three 
branches are driver action, approach alignment, vehicle speed, traffic control, curb and gutter, 
and environmental lighting.  (Returning to the initial reason for developing the classification 
trees, the question becomes whether a similar set of variables could successfully classify crashes 
at other types of intersections other than the type shown in Figure 3; if so, then a case could be 
made that a minimum set of variables has been identified.  If such a minimum set exists, it may 
be used to prioritize data collection efforts or determine which variables are most productive for 
estimating crash risk.) 

 
Not all trees used the same variables or had the same number of branches.  In general, the 

number of branches for each tree varied from 2 (e.g., rear-end crashes at rural stop-controlled 
three-way intersections on four-lane roads) to 15 (e.g., angle crashes at urban signalized three-
way intersections on four-lane roads).  The number of rules induced from each tree varied 
depending on the size of the tree and the structure of the dataset. 
 
Variables That Are the Important Predictors of Crash Types in Classification Trees 

 
The classification tree procedure also ranks the variables (used in the rules) based on their 

importance regarding their ability to predict crash types during the training process.  In the case 
of injury crashes at urban stop-controlled four-way intersections on a four-lane road, there were 
four branches.  From these, the 10 most important predictors for injury crashes at an urban stop-
controlled four-way intersection on a four-lane road are vehicle speed, traffic volume, driver 
action, lighting, alignment, weather, shoulder width, surface condition, whether the driver’s 
visibility is obstructed, and traffic control.  (Although the traffic control for the intersection is 
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known [e.g., stop-controlled], the officer may indicate other forms of traffic control that may be 
in the vicinity of, but not supersede, the stop sign.  These include none, traffic signal, stop sign, 
slow or warning sign, traffic lanes marked, no passing lanes, yield sign, or other.) 

  
It is also possible to compare the important predictors. from this tree to the important 

predictors of the other 50 trees (e.g., the trees for angle or rear-end crashes at the same 
intersection type and the trees for angle, rear-end, or injury crashes at the remaining 16 
intersection types).  For example, the approach alignment variable is used to classify all three 
crash types (angle, rear-end, and injury) at urban stop-controlled intersections on four-lane roads.  
Given 17 intersection types and three crash types, a variable that was needed to classify all crash 
types at all intersections would appear at some point in all 51 trees. 

 
Figure 5 shows the number of trees in which each variable was deemed an important 

predictor.  Not surprisingly, vehicle speed was the most common variable, appearing as an 
important predictor in 49 of the 51 trees.  Other highly important predictors included driver 
action (48 trees), alignment of the approach (47 trees), lighting and weather (44 trees each), 
traffic control (42 trees), driver visibility (40 trees), and traffic volume (38 trees). 

 
Although the variables in Figure 5 gradually decrease in the number of trees cited from 

left to right, there is a discontinuity at the surface condition variable.  The variable immediately 
to the left—shoulder width—appears as an important predictor in 35 trees, whereas the surface 
condition variable appears in 28 trees followed immediately by vehicle type, which appears in 18 
trees.  At this discontinuity, there is also an important shift in the types of crashes for which the 
variable is a useful predictor.  With regard to the variables to the left of vehicle type, each is 

 

 
Figure 5.  Number of Trees in Which Each Variable Appears.  The total number of trees was 51. 
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generally used in equal proportions for all three crash types; e.g. the surface condition variable 
was useful for predicting rear-end crashes (10 trees), angle crashes (9 trees), and injury crashes 
(8 trees).  Immediately to the right of the surface condition variable, however, there are two 
variables where these proportions are not similar.  Although the vehicle type variable was used in 
10 trees for injury type classification, it was used in only 5 trees for rear-end crash classification 
and in only 3 trees for angle crash classification.  The other discontinuity was the presence of a 
sidewalk variable: used in 5 rear-end crash trees, 8 angle crash trees, and only 1 injury crash tree.  
These discontinuities show the potential exists to delineate essential variables from less 
important ones.  A more rigorous approach that takes advantage of these discontinuities may be 
considered but only after the accuracy of these classification trees is evaluated. 
 
Accuracy of Classification Trees With Regard to Their Ability to Predict Crash Types 
 

The classification trees were developed using about three-fourths of the dataset.  To 
assess their accuracy, they were applied to the remaining one-fourth of the dataset, the error rates 
are shown in Table 5.  For example, consider the cell for rural three-way stop-controlled two-
lane intersections with respect to rear-end crashes in Table 5.  According to that cell, for such  
intersections on two-lane roads, the rear-end tree did not correctly classify 13.24% of the training 
crashes (classifying either a non–rear-end crash as a rear-end crash or a rear-end crash as a non–
rear-end crash).  When the tree is applied to new data from which the tree was not developed, 
i.e., the testing set data, the error rate increased slightly to16.03%. 

 
Classification trees for rear-end crashes had average error rates of 12.83% and 16.20% 

for training and testing samples, respectively.  For angle crash classification trees, the average 
error rates were 9.01% (training) and 12.21% (testing).  Injury (including fatalities) crash 
classification trees were less accurate, with error rates of 39.78% and 38.63% for training and  

 
Table 5.  Predictive Accuracy of Classification Trees 

Error Rate 
Rear-end Angle Injury and Fatal 

 
 

Intersection Class Training Testing Training Testing Training Testing 
2-lane 13.24% 16.03% 4.36% 8.71% 42.03% 42.86% Stop-controlled 
4-lane 11.94% 22.64% 10.29% 15.09% 40.19% 33.96% 
2-lane 12.26% 18.10% 7.53% 11.21% 31.25% 41.38% 

3-way 

Signalized 
4-lane 12.07% 15.69% 8.59% 13.07% 51.67% 33.33% 
2-lane 14.71% 14.75% 8.33% 14.75% 32.65% 54.10% Stop-controlled 
4-lane 7.22% 9.26% 10.56% 18.52% 28.06% 27.57% 
2-lane 12.39% 13.01% 8.42% 12.33% 36.18% 34.25% 

Rural 

4-way 

Signalized 
4-lane 12.89% 19.05% 8.24% 13.23% 37.29% 42.06% 
2-lane 14.52% 14.59% 10.06% 11.18% 38.91% 34.72% Stop-controlled 
4-lane 14.80% 18.52% 8.02% 11.35% 37.09% 42.83% 
2-lane 13.09% 20.40% 8.91% 11.04% 43.27% 39.29% 

3-way 

Signalized 
4-lane 15.45% 15.37% 9.58% 10.19% 43.98% 38.96% 
2-lane 11.56% 13.07% 11.22% 13.91% 39.21% 35.74% Stop-controlled 
4-lane 12.08% 17.61% 9.45% 12.20% 38.99% 40.18% 
2-lane 12.78% 15.88% 11.19% 11.07% 47.21% 38.28% 
4-lane 13.23% 14.92% 9.99% 10.25% 46.88% 38.84% 

Urban 

4-way 

Signalized 

Multi-lane 13.96% 16.44% 8.43% 9.49% 41.41% 38.42% 
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testing samples, respectively.  The poor performance of injury crash classification trees might be 
attributed to the heterogeneity in injury and fatal crashes, as they include all collision types.  (For 
example, an injury crash might be a rear-end collision, an angle collision, or a collision with a 
fixed object.)  Thus, the higher accuracy for angle or rear-end crashes may be attributable to each 
of these datasets being more homogeneous than the injury crash dataset. 
 
Error Rate Obtained From Chance Alone 
 
 To determine whether the error rates shown in Table 5 indicate good performance, they 
were compared with the error rate that would result from chance alone.  Note that this error rate 
is not necessarily 50%.  For example, it is generally the case that most crashes are not injury 
crashes. 
 

To determine the error rates based on chance alone, a query of select Northern Virginia 
intersections for the time period 2006 through  2007 in the VDOT CRASHDATA database was 
executed.  The query indicated that the percentage of crashes that were rear-end, angle, and 
injury and fatal, respectively, were 40.23%, 34.08%, and 34.29%.  With regard to only injury 
and fatal versus non-injury and fatal crashes, because a minority of crashes were injury and fatal 
crashes (34.29%), an analyst who had no other information could simply guess that each crash 
was a non-injury and fatal crash.  This guess would yield an error rate of 34.29%. By extension, 
without any information such as that provided by the classification trees, the error rate 
attributable to chance alone will be 40.23% (for rear-end crashes), 34.08% (for angle crashes), 
and 34.29% (for injury crashes).  
 
Comparing Error Rates From Chance Alone and Classification Trees 
 

In general, the error rates for rear-end and angle crashes for all intersection types shown 
in Table 5 were significantly lower than what would have been obtained from chance alone.  For 
example, with regard to the 16.03% testing error for rural stop-controlled three-way intersections 
on two-lane roads for rear-end crashes in Table 5, Equation 9 shows that this error is 
significantly different from the error of 40.23% that would result from chance alone since the 
confidence interval given by Equation 9 (13.64% to 18.42%) does not include 40.23%. 

 

 
( )( )

crashes 905 of size Sample
16.03% of raterror E116.03% of rateError 96.1 16.03% of rateError −

±  

 = 13.64% to 18.42%                                                                                                 [Eq. 9] 
  
By contrast, except for one intersection, the error rate for classifying injury and fatal 

crashes is not significantly lower than the error rate one would expect to result from chance 
alone.  For example, Table 5 shows a 42.86% testing error for rural stop-controlled three-way 
intersections on two-lane roads.  Equation 10 shows that the 95% confidence interval for this 
rate, based again on an estimated testing sample size of 905 crashes, is 39.64% to 46.08%.  This 
error rate is not only higher than the 34.29% error rate expected from chance alone, it is also 
significantly higher than the error rate obtained from chance alone. 
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 ( )( )
crashes 905 of size Eample

42.86% of rateError 142.86% of rateError 96.1 42.86% of rateError −
±  

 = 39.64% to 46.08%                                                                                                 [Eq. 10] 
 

In only one instance—tural four-way stop-controlled intersection with a four-lane road—
was the testing error in Table 5 for injury and fatal crashes (in this case 27.57%) significantly 
lower than the 34.29% error that would have resulted from chance alone.  For five of the 
intersection groups (rural three-way stop-controlled intersection with a four-lane road; rural 
three-way signalized intersection with a four-lane road; rural four-way signalized intersection 
with a two-lane road; urban three-way stop-controlled intersection with a two-lane road; and 
urban four-way stop-controlled intersection with a two-lane road), there was no significant 
difference between the injury error rate in Table 5 and the error rate resulting from chance alone.  
For the remaining intersections, the injury error rate shown in Table 5 was significantly higher 
than the 34.29% error rate that would have resulted from chance alone.  Thus, the injury 
classification results do not suggest the classification trees as developed in this study are useful 
for identifying causal factors for injury crashes.   

 
It may be possible for additional research to improve the usefulness of classification trees 

for intersection crashes through other methods not explored in this study.  For example, one 
approach would be to apply a two-step procedure where crashes were first classified as rear-end 
or angle and then as injury or non-injury.  A second approach would be to redo the classification 
trees with a new dataset, taking advantage of variables that were not readily available previously, 
such as safety equipment (which indicates whether or not the driver was using a seat belt). 

 
A third approach would be to use the results of CEMs to combine certain intersection 

types where the geometric differences were not reliable predictors of intersection crashes. 
 

A Minimum Set of Crash Causal Factors  
 
The relatively large injury error rates in Table 5 suggest that the use of classification trees 

as in this study (where crashes were classified as injury or non-injury regardless of crash type) is 
simply not a reliable method for determining whether a crash will result in an injury.  However, 
it appears reasonable to use the trees to identify causal factors for classifying rear-end and angle 
crashes. 

 
For rear-end and angle trees only, Figure 5 may be considered to indicate a total “tree 

factor space” of 340, based on 17 rear-end trees, 17 angle trees, and 10 factors per such tree.  The 
first few factors on the horizontal axis of Figure 5 account for a relatively high proportion of the 
tree factor space.  For example, 6 factors (vehicle speed, driver action, alignment, lighting, 
weather, and traffic control) are cited as important predictors 182 times—more than 50% of the 
340-unit tree factor space.  Thus although there is a total of 21 variables on the horizontal axis of 
Figure 5, 6 account for 54% of the tree factor space, 10 account for 81%, and 13 account for 
almost 90%. 

 
To identify the minimum set of crash causal factors, one approach is to identify the 

number of variables in Figure 5 that occupies the percentage of tree factor space equivalent to the 
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accuracy rate shown in Table 5.  For example, since Table 5 shows an average error rate of 
16.20% for rear-end crashes (a slightly lower rate of 12.21% for angle crashes), one approach 
would be to identify the variables in Figure 5 that account for 84% of the space.  In this case, 
only 12 variables account for precisely 85.88% of the space: vehicle speed, driver action, 
alignment, lighting, weather, traffic control, driver visibility obstruction, traffic volume, shoulder 
width, surface condition, vehicle type, and median type. 
 
Utility of Minimum Set of Crash Causal Factors 
 

Although a set of crash causal factors can be developed, the utility of the set as a criterion 
for taking any action is limited for two reasons.  First, some judgment is necessary regarding the 
demarcation of the most important and less important variables in Figure 5.  Indeed, the case 
could be made that all variables shown in Figure 5 are useful in some capacity.  Second, the 
selection of these variables is based solely on classifying crashes as rear-end or angle rather than 
injury crashes.   

 
Thus, the minimum set of crash causal factors have utility as a diagnostic tool in that 

given that a crash will occur, the 12 variables noted previously should help identify whether the 
crash will be a rear-end or angle crash.  In that sense, the factors may prove useful for delineating 
the conditions that make a given site more prone to rear-end crashes or angle crashes.  They also 
suggest that specific variables stored in the VDOT CRASHDATA database may be used to make 
some types of predictions; i.e., although crashes are probabilistic, the random variation does not 
obscure all trends.  However, it does not appear justifiable to use this list of 12 variables as a way 
to prioritize which data elements should be collected in the future for all crash types.  Because 
the trees did not serve their purpose of identifying which variables should be used, they are not 
presented in this report. 

 
Development of Crash Estimation Models 

 
 CEMs were developed for all 17 intersection types and four crash categories: angle, rear-
end, injury, and total.  The approximate number of intersections used for each intersection class 
was about 6,752, as shown in Table 6.  In a few cases, intersection characteristics changed during  
 

Table 6.  Number of Intersections by Class 
Intersection Class No. of Intersections No. of Data Points 

2-lane 378 382 Stop-controlled 
4-lane 39 43 
2-lane 39 40 

3-way 

Signalized 
4-lane 38 47 
2-lane 89 89 Stop-controlled 
4-lane 59 65 
2-lane 30 31 

Rural 

4-way 

Signalized 
4-lane 56 64 
2-lane 3,059 3,079 Stop-controlled 
4-lane 372 382 
2-lane 199 217 

3-way 

Signalized 
4-lane 325 338 
2-lane 1,028 1,036 Stop-controlled 
4-lane 293 297 
2-lane 190 204 
4-lane 685 718 

Urban 

4-way 

Signalized 

Multi-lane 73 77 
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the study period, in which case the intersection was represented as two data points (with the 
crash data normalized to reflect a 6-year period).  As a consequence, the number of data points is 
slightly greater than the number of intersections, as shown in Table 6. 
 
 For example, the total number of crashes at a rural signalized three-way intersection with 
a two-lane road is computed via Equation 11: 
 
TC = 

( ) ⎟
⎠
⎞⎜

⎝
⎛

⋅
lanes)left turn  (0.1568 - tion)channeliza (0.549 - int_func) (0.5354

exp0.9409Volume 0.000346
  

[Eq. 11] 
where 
 
 TC = total annual crashes 

Volume = total daily approach volume, which is the sum of volume entering the 
intersection from all four links (or three links for a three-way intersection)  
int_func = 0 if major road is a local or a collector road and 1 if major road is an arterial 

 road 
channelization = 0 if no channelization or only medians on approaches, 1 if painted or 

 raised islands 
left turn lanes = sum of exclusive left turn lanes on all approaches. 

 
Although Equation 11 may be used to estimate the total number of crashes at a signalized 

rural three-way intersection with a two-lane road, inspection of the parameters in the equation 
offers several insights into factors affecting crash risk at such intersections.  From left to right in 
Equation 11, the volume exponent of 0.9409 suggests that crashes are slightly inelastic to 
volume: a doubling of traffic volume will result not in twice as many crashes but rather in 20.9409 
= 1.92 times as many crashes.  The positive coefficient for the int_func variable suggests that 
crash risk is increased if the major road is an arterial facility as opposed to a local or collector 
facility.  As expected, total crashes are reduced by the presence of painted or raised islands (see 
the negative coefficient for the channelization variable) and exclusive left turn lanes (see the 
negative coefficient for the left turn lanes variable). 
 

The CEMs, dispersion parameters, and goodness-of-fit statistics are presented in Tables 
B2 through B5 in Appendix B for all 68 CEMs.  Three observations pertaining to the volume 
exponent, the impact of the remaining explanatory variables, and the goodness of fit of the 
CEMs can be made regarding the CEMs. 

 
Volume Exponent 
 

For most of the 68 CEMs, the volume exponent was usually below 1.0: this was the case 
for 16 of the 17 angle crash models and 16 of the 17 total crash models.  For rear-end and angle 
crash models, the single exception—where the volume exponent exceeded 1.0—was rural three-
way signalized intersections with a two-lane road (angle crashes) and rural four-way signalized 
intersections with a two-lane road (total crashes).   
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Of the 17 injury crash models, the volume exponent was also below 1.0 except in three 
instances: rural three-way signalized intersections with a two-lane road (consistent with the 
volume exponent for angle crashes), rural four four-way signalized intersections with a two-lane 
road (consistent with the volume exponent for rear-end crashes), and urban four-way signalized 
intersections with a multi-lane facility. 

 
There was one crash type (rear-end) where, in the various intersection models, the 

volume exponent was evenly distributed above and below 1.0.  For rear-end crash models, the 
volume exponent was below 1.0 for slightly less than one-half (8) of the 17 crash types.  The 
rear-end volume exponent was above 1.0 for all three intersections noted previously where the 
injury, total, or angle crash exponent was above 1.0 as well as for six other intersection types: 
rural four-way stop-controlled intersections with a two-lane road, rural three-way stop-controlled 
intersections with a four-lane road, rural three-way signalized intersections with a four-lane road, 
urban three-way stop-controlled intersections with a two-lane road, urban four-way stop-
controlled intersections with a two-lane road, and rural three-way stop-controlled intersections 
with a two-lane road.   
 
Impact of Remaining Explanatory Variables 
 
 In addition to volume, 15 explanatory variables were considered in developing the GLMs 
as shown in Table B1 in Appendix B.  Four related either to functional class (local or collector 
versus arterial) or administrative class (primary or secondary) of the intersection approaches.  
Four variables related to the number of turning lanes, such as exclusive left turn lanes, exclusive 
right turn lanes, and lanes where different turning movements were combined.  Two variables 
addressed whether either or both approaches were divided, one addressed whether frontage roads 
were present, and one addressed whether painted or raised islands were employed at the 
intersection.  The three remaining variables concern the presence of on-street parking, the 
number of lanes at the intersection, and the number of curb cuts. 
 
 Table 7 indicates the number of CEMs—of a total of 68—where a change in the variable 
reduces, does not affect, or increases the number of crashes.  For example, consider Equation 11.  
A change in the number of left turn lanes from 0 to 1 will reduce the number of total crashes at a 
rural signalized three-way intersection with a two-lane road.  By contrast, consider the model 
shown in Table B2 (Appendix B) for angle crashes at rural three-way stop-controlled 
intersections with four-lane roads.  That model, reprinted as Equation 12, shows that the 
coefficient for left turn lanes (left turn lanes) is above zero with a value of 0.5132.   
 

( )
⎟
⎠
⎞⎜

⎝
⎛ ++

=

lanesleft turn  0.5132  rtlanes 0.9234 - secminor_prim 1.242  cint_primse 0.8952
exp

X0.8952Volume 0.01322  crashes Total
 

            [Eq. 12] 
 

Thus, Equation 11 represents one model where increasing the number of left turn lanes 
decreases crashes, whereas Equation 12 represents a model where increasing the number of left 
turn lanes increases crashes.  Overall, Table 7 shows that an increase in left turn lanes from 0 to  
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Table 7.  Impact of Changing Each Explanatory Variable on Number of Crashesa 
Models Where Change  

 
Change in Variable (Relative to Base Condition) 

Decreases 
crashes 

Has no 
impact 

Increases 
crashes 

Major road is secondary (rather than primary)b 12b 27b 29b 
Minor road is secondary (rather than primary) 12 48 8 
Both approaches are primary (rather than at least 1 being 
secondary) 

0 64 4 

Major road is arterial (rather than local or collector) 19 39 10 
Painted or raised islands (rather than no channelization or only 
medians on approaches) 

22 38 8 

Frontage roads are present (rather than absent) 4 55 9 
On-street parking observed (rather than not observed) 8 50 10 
Both approaches are undivided (rather than at least 1 being 
divided)c 

14 29 25 

Major approach is divided (rather than being undivided) 0 63 5 
1 exclusive right turn lane (rather than none) 16 40 12 
1 exclusive left turn lane (rather than none) 26 28 14 
1 lane where through, right, and left turns are allowed (rather 
than none) 

22 43 3 

1 lane where both right and left turns are allowed (rather than 
none) 

4 57 7 

Intersection of 4-lane road with another 4-lane (or more) road 
(rather than a 2-lane road) 

7 56 5 

1 curbcut (rather than no curbcut) 10 46 12 
aThe total number of models always sums to 68 as there are 17 intersection types and 4 crash types per intersection 
type.   
bFor example, when the major road is changed to a secondary facility from a primary facility, 12 of the models show 
a decrease in crashes, 29 show an increase, and 27 are not affected.  Computationally, this is done by changing the 
value of the variable INT_PRIMSEC (see Table B1 in Appendix B) from 0.0 (meaning the major road is primary) to 
1.0 (meaning the major road is secondary) and then determining whether the quantity shown in the “Intersection 
Factors” column of Tables B2 through B6 is positive, negative, or unchanged. 

 
1 reduces the number of crashes for 26 models, increases the number of crashes for 28 models, 
and has no effect on crashes for 14 models. 
 
Consistency Among Signs of Explanatory Variables 
 
 Table 7 has a few results that were to be expected.  For example, of the 30 models where 
channelization was included as a variable, most (22) showed that using painted or raised islands 
reduced crashes compared to the few (8) where such channelization increased crashes.  Having 
an exclusive left turn lane (rather than not having such a lane) tended to reduce crashes.  Further, 
for 9 of the 10 angle crash models that included a variable indicating whether both approaches 
are undivided, changing this variable from at least one approach being divided to having both 
approaches being undivided increased crashes.   
 

 However, Table 7 also shows several results that initially were surprising: e.g., having a 
major approach that is divided, rather than undivided, shows an increase in 5 of the models (and 
no decreases).  Similarly, the presence of a lane where through, right, and left turns are allowed 
tends to decrease, rather than increase, crashes.  Finally, for 6 of the 10 rear-end crash models 
that included a variable indicating whether both approaches are undivided, changing this variable 
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from at least one approach being divided to both approaches being undivided decreased crashes, 
contrary to what one would expect from removing a physical barrier. 

 
There are two possible explanations for these non-intuitive results.  One is that changes to 

some variables that should reduce crash risk may in some situations have an adverse impact 
because of the interaction effect with other intersection characteristics.  For example, the 
existence of left turn and right turn lanes at an intersection could lead to additional weaving that 
otherwise would not have occurred. 

 
The second explanation is that in some cases, there may be variables that are associated 

with increased crash risk but not causing this increased crash risk.  For example, Equation 12 
shows a positive coefficient of 0.5132 for left turn lanes.  Barring the interaction possibility 
noted, it is likely not the case that the construction of left turn lanes results in additional crash 
risk given that channelization should reduce crashes.  Instead, in this situation, it may be the case 
that the left turn lanes are a surrogate for an increase in conflict points resulting from left turning 
demand, which would increase crashes relative to a situation where few left turns are made.  
Similarly, there may be variables that are associated with decreased crash risk but not causing 
this decreased crash risk.  For example, with regard to the models for estimating crashes on two-
lane roads at a stop-controlled intersection, where the presence of on-street parking has a 
negative coefficient, it may be the case that two-lane facilities with on-street parking have 
characteristics relative to facilities without on-street parking that reduce crashes, such as lower 
speeds, less cut-through traffic, and greater driver vigilance.  In short, the variables may 
sometimes reflect association rather than causation. 
 

Note that the R2
dev does not quantify the extent to which a given variable causes, as 

opposed to being correlated with, a given level of crash risk.  (In Equation 4, the R2
dev simply 

provided a score, between 0 and 1, indicating the relative strength of the model.  Strength is 
measured as a proportion, with the denominator being the difference in likelihood between a 
saturated model that has 100% accuracy and a null model that contains only an intercept and the 
numerator being the difference in maximum likelihood between the model developed herein and 
the same null model.)  Thus it can be said that the rear-end crash model for rural four-way 
signalized intersections with a two-lane road (R2

dev = 0.73) is stronger than that for urban four-
way  signalized intersections with a two-lane road (R2

dev = 0.39).  However, other information 
(such as recognition that a facility may not have been converted from being undivided to 
divided) is necessary to determine whether correlation or causation explains the role of the 
variable in the model. 
  
Consistency Among Magnitudes of Explanatory Variables 
 
 Visual inspection of the coefficients in the CEMs suggests that even when the variables 
have the same sign, the impact on crashes may differ from one model to the next.  For example, 
consider the nine models that predict angle crashes and show that changing both approaches to 
undivided will increase crash risk.  Table 8 shows that this crash risk increase may range from 
43% to 154% depending on the specific intersection being modeled.  Although a few of the 
intersection types have visually similar increases (e.g., a stop-controlled intersection with a four-
lane road shows a 73% to 77% increase regardless of whether it is urban or rural), the increase in  
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Table 8.  Impact of Making Both Approaches Undivided on Angle Crash Risk 
Intersection Type Crash Increase 

Urban 3-way stop-controlled intersection with a 4-lane road 43%a 
Urban 3-way signalized intersection with a 2-lane road 51% 
Urban 4-way signalized intersection with a 4-lane road 53% 
Urban 4-way signalized intersection with a 2-lane road 64% 
Urban 3-way stop-controlled intersection with a 2-lane road 68% 
Urban 4-way stop-controlled intersection with a 4-lane road 73% 
Rural 4-way stop-controlled intersection with a 4-lane road 77% 
Urban 4-way stop-controlled intersection with a 2-lane road 78% 
Rural 3-way signalized intersection with a 4-lane road 154% 

aFor example, for urban 3-way stop-controlled intersections with a 4-lane road, the variable BOTHUNDIV has a 
coefficient of 0.3584.  Changing the value of this variable from 0 (at least 1 approach is divided) to 1 (both 
approaches are undivided) raises the risk of angle crashes from exp(0) = 1 to exp(0.3584) = 1.43, a 43% increase. 
 
crash risk more than triples when the lowest increase in Table 8 is compared to the highest 
increase.  If the intersections with the most and least crash increase in Table 8 are removed, the 
increase in crash risk still varies by about one-half when the remaining highest and lowest 
increases are compared. 
 
Summary of Consistency Among Explanatory Variables 
 
 Table 8 shows the variation that results even when the sample of CEMs is limited to 
those having the same sign for a given variable.  For one CEM not shown in Table 8 (urban four-
way signalized intersection with a multi-lane road), making both approaches undivided reduced 
angle crash risk by 28%.  Thus, the impact of this variable on angle crashes differs by road type 
and ranges from -28% (for urban four-way signalized intersections with a multi-lane road) to 
+154% (for a rural three-way signalized intersection with a four-lane road).  
 

Further, whereas making both approaches undivided increased crash risk for nine angle 
crash CEMs and reduced crash risk for just one angle crash CEM, this same change increased 
crash risk for four rear-end crash CEMs and reduced crash risk for six CEMs.  Thus, variables 
have variation by crash type and within those crash types by intersection class—even in cases 
where, such as in Table 8, the variable has the same sign.  
 
Goodness of Fit of CEMs 
 
 For the 68 CEMs provided in Appendix B, the dispersion parameter k varied between 
0.119 and 3.337, suggesting that dispersion is not constant for each model.  Although there was 
some overdispersion and hence the negative binomial distribution was appropriate, the low value 
of k in some cases suggested that the Poisson assumption would also have been appropriate.  
This is because when k approaches zero, the Poisson model can be used (Miaou, 1993).  For 
consistency, however, this study used the negative binomial distribution for all models.  The lack 
of constant dispersion is anecdotally supported by the differences in the signs of the coefficients 
for the explanatory variables noted previously.  
 
 The deviance-based pseudo R-square measure (R2

dev) values ranged from 0.07 to 0.74, 
with an average value of 0.356.  In practical terms, a value above 0 means the model offers some 
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improvement over the case of not having a model, although there is no statistical criterion for 
accepting or rejecting a given model based solely on the deviance-based pseudo R-square 
measure.   
 

It is possible to perform a test of statistical significance—the likelihood ratio test 
(Koppelman and Bhat, 2006)—to determine whether all coefficients in a model are necessary; 
the CEM such as that shown in Equation 11 would be compared to a more restricted version 
where certain parameters are set equal to zero.  Such a test will detect whether the model requires 
the parameters in the CEMs, an outcome that is analogous to the model building process used 
herein.  However, once the models are developed, there is no universal criterion for using (R2

dev) 
alone to reject or accept a model, except to say that values closer to 1.0 are better than values 
closer to 0.0. 

 
Model Adequacy for Predicting Crash Risk 

 
Appendix C shows further testing with the model for one class of intersections: urban 

four-way signalized intersection with a four-lane road.  The results show that there was no 
significant difference between the performance of the CEMs with 2004 through 2005 data 
(which were used to build the models) and 2006 through 2007 data (which were not used to build 
the models).  This suggests the CEMs may be used for other time periods.  However, the 
performance of the particular model examined in Appendix C does not suggest that it can be 
used to predict crashes on an intersection-by-intersection basis, since on average the number of 
actual crashes was approximately 3.5 times the number of predicted crashes.  That is, the 
particular model examined showed a 77% average percentage error when trying to predict 
crashes at a specific intersection. 

 
Model Adequacy for Identifying High-Risk Crash Locations 

 
The models may have some utility for identifying high-risk crash locations.  Using data 

from 2006 through 2007—i.e., data that were not used to build the models—the same 
intersections as noted previously were classified as high, medium, and low risk based on the 
number of crashes predicted by the models.  Then, this classification was repeated using actual 
crash data from 2006 through 2007.  Table 9 shows that the approach has some promise: e.g., 
52% of the intersections that were high risk (based on actual crash data) were classified as high 
risk (based on the models).   

 
Table 9.  Comparison of Crash Risk Based on CEMs and 2006-2007 Crash Data 

Predicted Crash Risk Based on CEM Actual Crash 
Risk Low Medium High 

Low 55%a 22% 24% 
Medium 36% 39% 25% 
High 8% 40% 52% 

aFor example, according to actual 2006-2007 crash data, there were 93 intersections between percentile 0 (which 
was 1 actual crash) and percentile 33.33 (which was 12 actual crashes).  Of these 93 intersections, 51 were classified 
by the model as being between percentile 0 (which was 0.82 predicted crashes) and percentile 33.33 (which was 
3.466 predicted crashes).  Accordingly, 55%, based on 51/93, is reported in Table 9. 

 



 

 36

Because this approach was tested for only one subset of one class of intersections, 
additional research is needed to determine whether this approach merits wider implementation.  
The use of CEMs is advantageous because they can, in theory, allow one to identify the 
numerous attributes that may influence crash risk.  However, as shown in Table 10, CEMs did 
not provide a better estimation of crash risk than the use of volume alone. 
 

Table 10.  Comparison of Crash Risk Based on Volumes and 2006-2007 Crash Data 
Predicted Crash Risk 

Based on Volume Alone 
 
 

Actual Crash Risk Low Medium High 
Low  63%a 26% 11% 
Medium  31% 52% 17% 
High  4% 22% 74% 

aFor example, and consistent with Table 9, according to actual 2006-2007 crash data, there were 93 intersections 
between percentile 0 (which was 1 actual crash) and percentile 33.33 (which was 12 actual crashes).  Of these 93 
intersections, 59 were classified by the volume as being between percentile 0 (which was a daily entering volume of 
2,216) and percentile 33.33 (which was a daily entering volume of 30,039).  Thus, Table 10 shows a percentage of 
63% based on 59/93. 

 
 
 

CONCLUSIONS 
 
• Most crash data have an acceptable level of quality, at least in terms of data completeness 

and consistency.  Of the 179 data elements examined in Appendix A, 103 showed no data 
quality problems with regard to completeness or consistency.  For the remaining 76, 
problems noted were inconsistency (e.g., a location of a crash might be designated as both a 
city and a county), incompleteness (e.g., a value might be missing because of difficulties with 
the crash referencing system), and availability (e.g., some data elements have been added to 
the VDOT CRASHDATA database but only for crashes occurring after September 2003).   

 
• For the data elements where data are imperfect, eight rules can enable some use of these 

data.  Five of the rules are ways analysts can improve data quality for a specific study.  One 
example of such a rule is to use the PHYSICALJURISDICTION variable rather than the CITY 
or COUNTY variable to determine where a crash is located.  Three of the rules are caveats 
that analysts should consider as they decide which time period and which data elements are 
necessary for a given study.  An example is that 20 of the variables shown are not available 
until after September 2003, and thus in some cases it may be productive to consider such 
crashes only as part of a study. 

 
• No minimum set of variables for classifying crashes as injury or non-injury could be reliably 

identified based on the methods used in this study.  Although classification trees were 
developed for such an approach, the average error rate across all intersection types when 
such trees were applied to testing data was 38.63%.  Given that injury crashes account for 
35.55% of all crashes, statistical testing showed that for 16 of the 17 intersection classes, the 
error rate from the classification tress was not significantly lower than the error rate based on 
chance alone.  
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• A minimum set of variables for classifying crashes as rear-end or angle can be identified.  
These trees gave average error rates of 12.21% (angle) and 16.20% (rear-end).  For all 17 
intersection classes, the error rates were significantly lower than the error rates that would 
have resulted from chance alone (i.e., 35.99% for angle and 38.65% for rear-end crashes).  
Although 21 variables were used to develop these trees fully, much of this tree space (86%) 
is composed of 12 variables: vehicle speed, driver action, alignment, lighting, weather, traffic 
control, driver visibility obstruction, traffic volume, shoulder width, surface condition, 
vehicle type, and median type.  These variables do not necessarily indicate causality; rather, 
they indicate the extent to which, given a crash has occurred, a determination can be made 
that the crash is rear-end or angle. 

 
• Crash risk is not uniformly proportional to volume.  For angle, injury, and total crashes, 

CEMs tended to have a volume exponent less than 1, meaning that a doubling of volume will 
increase crash risk but by less than 100%.  For rear-end crashes, the results were mixed, with 
slightly more than one-half of the models suggesting that a doubling of volume will increase 
rear-end crash risk by more than 100%. 

 
• Models are not transferable across different intersection types or different crash types.    

Examination of the 68 crash models showed substantive differences in the sign of the 
coefficients; e.g., having both approaches be undivided tends to increase the crash risk for 
angle crashes but reduces the crash risk for rear-end crashes.  Even when the signs are 
consistent, the coefficients may differ substantially; e.g., of the nine angle crash models 
studied where making the approaches undivided increased risk, the increase varied between 
43% and 154% depending on the particular intersection type modeled. 

 
 
 

RECOMMENDATIONS 
 
1. VDOT district engineering staff, researchers, consultants, or other persons who use crash 

data should consider the following eight rules for improving data quality if their study relies 
on any of the 86 data elements shown to have data problems in Tables A1 through A4 in 
Appendix A: 

 
• Use the PHYSICALJURISDICTION variable rather than the CITY or COUNTY variable 

to determine the jurisdiction where a crash is located. 
 
• Use the TRAFFICCONTROL variable rather than the INTERSECTIONTYPE variable to 

determine whether an intersection is signalized. 
 
• Manually extract volumes for intersections that contain a one-way street rather than using 

the IntersectionEnteringVolume function.  
 
• Use the NODE and OFFSET variables from the CrashIntersection table rather than from 

the CrashDocument table. 
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• Create intersection variables based on link variables as necessary. 
 
• Recognize that 20 variables will not have crash data until sometime after September 2003 

and/or that these data may be available in another location than those studied here. 
 
• Recognize that new categories were added for six existing variables in September 2003.   
 
• Recognize that the node variable is incomplete for about one-third of the crashes. 
 

2. If resources permit law enforcement to improve the quality of only a limited number of data 
elements in the VDOT CRASHDATA database, the more important predictive variables from 
Figure 5 should be given a higher priority since they were most important for classifying 
angle versus rear-end crashes.  This recommendation may be implemented through 
communications between the users of crash data—VDOT and the Department of Motor 
Vehicles—and the providers of these crash data—local law enforcement and the Virginia 
State Police—via the FR300.  The nine most important predictive variables are vehicle 
speed, driver action, alignment, lighting, weather, traffic control, driver visibility obstruction, 
traffic volume, and shoulder width.  The formal names for eight of these variables, from 
Appendix A, are VEHICLESPEED, DRIVERACTION, ALIGNMENT, LIGHTING, 
WEATHER, TRAFFICCONTROL, VISIBILITYOBSTRUCTION, and SHOULDERWIDTH.  
(Traffic volume was generally acquired from the TMS database using the 
IntersectionEnteringVolume function of the PkgCrashRate package).  Although these 
variables were useful for classifying rear-end versus angle crashes, other criteria, such as the 
ability to classify intersection crashes, may alter the variables listed in this recommendation. 

 
 The utility of this recommendation is that it can help identify those variables that classify a 

given crash as rear-end or angle.  Its limitation is that the variables that can be identified as 
critical based on this study reflect only rear-end and angle crashes at intersections and not 
injury crashes. 

 
3. VDOT analysts should consider the CEMs provided in Appendix B as a way of identifying 

higher risk crash locations if other methods for identifying them are infeasible.  This study 
showed that other approaches for identifying high-risk crash locations, such as those that use 
volume alone, may prove as productive as this approach; thus, further research is needed 
before this recommendation is implemented.  Further, the CEMs have not been tested on 
intersections outside Northern Virginia.   

 
 
 

OPTIONS FOR FURTHER RESEARCH 
 
• Regarding Recommendation 1, VDOT may wish to consider adding geometric attribute 

variables to the existing node inventory table.  Without such variables (e.g., number of left, 
through, and right lanes; channelization; presence of frontage roads, curb cuts, and on-street 
parking), data must be collected manually.  The benefits of such an initiative would need to 
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be considered against the costs of collecting and maintaining such data as part of the node 
inventory table. 

 
• Regarding Recommendation 2, an additional area of research for classifying crashes as 

injury or non-injury may be to modify the approach used in this study  up to three ways:  (1) 
develop injury classification trees for rear-end crashes apart from angle crashes (rather than 
for all crashes); (2) use a more recent dataset that includes driver restraint usage; and (3) 
consider combining certain intersection types where the CEMs suggest the 17 intersection 
types are not reliable classifiers of injury versus non-injury crashes. 

 
• Regarding Recommendation 3, VDOT traffic engineering staff may wish to determine the 

extent to which the CEMs provided in Appendix B constitute an improvement over safety 
performance functions (SPFs) based solely on volumes and are transferable to areas outside 
Northern Virginia.  After this study was under way, a separate research effort (VTRC, 2010) 
was initiated to develop SPFs that estimate intersection crashes solely as a function of 
volume.  Such SPFs do not include the other independent variables shown in Appendix B and 
are being developed exclusively for applying SafetyAnalyst software (VTRC, 2010).  If 
Recommendation 3 is adopted, these staff may wish to compare the performance of models 
based solely on volumes (VTRC, 2010) with the performance of models based on volumes 
and other factors (Appendix B).  Further, district traffic engineering staff may wish to 
consider testing selected CEMs from Appendix B with data from other locations.  Although 
the result may be that recalibration of the CEMs is necessary, it is possible that the CEMs 
may prove applicable elsewhere to the extent that different geographic conditions, such as 
variation in traffic volume, are reflected in the models.  In this endeavor, there may be 
opportunities to use data elements that were added to the FR300 in September 2003 (see 
Appendix A) in the development of these CEMs.   

 
 
 

COSTS AND BENEFITS ASSESSMENT 
 

Table 11 summarizes the costs and benefits of implementing the three study 
recommendations.  The potential costs are the personnel hours required and the uncertainty 
associated with implementing the recommendations in various situations.  The potential benefits 
are improved crash data, increased efficiency in acquiring such data, or both, which may 
ultimately reduce crash risk.   

 
For example, the benefit of implementing Recommendation 1—the eight rules for data 

quality—is an ability to use a greater portion of the crash data than would otherwise be the case.  
The value of this benefit depends on the application.  For applications for which a large amount 
of data is readily available, the benefit of additional data might be very small.  However, for 
specialized applications for which only a small amount of data is available, being able to 
maximize the portion of those data that are useable provides a large benefit to the analyst.  The 
costs of applying five of the eight rules are minimal, but the costs of applying the rules that 
require specialized queries can vary substantially, depending on the data required. 
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Table 11.  Summary of Benefits and Risks Associated with Implementing Each Recommendation 
 Recommendation 1 Recommendation 2 Recommendation 3 

Deliverable Eight rules for working with 
data elements that have 
imperfect consistency and 
completeness. 

A minimal set of variables to 
predict rear-end and angle 
crashes. 

68 crash estimation models 
(CEMs) for 17 intersection 
types. 

In Northern Virginia, use the 
CEMs to support 
countermeasure evaluation.  

Implementation  Make practitioners aware of 
the rules since the rules can 
increase the utility of 
available data. 

If resources become available 
to improve data quality, 
consider focusing on variables 
noted in this recommendation, 
especially to the extent that 
rear-end and angle crashes are 
the focus of the analysis. 

Outside Northern Virginia, 
recalibrate the CEMs or test 
their transferability to other 
areas. 

Potential 
Benefits 

Greater use of existing data. Better data quality for critical 
intersection-related data 
elements. 

A technique, i.e., CEMs, that 
may be used to identify high-
risk crash locations. 
It is not known if the CEMs 
may be extended to 
intersections outside Northern 
Virginia. 

Potential Risk  None. Data elements besides those 
listed in the recommendation 
may have utility for other 
applications and thus may be 
more important than 
recognized in this study. 

CEMs should not replace the 
safety performance functions 
being developed for 
SafetyAnalyst (VTRC, 
undated). 

Priority  High: There are no risks 
associated with 
implementing the 
recommendation, and it can 
improve the utility of crash 
data.  

Medium: Recommendation 
has merit for rear-end and 
angle crashes, but other 
criteria, such as injury crashes, 
may influence which variables 
are targeted for improvement. 

Low: Recommendation offers 
a potential approach to 
prioritize intersections, but it 
is not known if this approach 
constitutes an improvement 
over the use of volume alone. 
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APPENDIX A 
 

ADEQUACY OF SPECIFIC VARIABLES 
 
 Two databases are the focus of this appendix: the VDOT CRASHDATA database and 
HTRIS. 
 

The VDOT CRASHDATA database contains numerous tables, three of which are shown 
in Tables A1, A2, and A3, respectively: the CrashDocument table (Table A1), the CrashVehicle 
table (Table A2), and the CrashPedestrian table (Table A3).  These tables contain information 
about the crash (e.g., the route where the crash occurred as per Table A1); the vehicle and drivers 
involved in the crash (e.g., the driver’s age as per Table A2); and, if a pedestrian was involved, 
information about the pedestrian (e.g., the pedestrian’s age as per Table A3).  For a given crash, 
these three tables may be linked through the DOCUMENTNUMBER, which is a unique number 
assigned to each crash as reported on the Police Crash Report (Form FR300).  Variables for 
which the data quality was adequate have no entry in the fourth column. 
 

Table A1.  Variables in the CrashDocument Table 
Variable Typea Sourceb Problems with Data Quality 

DOCUMENTNUMBER NUMBER FR300  
ROUTEPREFIX CHAR FR300 No data for crashes without reference nodes 
ROUTENUMBER CHAR FR300 No data for crashes without reference nodes 
ROUTESUFFIX CHAR FR300 No data for crashes without reference nodes 
NODE CHAR FR300 Inappropriate reference system.  Use instead the NODE 

variable from the CrashIntersection table 
NODEOFFSET NUMBER FR300 Inappropriate reference system.  Use instead the NODE 

variable from the CrashIntersection table. 

NODETYPE CHAR HTRIS Inappropriate reference system.  Use instead the NODE 
variable from the CrashIntersection table. 

CRASHDATE DATE FR300  
CRASHHOUR NUMBER FR300  
DISTRICT CHAR FR300  
COUNTY CHAR FR300 Inconsistent:  conflicts with ACCIDENTCITY.  Use 

instead the PHYSICALJURISDICTION variable from the 
CrashJurisdiction table. 

SURFACETYPE CHAR HTRIS No data for crashes without reference nodes 
SURFACEWIDTH NUMBER HTRIS No data for crashes without reference nodes 
SHOULDERWIDTH NUMBER HTRIS No data for crashes without reference nodes 
LANECOUNT NUMBER HTRIS No data for crashes without reference nodes 
FACILITY CHAR HTRIS No data for crashes without reference nodes 
INTERSECTIONTYPE CHAR HTRIS Inconsistent categories, no data for crashes without 

reference nodes, and incomplete data for the rest 
TRAFFICCONTROL CHAR FR300 New categories added after September 2003.c 
ALIGNMENT CHAR FR300 New categories added after September 2003.c 
WEATHER CHAR FR300  
SURFACECONDITION CHAR FR300 New categories added after September 2003.c 
ROADDEFECT CHAR FR300  
LIGHTING CHAR FR300  
COLLISIONTYPE CHAR FR300  
IMPACTZONE CHAR FR300 Incomplete data 
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Variable Typea Sourceb Problems with Data Quality 
MAJORFACTOR CHAR FR300  
SEVERITY CHAR FR300  
FATALCOUNT NUMBER FR300  
PEDFATALCOUNT NUMBER FR300  
INJURYCOUNT NUMBER FR300  
PEDINJURYCOUNT NUMBER FR300  
VEHICLECOUNT NUMBER FR300  
DAYOFWEEK NUMBER FR300  
KINDLOCAL CHAR HTRIS  
SYSTEM CHAR HTRIS Incomplete data for crashes without reference nodes 
FUNCTIONALCLASS CHAR HTRIS No data for crashes without reference nodes 
LINKSEQUENCE NUMBER HTRIS No data for crashes without reference nodes 
ROUTEMILEPOST NUMBER FR300 No data for crashes without reference nodes 
ACCIDENTCITY CHAR FR300 Inconsistent:  conflicts with COUNTY codes.  Use 

instead the PHYSICALJURISDICTION variable from the 
CrashJurisdiction table. 

INTERSECTIONROUTE CHAR HTRIS Incomplete data 
RESIDENCY CHAR HTRIS Incomplete data 
LOC CHAR HTRIS  
RAILROADID VARCHAR FR300  
LANEDIRECTION CHAR FR300 No data 
LANETYPE CHAR FR300 No data 
LANENUMBER NUMBER FR300 No data 
DAMAGEAMOUNT NUMBER FR300  
STATEMAINTENANCE CHAR HTRIS  
FEDERALAID CHAR HTRIS No data for crashes without reference nodes 
LATITUDE NUMBER FR300 No data 
LONGITUDE NUMBER FR300 No data 
WORKZONE CHAR FR300 Available after FR300 revision 9/03  
WORKERSPRESENT CHAR FR300 Available after FR300 revision 9/03  
VDOTPROPERTY CHAR FR300 Available after FR300 revision 9/03  
DMVSURFACETYPE CHAR FR300 Available after FR300 revision 9/03  
TRAFFICCONTROLWORKING CHAR FR300 Available after FR300 revision 9/03  
SPEEDLIMIT NUMBER HTRIS Incomplete data 
SPEEDLIMITCODE CHAR HTRIS Incomplete data 
Variables for which the data quality was adequate have no entry in the fourth column. 
aType refers to the data type of the variable as stored in the VDOT CRASHDATA database. 
bThe FR300 is the Police Crash Report.  HTRIS = Highway Traffic Records Information System.   
cThis change resulted because the FR300 was revised in September 2003. 
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Table A2.  Variables in the CrashVehicle Tablea 
Variable Type Problems with Data Quality 

DOCUMENTNUMBER NUMBER  
CRASHDATE DATE  
VEHICLENUMBER NUMBER  
VEHICLETYPE CHAR  
FIXEDOBJECT CHAR New categories added after September 2003.b 
VEHICLEMANEUVER CHAR  
VEHICLEPLACEMENT CHAR  
SECONDEVENT CHAR  
VEHICLEIMPACTPOINT CHAR  
VEHICLEDAMAGE CHAR  
VEHICLESPEED NUMBER Incomplete data - when speed information not available to officer 
VEHICLESKID CHAR  
LANEDIRECTION CHAR No data 
LANETYPE CHAR No data 
LANETRAVEL CHAR No data 
VEHICLECONDITION CHAR  
DRIVERAGE NUMBER  
DRIVERSEX CHAR  
DRIVERACTION CHAR New categories added after September 2003b 
DRIVERDRINK CHAR  
DRIVERCONDITION CHAR  
VISIBILITYOBSTRUCTION CHAR New categories added after September 2003b 
DRIVEREJECT CHAR  
PASSENGEREJECT CHAR  
DRIVERAIRBAG CHAR Available after September 2003b  
PASSENGERAIRBAG CHAR Available after September 2003b 
DRIVEREMSTRANSPORT CHAR Available after September 2003b 
PASSENTEREMSTRANSPORT CHAR Available after September 2003b 
DRIVERSAFETYEQUIPMENT CHAR Available after September 2003b,c 
DRIVERDISTRACTION CHAR Available after September 2003b 
ALCHOHOLDETERMINATION CHAR Available after September 2003b 
DRUGUSE CHAR Available after September 2003b 
EMERGENCYVEHICLETYPE CHAR Available after September 2003b 
EMERGENCYVEHICLESTATUS CHAR Available after September 2003b 
OVERSIZE CHAR Available after September 2003b 
CARGOSPILL CHAR Available after September 2003b 
OVERRIDE CHAR Available after September 2003b 
UNDERRIDE CHAR Available after September 2003b 
VEHICLECMVHAZINDICATOR CHAR Available after September 2003b 
TRACTORLENGTH NUMBER  
TRAILER1LENGTH NUMBER  
TRAILER2LENGTH NUMBER  
TRAILERWIDTH NUMBER  
AXLECOUNT NUMBER   
aThe source of all data elements is the FR300. 
bThis change resulted because the FR300 was revised in September 2003. 
cInstead of DRIVERSAFETYEQUIPMENT, the variable SAFETYEQUIPMENT (found in the CrashPerson and 
CrashInjury tables) should be used. 
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Table A3.  Variables in the CrashPedestrian Tablea 
Variable Type Problems with Data Quality 

DOCUMENTNUMBER NUMBER  
PEDESTRIANNUMBER NUMBER  
PEDESTRIANAGE NUMBER  
PEDESTRIANSEX CHAR  
PEDESTRIANACTION CHAR  
PEDESTRIANCONDITION CHAR  
PEDESTRIANDRINK CHAR  
PEDESTRIANEMSTRANSPORT CHAR No data 
aThe source of all data elements is the FR300. 

 
Since roadway inventory information changes as facilities are widened, improved, or 

maintained, annual roadway inventory is stored in separate tables (named as EyRoadxx with xx 
taking corresponding to a specific year) in HTRIS.  A variable in the EyRoad table (see Table 
A4) may be linked to a given crash through the use of the BEGINNODE and ENDNODE 
variables (see Table A4) and the corresponding NODE variable in the CrashIntersection table 
(see Table A1 where the NODE variable is discussed). 

 
Table A4.  Variables in the EyRoad Tables 

Variable Type Problems with Data Quality 
REPORTCATEGORY CHAR  
ROUTEPREFIX CHAR  
ROUTENUMBER CHAR  
ROUTESUFFIX CHAR  
FEDAIDROUTE CHAR Incomplete data 
LINKSEQUENCE NUMBER  
BEGINNODE CHAR  
BEGINOFFSET NUMBER  
ENDNODE CHAR  
ENDOFFSET NUMBER  
MAINTENANCEJURISDICTION CHAR  
PHYSICALJURISDICTION CHAR  
DISTRICT CHAR  
RESIDENCY CHAR No data 
AHQ CHAR No data 
LENGTH NUMBER  
BEGINNODEDESCRIPTION VARCHAR  
ENDNODEDESCRIPTION VARCHAR  
ROUTEOFFSET NUMBER  
COUNTYOFFSET NUMBER  
GOVERNMENTCONTROL CHAR  
ROUTESIGNTYPE CHAR No data 
FEDERALAIDCODE CHAR Incomplete data 
SPECIALSYSTEM CHAR  
PUBLICROAD CHAR  
TRUCKCOMMR CHAR  
FIPSURBAN CHAR  
RURALURBANDESIGNATION CHAR  
STATEARTERIAL CHAR Incomplete data 
LOCATIONCODE CHAR  
FUNCTIONALCLASSVA CHAR  
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Variable Type Problems with Data Quality 
TOLLCODE CHAR  
TOLLFACILITY CHAR  
MAINTENANCESECTION CHAR Incomplete data 
SURFACEWIDTH NUMBER  
PAVEMENTWIDTH NUMBER  
SURFACETYPE CHAR  
BASETYPE CHAR  
NUMBEROFLANE NUMBER  
FACILITYTYPE CHAR  
DOMAINTYPE CHAR  
REVERSIBLELANE CHAR  
SPECIALHOVLANE CHAR  
SURFACECLASS CHAR  
RIGHTSHOULDERWIDTH NUMBER  
LEFTSHOULDERWIDTH NUMBER  
MEDIANRIGHTSHOULDERWIDTH NUMBER  
MEDIANLEFTSHOULDERWIDTH NUMBER  
CURBGUTTERCODE CHAR  
SIDEWALKCODE CHAR  
MEDIANWIDTHMIN NUMBER  
MEDIANWIDTHMAX NUMBER  
MEDIANTYPE CHAR  
TRAFFICCOUNT NUMBER  
TRAFFICDATE NUMBER No data 
CARSPEEDLIMIT NUMBER Incomplete data 
TRUCKSPEEDLIMIT NUMBER Incomplete data 
PLANUNBTFACILITY CHAR  
NATIONALHIGHWAYSYSTEM CHAR  
PAVEMENTROUGHNESSVALUE NUMBER Incomplete data 
PAVEMENTCONDITIONVALUE NUMBER Incomplete data 
ENGMETRICRPT CHAR No data 
URBSAMTECH CHAR No data 
NONATTAINMENTAREA CHAR No data 
RTSIGNQUALITY CHAR  
DONUTAREA NUMBER No data 
URBANLOC CHAR  
AADTDERIV CHAR  
ADDITIONALINFO VARCHAR   
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APPENDIX B 
 

CRASH ESTIMATION EQUATIONS 
 

The crash estimation models (CEMs), dispersion parameters, and goodness-of-fit 
statistics are presented in Tables B2 through B5 for all 68 CEMs.  Table B1 defines the variables 
used in these CEMs.  These models predict crashes over a 1-year period. 

 
The models refer to two-lane, four-lane, and multi-lane facilities.  A two-lane facility is 

one where all approaches have one lane in each direction.  A four-lane facility is one where 
either (1) two approaches have two lanes in each direction and two approaches have one lane in 
each direction or (2) all approaches have two lanes in each direction.  A multi-lane facility is one 
where any approach has more than two lanes in one direction.   
 

Table B1.  Predictors Used for Developing Crash Estimation Models 
Predictor Categories 

VOLUME Continuous Annual average entering volume (exposure term).   This is the 
sum of volume entering the intersection from all four links.   

0 If major road is a primary road INT_PRIMSEC 
  1 If major road is a secondary road 

0 If minor road is a primary road MINOR_PRIMSEC 
  1 If minor road is a secondary road 

0 If at least one approach is a secondary road BOTH_PRIMARY 
  1 If both approaches are primary roads 

0 If major road is a local or a collector road INT_FUNC 
  1 If major road is an arterial road 

0 No channelization or only medians on approaches CHAN 
  1 Painted or raised islands 

0 If no frontage roads are present FRONTAGEROADS 
  1 If frontage roads are present 

0 If no on-street parking observed ONSTREET_PARKING 
  1 If on-street parking observed 

0 If at least one approach is divided INT_BOTHUNDIV 
  1 If both approaches are undivided 

0 If at least one approach is undivided INT_BOTHDIV 
  1 If both approaches are divided 

0  If minor road is local or collector MINOR_FUNC  
1  If minor road is arterial 
0 If major approach is undivided INT_MAJORDIV 

  1 If major approach is divided 
RTLANES Continuous Number of exclusive right turn lanes 
LTLANES Continuous Number of exclusive left turn lanes 
TRTLTLANES Continuous Number of lanes where through, right, and left turns are all 

allowed 
RTLTLANES Continuous Number of lanes where right and left turns are both allowed 
CURBCUTS Continuous Number of curb cuts 

0 Intersection of a 4-lane and a 2-lane road MINORTWOLANE 
1 Intersection of a 4-lane (or multi-lane) and a 4-lane road 
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Table B2.  Crash Estimation Models (CEMs) for Rural 3-Way Intersectionsa 
 

Rural  
3-Way  

 
Crash  
Type 

 
Intercept 

(a) 

Volume 
Exponent 

(b) 

 
Intersection Factors ( βX ) 

 

Dispersion 
Parameter 

(k) 

Goodness 
of Fit 

(         ) 
Total 0.00913 0.5662 - (0.3261 x onstreet_parking) - (0.2294 x 

chan) - (0.1344 x ltlanes) 
0.457 0.40 

Injury 0.00171 0.6477 - (1.1009 x int_bothundiv) - (0.1258 x 
rtlanes) - (0.2365 x chan) - (0.2865 x 
onstreet_parking) 

0.769 0.26 

Rear-
end 

8.5E-08 1.6718 - (0.6876 x onstreet_parking) - (0.2218 x 
rtlanes) + (0.5296 x rtltlanes) 

1.151 0.57 

2-
lane 

Angle 0.00226 0.5176 (0.46 x int_primsec) + (0.4874 x 
int_func) - (0.6925 x chan) - (0.4691 x 
onstreet_parking) 

3.137 0.17 

Total 0.004017 0.5522 (0.6933 x int_primsec) + (0.9071 x 
minor_primsec) - (0.3883 x 
int_bothundiv) - (0.4427 x int_func) + 
(0.3285 x ltlanes) - (0.3453 x rtlanes) + 
(0.3547 x rtltlanes) 

0.119 0.69 

Injury 0.000314 0.7923 (0.5424 x int_primsec) - (0.4336 x 
int_func) - (0.6098 x int_bothundiv) - 
(0.1676 x ltlanes) + (0.1254 x curbcuts) 

0.223 0.52 

Rear-
end 

7.72E-07 1.2431 (1.2431 x int_primsec) - (0.7208 x 
int_bothundiv) + (0.4452 x rtltlanes) 

0.757 0.52 

Stop-
controlled 

4-
lane 

Angle 0.01322 0.8952 (0.8952 x int_primsec) + (1.242 x 
minor_primsec) - (0.9234 x rtlanes) + 
(0.5132 x ltlanes) 

0.357 0.39 

Total 0.000346 0.9409 (0.5354 x int_func) - (0.549 x chan) - 
(0.1568 x ltlanes) 

0.224 0.59 

Injury 2.56E-07 1.4424 (0.9399 x int_func) - (0.6558 x 
int_bothundiv) - (0.3919 x chan) - 
(0.2002 x ltlanes) + (0.9777 x 
onstreet_parking) 

0.323 0.51 

Rear-
end 

6.41E-08 1.7753 (0.3434 x int_func) - (0.6732 x chan) - 
(0.4510 x ltlanes) 

0.319 0.63 

2-
lane 

Angle 2.53E-06 1.0220 (0.6579 x int_func) + (0.2019 x 
onstreet_parking) + (0.4054 x curbcuts) 

1.372 0.25 

Total 0.096 0.2852 (0.2686 x minortwolane) + (0.3145 x 
curbcuts) + (0.2437 x rtlanes) 

0.617 0.14 

Injury 0.0804 0.2328 (0.259 x minortwolane) + (0.2484 x 
curbcuts) + (0.1533 x rtlanes) 

0.765 0.13 

Rear-
end 

0.0000051 1.2812 (0.4542 x minortwolane) - (0.8655 x 
chan) + (0.647 x rtlanes) - (0.9411 x 
rtltlanes) - (1.382 x onstreet_parking) 

0.770 0.47 

Signalized 

4-
lane 

Angle 3.383 -0.2560 (0.9322 x int_bothundiv) + (0.8053 x 
chan) + (0.5174 x curbcuts) 

1.618 0.07 

aThe CEM functional form is ( )βXexpb)volume(aCrashes of Number Expected ⋅⋅=  

2
DEVR
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Table B3.  Crash Estimation Models (CEMs) for Rural 4-Way Intersectionsa 

 
Rural  
4-Way  

 
Crash  
Type 

 
Intercept  

(a) 

Volume 
Exponent 

(b) 

 
Intersection Factors ( βX ) 

 

Dispersion 
Parameter 

(k) 

Goodness 
of Fit 

(         ) 
Total 0.0007 0.8721  - (0.7224 x int_primsec) - (0.4019 x 

rtlanes) - (0.2315 x ltlanes) 
0.179 0.45 

Injury 0.000068 0.9442  - (1.1657 x int_primsec) - (1.8246 x 
int_bothundiv) + (0.8203 x 
onstreet_parking) - (0.4304 x rtlanes) 

0.495 0.29 

Rear-
end 

0.000081 1.0570  (1.3774 x int_primsec) - (2.2279 x chan) - 
(0.6658 x rtlanes) 

1.129 0.50 

2-
lane 

Angle 0.000046 0.9761  - (2.025 x int_primsec) + (1.1354 x chan) 
- (0.5263 x rtlanes) 

0.605 0.30 

Total 0.0123 0.4690  (0.5943 x int_primsec) + (0.9048 x 
int_func) + (0.3998 x chan) - (0.3047  x 
rtlanes) - (0.4892 x trtltlanes) 

0.599 0.30 

Injury 0.00133 0.4306  (0.5191 x int_primsec) + (2.2901 x 
int_func) + (0.5509 x chan) - (0.3689 x 
rtlanes) - (0.441 x trtltlanes) 

0.622 0.28 

Rear-
end 

0.0277 0.3158  (2.1663 x int_primsec) + (2.2273 x 
minor_primsec) - (1.485 x int_bothundiv) 
+ (1.2842 x chan) - (0.6315 x rtlanes) - 
(0.9306 x trtltlanes) 

2.636 0.35 

Stop-
controlled 

4-
lane 

Angle 0.00081 0.4851  (2.721 x int_func) + (0.573 x 
int_bothundiv) + (0.7083 x chan) - (0.363 
x rtlanes) - (0.6046 x trtltlanes) 

1.204 0.30 

Total 0.000042 1.1157  (0.8407 x minor_primsec) + (0.3627 x 
int_bothundiv) + (0.1935 x trtltlanes) 

0.231 0.58 

Injury 1.1E-06 1.4011  - (0.5207 x int_primsec) + (0.8346 x 
minor_primsec) + (0.6828 x 
int_bothundiv) + (0.3255 x trtltlanes) 

0.286 0.42 

Rear-
end 

2.64E-12 2.5244  (1.4625 x minor_primsec) + (0.5076 x 
int_bothundiv) + (0.5927 x chan) + 
(0.2732 x rtlanes) + (0.6686 x trtltlanes) 

0.246 0.73 

2-
lane 

Angle 0.0066 0.5774  (0.4684 x minor_primsec) + (0.5082 x 
int_func) - (0.7169 x chan) 

0.457 0.33 

Total 0.03 0.4375  (0.4484 x int_primsec) - (0.9811 x 
minor_primsec) - (0.2880 x int_func) - 
(0.4007 x chan) + (0.1188 x curbcuts) + 
(1.4685 x frontageroads) - (0.1637 x 
rtlanes) – (0.2317 x minortwolane) 

0.341 0.51 

Injury 0.00619 0.4473  (0.6933 x int_primsec) - (0.8793 x 
minor_primsec) - (0.3792 x int_func) + 
(1.5486  x frontageroads) - (0.0809 x 
ltlanes) 

0.503 0.36 

Rear-
end 

0.00018 0.3846  (1.2021 x int_primsec) - (1.1988 x 
minor_primsec) - (0.1769 x chan) + 
(0.3923 x minortwolane) 

0.385 0.65 

Signalized 

4-
lane 

Angle 0.791 0.2416  - (1.0928 x minor_primsec) - (0.7138 x 
int_func) - (0.4631 x chan) - (0.147 x 
ltlanes) 

0.714 0.19 

aThe CEM functional form is ( )βXexpb)volume(aCrashes of Number Expected ⋅⋅=  

2
DEVR
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Table B4.  Crash Estimation Models (CEMs) for Urban 3-Way Intersectionsa 
 

Urban  
3-way  

 
Crash  
Type 

 
Intercept  

(a) 

Volume 
Exponent 

(b) 

 
Intersection Factors ( βX ) 

 

Dispersion 
Parameter 

(k) 

Goodness 
of Fit 

( 2
DEVR ) 

Total 0.0158 0.4253  (0.3272 x int_primsec) - (0.2256 x 
int_func) - (0.0249 x curbcuts) + (0.0882 x 
onstreet_parking) - (0.1538 x rtltlanes) 

0.244 b 

Injury 0.00166 0.5652  (0.1725 x int_primsec) - (0.3252 x 
int_func) - (0.3008 x chan) - (0.034 x 
curbcuts) + (0.2101 x onstreet_parking) + 
(0.0844 x rtlanes) 

0.508 b 

Rear-
end 

1.2E-06 1.3368  (0.2252 x int_primsec) - (0.2342 x 
int_func) - (0.4544 x int_bothundiv) - 
(0.0818 x curbcuts) + (0.188 x 
onstreet_parking) - (0.2355 x ltlanes) - 
(0.358 x rtltlanes) 

0.919 b 

2-
lane 

Angle 0.00046 0.7019  - (0.3908 x int_primsec) + (0.5164 x 
int_bothundiv) - (0.1018 x curbcuts) + 
(0.112 x onstreet_parking) - (0.3771 x 
rtltlanes) 

1.598 b 

Total 0.0088 0.4884  (0.2451 x int_primsec) - (0.1391 x 
onstreet_parking) - (0.1672 x rtlanes) + 
(0.0832 x ltlanes) + (0.1485 x rtltlanes) 

0.570 0.29 

Injury 0.00057 0.6630  (0.2234 x int_func) - (0.1856 x 
onstreet_parking) + (0.163 x rtltlanes) 

0.909 0.19 

Rear-
end 

0.000022 0.9816  (0.2992 x int_primsec) - (0.3822 x 
int_bothundiv) - (0.0955 x ltlanes) + 
(0.2072 x rtltlanes) 

1.014 0.32 

Stop-
controlled 

4-
lane 

Angle 0.0027 0.4772  (0.3584 x int_bothundiv) - (0.2234 x 
rtlanes) + (0.2039 x ltlanes) + (0.2342 x 
rtltlanes) 

1.675 0.14 

Total 0.0189 0.3984  (0.5709 x int_primsec) + (0.3539 x 
int_bothundiv) + (0.6219 x frontageroads) 
+ (0.284 x ltlanes) 

0.678 0.35 

Injury 0.0053 0.3487  (0.6016 x int_primsec) + (0.4971 x 
minor_func) + (0.4153 x int_bothundiv) + 
(0.2026 x onstreet_parking) + (0.4625 x 
frontageroads) + (0.3159 x ltlanes) 

0.741 0.33 

Rear-
end 

0.000033 0.6454  (0.8277 x int_primsec) + (0.3144 x 
int_bothundiv) + (0.3615 x chan) + 
(0.8414 x frontageroads) + (0.2999 x 
rtlanes) + (0.1311 x ltlanes) 

0.956 0.36 

2-
lane 

Angle 0.0079 0.3700  (0.3497 x int_primsec) + (0.4091 x 
int_bothundiv) + (0.6794 x frontageroads) 
+ (0.3953 x ltlanes) 

1.764 0.18 

Total 0.0397 0.4694  (0.1349 x int_primsec) - (0.3761 x chan) 
+ (0.0347 x curbcuts) + (0.1074 x ltlanes) 
- (0.2524 x minortwolane) 

0.575 0.27 

Injury 0.0053 0.5425  (0.2331 x int_primsec) - (0.2584 x chan) 
+ (0.0293 x curbcuts) + (0.1969 x ltlanes) 
- (0.214 x minortwolane) 

0.644 0.25 

Rear-
end 

0.000039 0.9955  (0.3117 x int_primsec) + (0.1229 x 
int_majordiv) - (0.3839 x chan) + (0.3119 
x onstreet_parking) + (0.2024 x ltlanes) 

0.691 0.39 

Signalized 

4-
lane 

Angle 0.457 0.1514  - (0.1389 x int_primsec) - (0.3962 x chan) 
+ (0.1037 x curbcuts) - (0.1658 x 
frontageroads) + (0.1656 x ltlanes) - 
(0.248 x minortwolane) 

1.066 0.08 

aThe CEM functional form is ( )βXexpb)volume(aCrashes of Number Expected ⋅⋅= .   
bThe likelihood of the saturated model, l(y), was not computed by SAS.  Accordingly, a value of R2

DEV, which requires the value of l(y) as shown 
in Equation 5, cannot be estimated. 



 

 55

Table B5.  Crash Estimation Models (CEMs) for Urban 4-Way Intersectionsa  
 
 

Urban 4-Way 

 
Crash 
Type 

 
Intercept 

(a) 

Volume 
Exponent 

(b) 

 
Intersection Factors ( βX ) 

 

Dispersion 
Parameter 

(k) 

Goodness 
of Fit 

2
DEVR  

Total 0.0101 0.5623  - (0.222 x int_primsec) - (0.1537 x 
int_func) + (0.3079 x int_bothundiv) - 
(0.0322 x curbcuts) - (0.0818 x 
onstreet_parking) - (0.2348 x ltlanes) - 
(0.1011 x trtltlanes) 

0.314 0.46 

Injury 0.00088 0.7238  - (0.729 x int_primsec) - (0.1196 x 
int_func) + (0.1846 x int_bothundiv) - 
(0.0671 x curbcuts) - (0.2901 x ltlanes) 
- (0.1061 x trtltlanes) 

0.643 0.29 

Rear-
end 

4.4E-07 1.5301  - (0.4095 x int_bothundiv) - (0.0507 x 
curbcuts) - (0.5189 x ltlanes) - (0.2264 
x trtltlanes) 

1.045 0.49 

2-lane 

Angle 0.0011 0.7201  - (1.0747 x int_primsec) + (0.5754 x 
int_bothundiv) - (0.4865 x chan) - 
(0.0546 x curbcuts) - (0.1155 x ltlanes) 

1.383 0.24 

Total 0.097 0.3438  - (0.3524 x int_primsec) - (0.227 x 
int_func) + (0.2961 x int_bothundiv) - 
(0.072 x curbcuts) - (0.2166 x ltlanes) - 
(0.1573 x trtltlanes) 

0.505 0.25 

Injury 0.083 0.2639  - (0.3341 x int_func) + (0.2481 x 
int_bothundiv) - (0.1033 x curbcuts) - 
(0.2382 x ltlanes) - (0.1548 x trtltlanes) 

0.710 0.16 

Rear-
end 

0.000095 0.9170  -(0.3263 x int_primsec) - (0.2296 x 
ltlanes) - (0.2482 x trtltlanes) 

0.876 0.30 

Stop-
controlled 

4-lane 

Angle 0.027 0.4239  - (1.1093 x int_primsec) + (0.5492 x 
int_bothundiv) - (0.8568 x chan) - 
(0.1958 x rtlanes) - (0.2087 x ltlanes) - 
(0.3039 x trtltlanes) + (0.7987 x 
minortwolane) 

1.214 0.18 

Total 0.031 0.5130  - (0.437 x minor_primsec) - (0.1375 x 
int_func) + (0.3968 x int_bothundiv) - 
(0.3029 x chan) + (0.4592 x 
frontageroads) - (0.1839 x ltlanes) - 
(0.1922 x trtltlanes) 

0.504 0.34 

Injury 0.0032 0.5885  (0.2893 x int_primsec) - (0.8774 x 
minor_primsec) + (0.2102 x 
int_bothundiv) - (0.3653 x chan) + 
(0.713 x frontageroads) + (0.1115 x 
rtlanes) - (0.1705 x ltlanes) - (0.1521 x 
trtltlanes) 

0.613 0.30 

Rear-
end 

0.00071 0.7776  (0.3266 x int_primsec) - (0.6896 x 
minor_primsec) - (0.4162 x int_func) + 
(0.2895 x int_bothundiv) + (0.1083 x 
rtlanes) - (0.1178 x ltlanes) - (0.1783 x 
trltlanes) 

0.629 0.39 

2-lane 

Angle 0.027 0.4206  - (0.4111 x minor_primsec) + (0.4952 
x int_bothundiv) - (0.474 x chan) + 
(0.871 x frontageroads) - (0.2491 x 
ltlanes) - (0.2019 x trtltlanes) 

0.950 0.17 

Total 0.0069 0.5953  (0.1459 x int_primsec) - (1.1031 x 
minor_primsec) + (0.4891 x 
int_bothundiv) + (0.2834 x 
int_majordiv) + (0.0466 x curbcuts) + 
(0.1563 x onstreet_parking) + (0.0481 x 
ltlanes) - (0.1504 x trtltlanes) - (0.1058 
x minortwolane) 

0.537 0.37 

Signalized 

4-lane 
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Urban 4-Way 

 
Crash 
Type 

 
Intercept 

(a) 

Volume 
Exponent 

(b) 

 
Intersection Factors ( βX ) 

 

Dispersion 
Parameter 

(k) 

Goodness 
of Fit 

2
DEVR  

Injury 0.0037 0.5998 (0.223 x int_primsec) - (1.0898 x 
minor_primsec) - (0.1976 x int_func) + 
(0.5187 x int_bothundiv) + (0.3399 x 
int_majordiv) - (0.1752 x trtltlanes) - 
(0.1578 x minortwolane) 

0.593 0.31 

Rear-
end 

0.00024 0.7899  (0.2822 x int_primsec) - (1.0535 x 
minor_primsec) +(0.5594 x 
int_bothundiv) + (0.3431 x 
int_majordiv) + (0.00541 x curbcuts) + 
(0.0601 x rtlanes) + (0.112 x ltlanes) - 
(0.1921 x minortwolane) 

0.701 0.40 

Angle 0.011 0.5053  - (1.1837 x minor_primsec) + (0.4257 
x int_bothundiv) + (0.2632 x 
int_majordiv) + (0.0411 x curbcuts) - 
(0.2405 x trtltlanes) 

0.870 0.16 

Total 0.00025 0.9910  (1.2629 x both_primary) - (0.5227 x 
int_func) - (0.4065 x int_bothundiv) - 
(0.511 x frontageroads) + (0.1836 x 
rtlanes) - (0.1387 x ltlanes) - (1.1257 x 
trtltlanes) 

0.301 0.65 

Injury 0.000031 1.1240  (1.0466 x both_primary) - (0.6415 x 
int_func) - (0.4929 x int_bothdiv) - 
(0.3571 x frontageroads) + (0.1824 x 
rtlanes) - (0.1717 x ltlanes) - (1.028 x 
trtltlanes) 

0.338 0.61 

Rear-
end 

2.5E-08 1.8005  (0.7537 x both_primary) - (0.5149 x 
int_func) - (0.5144 x int_bothdiv) - 
(0.4923 x frontage_roads) + (0.2887 x 
rtlanes) - (0.1734 x ltlanes) - (1.0429 x 
trtltlanes) 

0.282 0.74 

Signalized Multi-
lane 

Angle 0.011 0.5333  (1.4646 x both_primary) - (0.5549 x 
int_func) - (0.3307 x int_bothdiv) - 
(0.1438 x ltlanes) - (0.9841 x trtltlanes) 

0.721 0.36 

aThe CEM functional form is ( )βXexpb)volume(aCrashes of Number Expected ⋅⋅=  
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APPENDIX C 
 

ARE THE MODELS IN APPENDIX B EQUALLY ACCURATE WITH TESTING DATA 
AND TRAINING DATA? 

 
 The models shown in Appendix B were initially developed exclusively for use in 
VDOT’s NOVA District.  In order to have as a large a dataset as possible, all intersections from 
the NOVA District were included in the “training” dataset used to calibrate the models.  A 
concern, however, is that there could be some anomaly in the dataset that was present during the 
training period (2000-2005 inclusive) but not present during subsequent periods, which would 
adversely affect the utility of the models.  For example, Table 8 showed that for an urban three-
way stop-controlled intersection with a four-lane road, one might expect intersections with all 
undivided approaches to have 43% more angle crashes than intersections with at least one 
divided approach.  Suppose, however, there had been some anomaly during the period 2000-
2005, such as an unusually large number of younger drivers, and suppose further that the number 
of younger drivers returned to normal levels in 2006.  Under such a supposition, it might well be 
the case that the model for Table 8 would be less useful for estimating 2006-2007 crashes than 
for 2000-2005 crashes.  Assuming that the models are used only in Northern Virginia and that all 
feasible intersections have been included in developing the models, the concern is whether the 
models are equally accurate for testing data (collected after the study has been completed) and 
the training data (collected during 2000-2005) used to develop the models. 
 
 To determine whether the models were equally accurate with training data (2000-2005) 
and testing data (data collected after 2005), a subset of intersections for one class of models was 
examined.  There were 262 intersections that fell in the class of urban four-way four-lane models 
where 2006 and 2007 data were readily available.  For these intersections, the number of 
predicted total crashes was compared to the number of actual total crashes for a before period 
(2004-2005) and an after period (2006-2007).  The average percentage error was 76% for the 
training dataset and 77% for the testing dataset, suggesting these values are similar.   
 

The Mann-Whitney test demonstrated that these differences were not significantly 
different.  This test is referred to as the Wilcoxon two-sample test (Freund and Wilson, 1997), 
the rank sum text (Hamburg, 1977), and the Wilcoxon rank sum test (Scheaffer and McClave, 
1982).  The test is applied by computing the percentage error for each intersection for the 
training and testing period such that there are 524 data points: 262 training percentage errors and 
262 testing percentage errors.  Then, these errors are ranked from 1 to 524 and Equations C1 
through C8 are applied:  

 
R = Sum of the training ranks = 68,176               [Eq. C1] 
 

374,69176,68)1262262(262R)1nn(nR testtraintrain =−++=−++=′            [Eq. C2] 
 
If (R or R′ ) < (Critical value = 65,378), then there is a significant difference       [Eq. C3] 
 
Clearly there is not a significant difference since neither R = 68,176 nor R′= 69,374 is 

less than the critical value of 65,378; thus, there is no significant difference between the accuracy 
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with training data and testing data with regard to total crashes for urban four-way signalized 
intersections with a four-lane road. 
 

Because the sample sizes are equal with ntrain = ntest = 262, Equation C1 may use either 
testing data or training data.  The critical value of 65,378 is based on the 5% rejection region for 
a two-tailed test (Hamburg, 1977) and is computed by Equations C4 through C8. 
 

( ) ( ) R097,103R
2

1262262)262(262R
2

1nn
nnU traintrain

testtrain −=−
+

+=−
+

+= [Eq. C4] 
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)262(262
2
nn testtrain ===μ                [Eq. C5] 

 

733,1
12

)1262262)(262(262
12

)1nn(nn testtraintesttrain =
++

=
++

=σ           [Eq. C6] 

 
The null hypothesis that the samples have equal error rates is rejected at the 95% 

confidence level if z in Equation C7 exceeds 1.96 (based on the assumption that U has a standard 
normal distribution with mean µ and variance σ2). 

 

733,1
322,34R097,103Uz −−

=
σ
μ−

=                 [Eq. C7] 

 
 Based on Equation C7, the null hypothesis will be rejected when R is less than 65,378 
since 
 

65,378R if  trueis 
733,1

322,34R097,10396.1 ≤
−−

< . 
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