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EXECUTIVE SUMMARY 
 

Introduction 
 

A traffic signal is commonly installed to address traffic operations at intersections, and it 
plays an important role in achieving traffic safety at intersections.  The Virginia Department of 
Transportation (VDOT) has a process to identify and ameliorate safety deficiencies at signalized 
intersections.  By improving the physical design and signal phases of intersections, VDOT 
contributes to a safer environment for drivers and non-motorized users at these intersections.  
However, VDOT’s funds for safety improvements are limited, and not all identified safety 
deficiencies can be mitigated in one fiscal year.  In order to maximize the impact of safety 
improvements using limited resources, VDOT needs to identify which intersections require more 
attention for safety improvements based on traffic crash risk measures such as traffic crash 
frequency and rate.  
 

At present, traffic engineers in Virginia have no easy method to determine quickly 
whether a particular intersection is associated with an unusually high crash risk.  For example, 
VDOT’s Northern Virginia (NOVA) District staff cannot easily determine which intersections 
with a permissive or protected left-turn signal phase are operated under a high risk of traffic 
crashes.  Thus, they do not know which intersections should be studied in greater detail to 
identify potential crash countermeasures.  To meet this need, a procedure is needed to determine 
whether a particular signalized intersection suffers from an unusually large number of crashes.  
Such a procedure would need to be flexible enough to accommodate various real intersection 
conditions such as continuous volume range.   
 
 

Purpose and Scope 
 

This project was undertaken to develop a procedure to identify high-risk signalized 
intersections in Virginia whereby traffic engineers could identify an intersection where traffic 
crash occurrences were more frequent than would normally be expected taking into account 
different traffic movements and times of day.  The scope of this project was limited to traffic 
safety evaluations of four-legged signalized intersections in VDOT’s NOVA District.   
 
 

Methods 
 

The method used to achieve the research objectives is presented in Figure ES-1.  The 
research was divided into three stages.  In Stage 1, data collection and preparation and 
preliminary data analysis were performed.  In Stage 2, traffic crash prediction models including 
mean and variance models were developed.  In Stage 3, the empirical Bayes (EB) method was 
applied using the models developed in Stage 2.     
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Figure ES-1.  Method Used to Develop the Procedure 

 
Although it might be tempting to select the intersections with the highest crash rate from 

previous years for safety improvement, the high crash rate at those intersections might be 
attributable to chance.  To ensure that intersections are identified where the high crash rate is 
attributable to contributing geometric and/or human factors (e.g., poor visibility, speeding, poor 
channelization, etc.) and not to chance and/or bias (e.g., regression-to-mean bias or sample 
selection bias), an expected crash frequency of the intersection should be computed using the 
three stages proposed here.  When the observed number of crashes exceeds the confidence limit 
of the expected number of crashes, it is likely that the high crash risk is not attributable to 
chance.   
 
 In Stage 1, an exploratory analysis of potentially useful variables was performed after 
traffic crash, traffic flow, and signal phase data were collected.  The main goal of the analysis 
was to classify traffic crashes properly by defining traffic crash patterns for model development; 
descriptive statistics, histograms, cross-tabulations, and regression models were used for the 



 v

analysis.  A crash occurrence mechanism (i.e., relationship between crash occurrence and a given 
condition) is unlikely to be the same across different patterns of traffic crashes.  For example, 
single-vehicle crashes are different from multi-vehicle crashes in a crash occurrence mechanism.  
In general, as traffic volume increases, single-vehicle crashes decrease and multi-vehicle crashes 
increase.  Therefore, these two crash patterns should be analyzed separately.   
 
 In addition to crash patterns, time of day was believed to affect the crash occurrence 
mechanism because traffic patterns and travel purposes vary across four times of day (i.e., A.M. 
peak, mid day, P.M. peak, and evening off peak).  For example, commuting trips occur during 
A.M. and P.M. peak periods whereas non-commuting trips occur during mid day and evening off 
peak periods.  Therefore, for the purpose of model development, time of day was also used to 
form a crash population reference group, which is formed by a combination of different crash 
patterns and different times of day.  At the end of Stage 1, a separate dataset was prepared for 
each crash population reference group.   
 
 In Stage 2, using the datasets prepared in Stage 1, mean and variance models were 
developed for each crash population reference group.  For the mean model, a proper relationship 
between crash frequency and traffic flows was determined for each group.  Between two types of 
count response models, Poisson assuming equidispersion and negative binomial (NB) assuming 
overdispersion, an appropriate model was selected through tests for overdispersion.  After a final 
mean model was estimated, a final variance model was developed.   
 
 In Stage 3, the final mean and variance models from Stage 2 served as inputs to the EB 
method to produce the EB estimates of the expected crash frequency and its variance.   
 
 

Results 
 
EB Procedure 
 
 A 10-step EB procedure was developed in this study.  
 
 Step 1. Select a crash pattern for safety evaluation from crash patterns 1, 4, and 6.   
These crash patterns are explained in Table 3 in the full report. 
 
 Step 2. Select a time of day for the safety evaluation: A.M. peak, mid day, P.M. peak, or 
evening off peak.  For crash pattern 4, the period from the beginning of A.M. peak until the end 
of evening off peak should be used.   
 
 Step 3. Determine a crash population reference group from groups 1 through 9.  A crash 
population reference group is automatically determined when a crash pattern and a time of day 
are selected.  The nine crash population reference groups are explained in Table 4 in the full 
report.  
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 Step 4. Collect the data required for the selected crash population reference group.  The 
data required for each of the nine crash population reference groups are listed in Table 5 in the 
full report. 
 
 Step 5. Select the correct models.  The final mean and variance models for each of the 
nine crash population reference groups are listed in Table 6 in the full report. 
 
 Step 6. Calculate the mean and variance using the selected models.  The calculation 
should be done for each of the four pairs of conflict vehicle movements.  For example, for crash 
pattern 6 (a collision between straight-through traffic and opposing left-turning traffic), there are 
four pairs of such conflict movements at a four-legged intersection: (1) northbound straight-
through and southbound left-turn, (2) southbound straight-through and northbound left-turn, (3) 
eastbound straight-through and westbound left-turn, and (4) westbound straight-through and 
eastbound left-turn.   
 
 Entering required inputs into the selected mean and variance models will produce 
estimates of the mean and variance of the expected crash frequency for each of the four pairs of 
conflict movements.  The input values should be within the valid ranges presented in Table 7 in 
the full report.  Because all models were developed using the data within the ranges shown in 
Table 7, the results from the models will be valid only when the input values fall within the 
specified ranges.  Although results can still be obtained using inputs outside the ranges, the 
validity of the results will be questionable.  
 
 Step 7. Calculate the EB weight.  An EB weight is calculated for each of the four pairs of 
conflict movements using the following equation: 
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 Step 8. Calculate the expected crash frequency.  An expected crash frequency is 
calculated for each of the four pairs of conflict movements using the following equation: 
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where K is the number of recorded crashes of the specified crash pattern in the past 4 years 
during the specified time period. 
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 Step 9. Calculate the variance of the expected crash frequency.  A variance of the 
expected crash frequency is calculated for each of the four pairs of conflict movements using the 
following equation: 
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 Step 10. Calculate the expected crash frequency and its variance for an intersection.  An 
expected crash frequency and its variance for an entire intersection are calculated by summing 
the expected crash frequencies and their variances over the four pairs of conflict movements: 
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Note that independent variances are assumed for the summation.  
 
Use of the EB Procedure by Traffic Engineers 
 
 Traffic engineers can apply the EB procedure to identify high-risk intersections (and 
high-risk conflicting traffics within such intersections).  Safety evaluations can be conducted at 
an intersection level using the expected crash frequency and its variance from step 10. An 
evaluation can also be conducted at a conflict movement level within an intersection using the 
expected crash frequency and its variance from steps 8 and 9.   To allow a better understanding 
of the EB procedure, an example of such an evaluation is provided in the full report.  
 
 

Conclusions  
 
• The EB procedure developed in this study can be used by traffic engineers to evaluate the 

safety of a four-legged signalized intersection.  Traffic engineers can follow the procedure 
using field data and will obtain the expected crash frequency and its variance for different 
crash patterns and different times of day.  By using fundamental statistical methods such as a 
confidence interval or a hypothesis test, traffic engineers can determine whether the 
intersection of interest is associated with an abnormally high crash risk.    

 
• Additional data do not need to be collected in order to apply the EB procedure.  Because all 

the data required for applying the EB procedure should be obtainable from VDOT’s crash 
database and from Synchro input data that are already available to traffic engineers for traffic 
signal phase plans, the EB procedure is cost-effective and readily applicable.   

 
• The EB procedure is valid for use with only four-legged signalized intersections in VDOT’s 

NOVA District within the valid input ranges.  The data used to develop the estimated mean 
and variance models in Table 6 in the full report were collected from four-legged signalized 
intersections in the district.  If the intersection geometry, traffic patterns, and driver behavior 
were similar to those in VDOT’s NOVA District, the EB procedure might be usable for other 
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areas.  However, the results for such areas might not be valid; a proper validation process 
using local data would be necessary to confirm the results.   

 
• The EB procedure may not be very useful for some of the nine crash population reference 

groups.  Traffic crashes for some crash population reference groups, such as reference group 
9 (i.e., crash pattern 6 during the evening off peak period), were rare during the 4-year data 
period.  The expected crash frequency for such reference groups would be less than 1 crash 
per 4 years over the entire range of input values.  Thus, even 1 crash in 4 years is likely to 
lead to a conclusion that an intersection is associated with an abnormally high crash risk 
(e.g., reference groups 6 and 9, corresponding to crash pattern 6 in mid day and off peak 
periods, respectively, as shown in the EB case study in the full report and Appendix D). 

 
• An EB Spreadsheet, which aids in the application of the EB procedure, and a users’ guide 

were developed.  For easier application of the EB procedure, an EB spreadsheet was 
developed using Microsoft Excel, and a users’ guide was prepared.  They are available from 
the author upon request.  

 
 

Recommendations  
 
1. VDOT’s Information Technology Division (IT Division), VTRC, and VDOT’s NOVA District 

should facilitate the application of the developed EB procedure for the NOVA District.  
Although the EB procedure is not difficult for traffic engineers to follow, it can be 
cumbersome and time-consuming for them to apply to the many intersections that would need 
to be evaluated for traffic safety.  Thus, the IT Division, VTRC, and the NOVA District 
should collaborate to automate the application of the EB procedure to assess the safety of 
four-legged signalized intersections in the NOVA District. 

 
• The IT Division should integrate data for calibration of the EB procedure and automate the 

application of the EB procedure.  The IT Division should extract the necessary data (i.e., 
traffic volumes, left-turn signal types, times of data, traffic crash characteristics and counts, 
and vehicle information) from Synchro files, time-based coordinate event sheets, and 
VDOT’s crash database and integrate them into datasets in a format suitable for calibrating 
the EB procedure.  After the calibration is done by VTRC, the IT Division should automate 
the application of the calibrated EB procedure for the NOVA District. 

 
• VTRC should calibrate the EB procedure using the datasets that the IT Division integrates.  

Using the datasets that the IT Division integrates, VTRC should calibrate all the model 
parameters embedded in the EB procedure.  In addition, it should develop new models if 
necessary to enhance the reliability and accuracy of the EB procedure.   

 
• The NOVA District should provide assistance to the IT Division and VTRC.  In the process 

of data integration and/or procedure calibration, practical insights and local information will 
more than likely be needed from the NOVA District.   
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2. VTRC and VDOT’s NOVA District should update the EB procedure when traffic 
characteristics of the four-legged signalized intersections change.  The EB procedure is based 
on the data believed to represent the prevailing traffic characteristics of the four-legged 
signalized intersections in the NOVA District during the years from 2001 through 2004.  
Intersection geometry, traffic patterns, and driver behaviors continue to change over time; as a 
consequence, the traffic characteristics influencing crash occurrence change.  Thus, when the 
traffic characteristics of these intersections become significantly different from those used in 
this study, the EB procedure should be updated using newly collected data representing 
contemporary prevailing traffic characteristics.  There are no established criteria for 
determining when the results should be updated.  Engineers’ judgment will certainly play a 
major role in such a determination.    

 
 

Costs and Benefits Assessment  
 
 This study provided an explicit procedure whereby traffic engineers in VDOT’s NOVA 
District can quickly evaluate the safety of four-legged signalized intersections.  Such an 
intersection carrying a crash risk higher than normally expected can be identified by following 
the EB procedure with input data.   
 
 Using the EB procedure, traffic engineers can identify not only which intersections carry 
a high risk but also what traffic movements at the intersection and which time of day carry a high 
crash risk for the intersection.  Thus, they can focus only on the identified movements and time 
of day to improve the safety of the intersection.  In addition, when a site visit to the identified 
high-risk intersection is needed, the most appropriate time for the visit (e.g., A.M. peak or P.M. 
peak) can be identified using the results from the EB procedure.   
 
 Moreover, the EB procedure does not require additional data collection efforts as long as 
Synchro input data are available, which is common for signalized intersections in Virginia.  Use 
of the EB procedure is likely to save a considerable amount of time and cost involved with field 
data collection whenever VDOT’s NOVA District conducts a safety evaluation of its four-legged 
signalized intersections.  
 
 If the entire procedure from data preparation to application of the EB procedure were 
automated, traffic engineers could instantly assess the safety of the four-legged signalized 
intersections at any time just by choosing intersections of interest without manually entering the 
input.  Moreover, calibrating the models and updating the results should be much more efficient 
and much less time-consuming.  When the automated process is established, development and 
application of the EB procedure can be readily achieved by other VDOT districts as long as the 
appropriate data are provided.   
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INTRODUCTION 
 

Installing a traffic signal is a common measure used to address traffic operations at 
intersections.  The signal serves two main purposes: (1) it increases efficiency by maximizing 
throughput of traffic volumes exiting an intersection, and (2) it enhances safety by spatially 
and/or temporally separating conflicting vehicular movements at the intersection.  Traffic signals 
play an important role in making intersections safe.   
 

Each year, however, a significant portion of traffic crashes occurs at intersections with 
traffic signals.  According to the National Highway Traffic Safety Administration (NHTSA) 
(2005), in 2003, intersection and intersection-related traffic crashes made up about 41% of total 
crashes and about 46% of fatal and injury crashes in the United States.  Of these, half occurred at 
signalized intersections.  Further, according to the Virginia Department of Motor Vehicles  
(2006), 153,849 crashes occurred in Virginia in 2005 (875 fatal crashes and 55,041 injury 
crashes), and of these, 19.1% occurred at signalized intersections. 
 

The Virginia Department of Transportation (VDOT) has a process to identify and 
ameliorate safety deficiencies at signalized intersections.  By improving the physical design and 
signal phasing of intersections, VDOT contributes to a safer environment for drivers and non-
motorized users at signalized intersections.  However, VDOT’s funds for safety improvements 
are limited, and not all identified safety deficiencies can be mitigated in one fiscal year.  In order 
to maximize the impact of safety improvements using limited budgets and resources, VDOT 
needs a method to identify which intersections require more attention for safety improvements.  
 

In 1991, VDOT’s Traffic Engineering Division developed tables of expected traffic crash 
numbers for VDOT’s nine districts (VDOT, 1991).  Expected crashes (per 3 years) were 
estimated for three volume categories (less than 10,000; 10,000 to 20,000; and more than 20,000 
total entering vehicles per day) and four types of intersections (three- or four-legged signalized 
or unsignalized intersections).  Although these tables could be used to help traffic engineers 
identify intersections with unusually high crash risk, they are likely to be inappropriate for 
intersections in areas that have seen a large growth in traffic volume and/or considerable changes 
in traffic patterns (e.g., lane use and traffic concentration during peak hours) since 1991.  For 
example, among about 1,200 signalized intersections maintained by VDOT’s Northern Virginia 
(NOVA) District, the traffic characteristics of many intersections have changed significantly, as 
they have in most urban areas in other districts.  
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Thus, traffic engineers in the NOVA District have no easy method for quickly 
determining whether a particular signalized intersection carries an unusually high crash risk.  
Such a procedure is needed, and the procedure needs to be flexible enough to accommodate 
various real intersection conditions, such as continuous traffic volume.   
 
 
 

PURPOSE AND SCOPE 
 

The purpose of this project was to develop a procedure to identify high-risk signalized 
intersections in Virginia whereby traffic engineers could identify an intersection where traffic 
crash occurrences were more frequent than would normally be expected taking into account 
different traffic movements and times of day.  
 

The scope of this project was limited to traffic safety evaluations of four-legged 
signalized intersections in VDOT’s NOVA District.   
 
 
 

METHODS 
 

Overview 
 

The method used to achieve the research objectives is presented in Figure 1. As shown, 
the method was composed of three stages.  Stage 1 included data collection, initial data analysis, 
and data preparation for model development.  Stage 2 included the development of mean and 
variance regression models of traffic crashes using SAS 9.1.  Stage 3 included application of the 
empirical Bayes (EB) procedure using the final mean and variance models developed in Stage 2.   
 
 In Stage 1, an exploratory analysis was performed after the data were collected.  The 
main goal of the analysis was to classify traffic crashes properly by defining traffic crash patterns 
for model development.  Because a crash occurrence mechanism is unlikely to be the same for 
different patterns of traffic crashes, traffic crashes should be analyzed separately for different 
crash patterns.  For example, single-vehicle crashes are different from multi-vehicle crashes in a 
crash occurrence mechanism.  Therefore, these two crash types should be investigated 
separately. 
 
 Time of day was believed to affect the crash occurrence mechanism.  Therefore, in 
conjunction with traffic patterns, it was used to form a crash population reference group for the 
purpose of model development.  A separate dataset was prepared for each crash population 
reference group for model development.  
 
 In Stage 2, once the dataset was prepared for each crash population reference group in 
Stage 1, mean and variance models were developed for each group.  For the mean model, a  
proper relationship (i.e., functional form) between traffic crash frequency and traffic flow 
variables was determined.  Between two types of count response models, Poisson assuming 
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Figure 1.  Research Method 

 
equidispersion and negative binomial (NB) assuming overdispersion, the most appropriate model 
was selected through tests for overdispersion.  After a final mean model was developed, a final 
variance model was developed.   
 
 In Stage 3, with the final mean and variance models at hand from Stage 2, the EB method 
was applied to produce the EB estimates of the expected crash frequency and its variance.  
 
 

Literature Review 
 

The author surveyed the traffic crash modeling literature pertaining to intersection crash 
analysis and the application of the EB method.  Hakkert and Mahalel (1978) related the number 
of traffic crashes at intersections and the new measure of traffic volumes using a linear 
relationship between the number of conflict points and traffic crash counts suggested by 
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Schaechterle et al. (1970) and Matson et al. (1955).  Their unit of analysis was an intersection.  
Interestingly, they used the index of traffic flows as the measure of traffic volumes, which was 
the sum of the products of the traffic volumes at each of the 24 vehicular conflict points at a 
four-legged intersection.  The data included traffic flows at 16 daytime hours on a weekday and 
traffic crashes at 202 urban intersections and 20 inter-urban intersections from 1971 through 
1972 in Israel.   
 

Ceder and Livneh (1982a,b) examined the relationship between crash density and rate 
and hourly traffic flow in a power functional form, which was found to be proper by their 
previous study in 1978 using average daily traffic for single-vehicle and multi-vehicle crashes 
under free-flow and congested flow conditions.  They developed models using time-sequence 
and cross-sectional data collected for 8 years from eight four-lane roadway segments in Israel.  
 

Hauer et al. (1988) focused on intersections, and they analyzed traffic crashes by traffic 
flow movements.  They argued that only traffic flows that are involved in a crash should be 
included in a crash analysis.  They categorized two-vehicle traffic crashes at four-legged 
intersections into 15 crash patterns based on the movements of two vehicles preceding a 
collision.  Manually collected hourly traffic volumes were entered into the exponential mean 
function of the NB models in two forms: log-transformed flow without and with the restriction of 
its coefficient being equal to 1.  As Lau and May (1989) mentioned, the practical use of this 
study is questionable mainly because of the data requirements.  This type of study requires 
accurate hourly traffic volumes by turning movements, and most agencies might not have such 
data or the resources to collect them. 
 

Mountain and Fawaz (1996) estimated traffic crash frequencies at intersections using 
readily available input data including total entering traffic volumes for major and minor roads, 
control type (e.g., priority control, traffic signal, and roundabout), number of approaches, and 
speed limits.  A total of 622 intersections with 111 traffic signal intersections in England were 
included in the study.  Among several alternative functional forms in the NB model, the cross-
product model with separate exponents for the major and minor entering flows produced the best 
fit to the data.  
 

Persaud and Nguyen (1998) studied crashes at signalized intersections by injury severity, 
the number of vehicles in a crash, and peak time periods using data from Ontario, Canada.  They 
performed two levels of analysis: aggregate level and disaggregate level.  For the disaggregate 
level, they employed the classification of crash types similar to that of Hauer et al. (1988) yet 
classified crashes into 25 types by turning movements.  Since they did not collect enough data at 
the disaggregate level by peak time periods, they developed models using daily data such as 
average annual daily traffic.  
 

Data Collection 
 
Intersection Selection 
 
 A total of 49 signalized intersections in VDOT’s NOVA District were initially selected 
for data collection for model development based on the availability of traffic volume data, 
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validity of crash data, and judgment of traffic engineers in the district.  Of the 49 intersections, 3 
are in Loudoun County, 9 are in Prince William County, and 37 are in Fairfax County.  All 49 
intersections are equipped with actuated signals, and many of them are coordinated in their 
signal phase plans with neighboring signalized intersections.  A list of the 49 intersections is 
provided in Appendix A. 
 
Traffic Crash Data 
 
 Traffic crash data for the 49 intersections from 2001 through 2004 were obtained from 
VDOT’s Oracle crash database.  Three tables, CRASHDOCUMENT, CRASHINTERSECTION, 
and CRASHVEHICLE, in the database, which was updated most recently at the time of data 
collection, were used to extract the necessary data.  By the definition of intersection crash in 
Virginia (crashes occurring within 150 ft of an intersection), all records of crashes within 150 ft 
of the selected intersections were extracted.  
 
Traffic Volume and Signal Phase Data 
 
 Synchro files of the 49 intersections were obtained with the help of traffic engineers in 
the NOVA District.  Four Synchro files by time of day (A.M. peak, mid day, P.M. peak, and off 
peak) were acquired for each intersection.  The files for about half of the intersections were 
provided by the traffic engineers, and those for the other half were downloaded from the NOVA 
GIS Applications through the VDOT intranet.  Hourly traffic volume data by turning movement 
and left-turn signal phase data were extracted from the Synchro files.  According to the traffic 
engineers in the district, the traffic volume data were collected from 2001 through 2002.  An 
example of the raw Synchro data report is shown in Appendix B. 
 
Signal Plan Data 
 
 Time-based coordination event sheets for the 49 intersections were obtained from a 
traffic engineer at the Northern Virginia Smart Traffic Center using the MIST client/server 
system.  The sheet for each intersection contained information regarding the start and end times 
of signal plans for different times of day (A.M. peak, mid day, P.M. peak, off peak, and free 
operation) on each of 7 days in a week.  These sheets are typically used to operate traffic signal 
plans and coordinate the signal phases of neighboring intersections.  An example of an event 
sheet is shown in Appendix C.  
 
 

Exploratory Analysis 
 
 Using the combined raw data and the individual raw datasets, a preliminary data analysis 
was performed for exploratory purposes.  By computing basic statistics and producing cross-
tabulation, insights about how to analyze the data were gained (e.g., what variables can be used 
for model development, if necessary, after variables were transformed by recoding and/or 
combining).   
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 One of the main goals of this analysis was to determine classification criteria for traffic 
crash patterns.  The crash patterns delineated by the criteria were helpful in defining crash 
population reference groups for model development and EB application.  It was necessary to 
develop one safety performance function (SPF) for each of the crash reference population groups 
in order to apply the EB method properly.  For clarification, a crash pattern is different from a 
collision type that is available in VDOT’s crash database.  Examples of collision type are head-
on, rear-end, and angle.  A crash pattern is defined later in this report.   
 
 Factors potentially useful for classification criteria were examined, such as the number of 
vehicles in a crash (e.g., single-, two-, and multi-vehicle crash), injury severity (e.g., fatal, 
injurious, and total crash), and crash counts versus victim counts (e.g., the number of injury 
crashes versus the number of traffic injuries).   
 
 If crash patterns are defined by the number of vehicles in a crash, crashes belonging to 
the same reference group should involve the same number of vehicles.  The assumption behind 
this grouping definition is that a crash occurrence mechanism is differentiated by the number of 
vehicles in a crash; thus, the relationship between crash occurrence and traffic flow should be 
identified separately by the number of vehicles.  Single-vehicle crashes are thought to be 
different from multi-vehicle crashes (Ceder and Livneh,1982a,b; Kockelman and Kweon, 2002; 
Persaud and Nguyen, 1998).  In general, single-vehicle crashes appear to occur more often as 
traffic volume increases up to a particular level, and they appear to occur less often as traffic 
volume increases above that level.  However, multi-vehicle crashes appear to continue to 
increase as traffic volume increases.  
 
 For this study, the number of vehicles (single- versus multiple-vehicle crashes) and 
turning movements (left-turn, right-turn, and straight-through) were selected to form the 
classification criteria for traffic crash patterns.  Crash reference population groups were formed 
by times of day (e.g., A.M. peak and P.M. peak) in conjunction with the crash patterns defined 
by the crash classification criteria (i.e., a combination of the number of vehicles and the turning 
movements).  The information used to define the reference population group is described here.   
 
Traffic Crash Patterns  
 
 A total of 17 crash patterns were identified through logical consideration and the 
literature review (Hauer et al., 1988; Persaud and Nguyen, 1998); 16 patterns excluding the 
single-vehicle crash type, shown in Figure 2, were used for this study.  
 
 These 16 crash patterns were proposed to reflect the two conflicting traffic movements 
contributory to crash occurrence.  It is reasonable to relate crash occurrence to the traffic flows 
that are involved in a crash, which is suggested by Hauer et al. (1988).  If there were more than 
two vehicles in a crash, the first two contributing vehicles were used to classify the crash in 
accordance with one of the 16 patterns for this study.  Because the crash occurrence mechanism 
is believed to differ for these crash patterns (Hauer et al., 1988), the crash patterns are expected 
to offer insights into the nature of the different crash occurrence mechanisms.  
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Figure 2.  Traffic Crash Patterns of Multiple Vehicles by Vehicle Movements.  The dotted lines indicate the box 
of an intersection physically dividing the inside from the outside of the intersection. 
 
 Crash pattern 1 represents a crash of more than one vehicle with the first two contributory 
vehicles involved in the crash having passed through an intersection and proceeding in the same 
direction.  The crash occurs within 150 feet of the intersection.  The first two vehicles may start 
from different approaches of an intersection.  Crash pattern 2 represents a crash between the first 
two vehicles moving straight from the same approach and having a collision inside the 
intersection box.  All other crash patterns are understandable from the figure.  Except for crash 
pattern 1, all crash patterns represent a crash that occurred inside the intersection box. 
 
 The 16 crash patterns can be categorized with three fields in the tables 
CRASHINTERSECTION and CRASHVEHICLE in VDOT’s crash database: (1) OFFSET 
(distance from the intersection), (2) VEHICLEMANEUVER (vehicle’s movement at the time of 
a collision such as “making a right turn” and “slowing or stopping”), and (3) 
VEHICLPLACEMENT (vehicle’s traveling direction prior to a collision: east, west, south, and 
north).  The definitions of the fields are provided in Table 1. 
 
 Using the three fields, crash pattern 1 is defined by a positive OFFSET value, 
VEHICLPLACEMENT codes of the first two vehicles in the collision as the same, and the  
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Table 1.  Definitions of VEHICLEMANEUVER and VEHICLPLACEMENT 
Code Description 
VEHICLEMANEUVER 
01 Going straight ahead 
02 Making right turn 
03 Making left turn 
04 Making U-turn 
05 Slowing or stopping 
06 Starting in traffic lane 
07 Starting from parked position 
08 Stopped in traffic lane 
09 Ran off road–right 
10 Ran off road–left 
11 Parked 
12 Backing 
13 Passing 
14 Changing lanes 
15 Other 
16 Not stated 
VEHICLPLACEMENT 
N North 
S South 
E East 
W West 

 
VEHICLEMANEUVER codes of 01, 05, 06, 08, 13, and 14 for the first two vehicles.  Crash 
pattern 4 is defined by a zero OFFSET, the VEHICLPLACEMENT codes of the first two 
vehicles perpendicular to each other (e.g., north and east), and the 01 VEHICLEMANEUVER 
code of the two vehicles.  Crash pattern 6 is defined by a zero OFFSET, the opposite 
VEHICLPLACEMENT codes of the first two vehicles (e.g., north and south), and the 01 
VEHICLEMANEUVER code for one vehicle and 03 or 04 VEHICLEMANEUVER code for the 
other vehicle.  
 
Time of Day 
 
 The crash occurrence mechanism for the same crash pattern might be different by time of 
day; thus, time of day in addition to the crash pattern was used to define a crash population 
reference group.  Four times of day were found in the data: A.M. peak, mid day (between the end 
of A.M. peak and the start of P.M. peak), P.M. peak, and off peak (between the end of P.M. peak 
and the start of night-time non-coordinating signal operation, called “free operation”).  The start 
and end times of these four times of day differ by intersections.  The typical signal time schedule 
of the intersections used in this study was 6 A.M.–9 A.M. (A.M. peak), 9 A.M.–3 P.M. (mid 
day), 3 P.M.–7 P.M. (P.M. peak), 7 P.M.–10 P.M. (evening off peak), and 10 P.M.–6 A.M. (free 
operation).   
 
 A separate dataset for each crash reference population group defined by the crash pattern 
and the time of day was prepared for model development and EB application, and the details of 
such data preparation are described here. 
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Data Preparation 
 

As described previously, a total of 49 intersections were initially selected for the study 
from about 1,200 signalized intersections in the NOVA District.  Of those, 48 are four-legged 
and 1 is three-legged.  The intersection with three legs was excluded from the study.  For the 48 
four-legged intersections, the directional orientation matching process between traffic volume 
data (from Synchro files) and crash data revealed that the police crash reports for 2 intersections 
showed inconsistencies indicating the north in the crash diagrams; i.e., crash reports referencing 
the same intersection indicated the north differently.  Thus, these 2 intersections were removed 
from the study.  Of the 46 intersections, 1 intersection was not identified in VDOT’s crash 
database by its crossing street names; thus, it was removed.  Of the 45 intersections, Synchro 
files for 2 intersections could not be obtained; thus, these 2 were removed from the study.   
 
 The types of left-turn signal phase and traffic flows were extracted from Synchro files by 
traffic turning movement and time of day.  Because there are 12 different turning movements at a 
typical four-legged intersection (4 movements for each left-turn, right-turn, and straight-through 
flow) and 4 different times of day in a typical weekday (A.M. peak, mid day, P.M. peak, and off 
peak), 48 turning traffic flows (12 movements  4 times of day) and 16 left-turn phases (4 
approaches  4 times of day) were recorded for each intersection.   
 
 Vehicle maneuver (e.g., moving straight and turning left) and directional information 
(e.g., heading east/west/north/south) for each vehicle in a crash were extracted from the crash 
vehicle table, and traffic crash information (e.g., time/date/year and number of vehicles) for each 
crash was extracted from the crash document table, both of which are in VDOT’s crash database.  
These two extracted datasets were combined, and crashes occurring outside 150 feet of an 
intersection were removed.  
 
 Time of day (e.g., start and end time of each time of day) and type of operation (e.g., free 
operation) for each intersection were extracted from time based coordination event sheets.  Nine 
intersections (intersection sequential numbers 23, 25, 32, 33, 35, 36, 40, 42, and 47) were 
operated under free operation (i.e., signal operation under non-coordinated actuated signal time 
plan having a setup of only minimum and maximum green times); thus, their start and end times 
for the four times of day could not be identified from the event sheets.  These nine intersections 
could not be analyzed by different times of day and thus were removed from the analysis.  
However, some of the nine intersections were already removed because of other reasons 
addressed previously.  In the end, 32 to 35 intersections were used for model development 
depending on crash population reference groups, and the data from them were prepared for the 
analysis.  
 
 All of the distinct datasets were merged into a single dataset.  The merged dataset was 
aggregated by intersection, time of day, and the classification criteria determined in the 
exploratory analysis.  In the end, one dataset for each of crash reference population groups was 
prepared for model development; e.g., theoretically, 64 crash reference population groups exist 
for multi-vehicle crashes.  
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 Regarding left-turn signal phases, about 14% of intersection approaches were permissive, 
about 21% were protected, about 12% were split, and about 53% were permissive plus protected.  
About 20% of traffic crashes occurred in the A.M. peak, about 31% occurred in mid day, about 
33% occurred in the P.M. peak, and about 17% occurred in the evening off peak. 
 
 

Model Development  
 
 Three aggregate levels of analysis (high, intermediate, and low) were initially proposed 
depending on how the data would be aggregated for model development.  The high aggregate 
level aggregates the data for an entire intersection; thus, the analysis unit is an intersection as a 
whole.  The intermediate level aggregates the data for an approach of an intersection; thus, the 
analysis unit is an approach.  The low level, which is the most disaggregate level in the study, 
aggregates the data for a pair of conflicting vehicle movements of the first two vehicles 
contributing to crash occurrence (e.g., a straight-through vehicle colliding with an opposing left-
turning vehicle); thus, the analysis unit is a pair of vehicle movements.  Among the three levels, 
the high and low levels of analysis were performed and the low level of analysis turned out to be 
the only level useful for the project.  Thus, only the model development procedure using the low 
aggregate level of data is described here.  
 
Step MD1: Quick Diagnostic Check for Overdispersion 
 

The number of crashes is very often analyzed by count data regression models because it 
is a non-negative integer (i.e., count response) in its characteristics.  The Poisson regression 
model is the standard model for count response data (e.g., number of crashes per intersection; 
number of patients’ visits to a physician’s office per day) and requires the equidispersion 
assumption, meaning that the conditional mean and variance of the count response are equal.  In 
other words, the mean and variance of errors from the Poisson model are assumed to be equal.   
 

It is very important to understand how the count response (e.g., crash frequency per year 
for an intersection) that is a dependent variable in count data models is dispersed (i.e., under-, 
equi-, and overdispersion) because the appropriate functional form of the model depends on the 
level of dispersion of the count response.  For example, the Poisson model is appropriate for 
equidispersed data, a binomial model is appropriate for underdispersed data, and an NB model is 
appropriate for overdispersed data.  If an inappropriate model were chosen for data, the base 
assumption of the model would be violated, probably resulting in bias in estimates of the model’s 
parameters.  Thus, the use of those estimates would likely lead to erroneous conclusions.  
 
 As a quick diagnostic check of the level of dispersion, a comparison between the 
unconditional mean and variance of the count response data was suggested by Cameron and 
Trivedi (1998).  If the variance of the count data exceeds twice the unconditional mean, the data 
are likely to be overdispersed.  The factor of two for the mean is used to account for potential 
inclusion of explanatory variables in count response models so that the likely conditional mean 
and variance of the dependent variable (i.e., count response) in the presence of the explanatory 
variables can be roughly compared.   
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 If the mean exceeds the variance, the data are certainly underdispersed.  If the variance is 
between the mean and twice the mean, the data can be one of under-, equi-, or overdispersion, 
depending on how much unconditional overdispersion can be taken out by explanatory variables 
in count response models.  
 
 Although this diagnostic check is a useful tool to identify potential overdispersion in the 
data quickly, it is somewhat preliminary in nature; thus, more rigorous approaches to test the 
presence of overdispersion should also be conducted to verify the level of dispersion.  For this 
study, this diagnostic check was used to gain insights for developing mean models in step MD2. 
 
Step MD2: Mean Model Development 
 
 Typical linear regression models are usually not appropriate for count response data 
unless the mean of the count response is relatively high (e.g., the analysis of a value of 10 or 
greater).  This is because the normality and homoskedasticity (i.e., constant variance) 
assumptions required for the linear regression models are likely to be violated with most count 
data (especially traffic crash data) and because the prediction of the linear models can be 
negative.  Count responses are non-negative and typically skewed (to the right) in distribution, 
which implies nonnormal distribution, and their variances increase as their means increase, 
implying nonconstant variance.  This nonconstant variance, which is a violation of the 
homoscedasticity assumption, does not affect unbiasedness, which is a statistical property of a 
parameter whose estimate is not biased from a true value, of the parameter estimates.  However, 
it results in biased estimates of their variances, which, in turn, affect the validity of significance 
tests (e.g., t tests) for those unbiased parameter estimates.  Its consequence is greater than that in 
linear models.   
 

The standard model for count data is the Poisson regression model, assuming 
equidispersion.  However, crash count data are often overdispersed; thus, the Poisson model is 
likely to be improper.  On such occasions, there are several alternative models designed to 
handle overdispersion of the data, including overdispersed Poisson, NB, zero-inflated Poisson, 
and zero-inflated NB models (see Kweon and Kockelman [2005] for the application of those 
models in traffic safety and Slymen et al. [2006] for their application in the health sciences).  
Among them, the NB model with the mean dispersion function (i.e., NegBin Type II according 
to Cameron and Trivedi [1998]) is the most frequently employed in crash analysis and is the 
most suitable for the application of the EB method (Hauer, 1997).  For this study, the Poisson 
and NB regression models were used (more information regarding count data models may be 
found in the report by Cameron and Trivedi [1998]).  
 

The Poisson regression model consisting of the Poisson probability mass function (pmf) 
and an exponential mean function can be expressed as follows: 
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where i = index for a subject (e.g., intersection); iY = count response variable (e.g., number of 
crashes in 4 years); ix = vector of explanatory variables (e.g., traffic volume and types of left-
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turn signal phase); β = vector of parameters to be estimated; and iλ = mean level of the count 
response (e.g., average number of crashes).  The equidispersion condition of the Poisson model 
can be mathematically expressed as: 
 
 ( ) ( )iiii YVYE xx || = . 
 

The NB regression model with the mean dispersion function can be viewed as an 
expansion of the Poisson model because it adds a random disturbance to the exponential mean 
function of the Poisson model as follows:  
 

iiiiiii uu λεµ =×′=+′= )exp()exp( xβxβ    
 
where iε  is a random disturbance, and )ln( ii u=ε .  The added random term, )exp( iiu ε= , is 
often assumed to follow a gamma distribution with a single parameter for mathematical 
tractability so that a closed form expression can be readily derived.  Then, the NB model can be 
expressed as follows: 
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where ),(~ bbGammaui , and integrating iε  out leads to the following model equation:  
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where bk 1=  is called the dispersion parameter (of the NB model), and ( )⋅Γ  is the gamma 
function.   
 
 The overdispersion condition can be mathematically shown as 
 
 ( ) ( )iiiiYV αλλ += 1| x > ( ) iiiYE λ=x| .   
 
More information about this and other count data models may be found in the report by Cameron 
and Trivedi (1998). 
 
Step MD2.1: Determination of Functional Form of Flow Variables 
 

Two visual approaches were applied to determine appropriate functional forms of traffic 
flow variables: (1) plots of average aggregated crash counts by traffic flow groups (i.e., a set of 
flow ranges) and (2) plots of cumulative sum of residuals.  In addition, literature reviews with a 
specific focus on functional forms of traffic flow variables in SPFs were conducted to identify 
the most frequently adopted functional forms.  The reviewed studies included Ardekani et al. 
(2002), Belanger (1994), Bauer and Harwood (2000), Forbes and Belluz (2003), Harwood et al. 
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(2000), Lyon et al. (2005), McGee et al. (2003), Mountain and Fawaz (1996), Poch and 
Mannering (1996), Regional Municipality of Durham (in Ontario, Canada) (2001), Regional 
Municipality of Halton (in Ontario) (2001), Sayed and Rodriguez (1999), Vogt (1999), Vogt and 
Bared. (1999), and Washington et al. (2005).  The form employed most often among those 
studies is a log-transformed form of traffic flow variables inside the exponential mean function 
of a count response model as follows: 

 
21

2122110 )loglogexp( ββαβββµ ffff ⋅⋅=⋅+⋅+=   
 
where µ  is an expected crash count, 1f  and 2f  are traffic flow variables (e.g., average annual 
daily traffic or hourly traffic volumes for major and minor roads), and )exp( 0βα = .  
 
 Ardekani et al. (2002) described the importance of logical considerations in determining 
the functional form of traffic flow variables and provided different forms representing different 
shapes of the relationship between traffic flow and expected crash count.  One of the desired 
properties for the flow-crash function is that the curve drawn by the function should go through 
the origin, thereby guaranteeing that zero crashes are expected when there is no traffic.  The log-
transformed form discussed here satisfies this property.  
 
Using Plots of Average Aggregated Crash Counts by Traffic Flow Groups 
 
 The response values (i.e., the number of crashes) for this study have low mean values and 
contain many zeros, which, in some cases, is due to the nature of the crash data.  Thus, typical 
plots between crash counts and traffic volumes do not usually provide good insight about their 
relationship (i.e., functional form of the relation), as shown in Figure 3.   
 
 In such cases, one way to obtain a visual clue about the relationships is to group the crash 
data by traffic flows (e.g., 0-500, 500-1,000, etc., in vehicles per day), calculate an average crash 
count for each group, and plot the average crash count against the traffic flow groups as shown in 
Figure 4.  This was successfully done by Hauer et al. (1988) when they examined traffic crash 
and volume data similar to the data collected for this study.  Figure 4 presents three typical 
functional forms used in this study. 
 

 
 

Figure 3.  Raw Crash Count Versus Traffic Flow 
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Figure 4.  Average Crash Count Versus Traffic Flow 
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Using Plots of Cumulative Sum of Residuals  
 
 Lin et al. (2002) proposed graphical and numerical model assessment methods using 
cumulative sums of residuals over certain explanatory variables in regression models.  By 
visually and numerically comparing residual patterns generated from simulation, appropriate 
functional forms of explanatory variables can be inferred.  Figure 5 shows two examples of plots 
of cumulative sum of residuals from 10,000 simulation runs using the data for this study.   
 
Step MD2.2: Overdispersion Tests and Model Type Selection 
 
 After a final model is developed for each of the Poisson and NB models, one of these two 
types of models should be selected.  The deciding factor is whether there an overdispersion 
portion remains after the explanatory variables in the models eliminate overdispersion from the 
count responses.  Of the several ways to examine overdispersion in the data, four tests were 
applied in this study: (1) dispersion parameter using deviance and Pearson’s chi-square statistics, 
(2) regression-based equidispersion test, (3) confidence interval of the NB dispersion parameter, 
and (4) Lagrange multiplier (or score) test for overdispersion.  The first is rather subjective in 
determining overdispersion because no definite criteria exist in indicating overdispersion; the 
other three are objective.   
 
 For an illustration of the four tests and the quick diagnostic check stated in step MD1, 
Table 2 provides test results for crash pattern 1 during mid day hours.  As is obvious, the NB 
model was selected over the Poisson model by all five test statistics for this case. 
 
Dispersion Parameters Based on Deviance and Pearson’s Chi-Square Statistics  
 
 The deviance or Pearson's chi-square statistics divided by its degrees of freedom can be 
used to estimate a dispersion parameter (φ) that is often used to indicate roughly the level of 
dispersion of the count response.  For the Poisson and NB distributions, the dispersion 
parameter, φ, using deviance and Pearson’s chi-square statistics can be obtained as follows 
(McCullagh and Nelder, 1991):   
 
 Using deviance statistics,  
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where D = deviance, n = number of observations, and p = number of parameters (so n – p is the 
degree of freedom).   D is written as follows: 
 
 Poisson distribution: ( ) ( )[ ]∑ −−= µµ yyD ylog2  and 
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Figure 5.  Cumulative Sum of Residuals.  Larger p-values suggest more appropriate form of variable of interest in 
model, and observed residuals (dark line) do not show typical shape for appropriate form of variable.  According to 
these criteria, plot (a) presents example of appropriate functional form (high p-value and atypical shape of dark 
line), whereas plot (b) presents example of inappropriate functional form (very small p-value and typical wave shape 
of dark line).  For plot (b), log-transformed variable appears more appropriate.  Light dotted lines represent 
simulated residuals. 
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Table 2.  Example of Overdispersion Tests 
 

Overdispersion Test 
 

Statistics 
 

Test Result 
Selected 
Model 

Dispersion parameters based on deviance 
and Pearson’s chi-square statistics 

φ = Pearson’s chi-square/degree of 
freedom =3.665 >> 1.0 

Overdispersion NB model 

Regression-based equidispersion test p-values of coefficients = 0.0003 and 
0.0010 < 0.05 

Overdispersion NB model 

Confidence interval of NB dispersion 
parameter 

95% confidence interval of k = 
[1.3529, 3.4148]  not containing 
zero  

Overdispersion NB model 

Lagrange multiplier test p-value of test = 0.00001<0.05 Overdispersion NB model 
Quick diagnostic check Variance = 4.38 > 2 mean = 2.41 Overdispersion NB model 
 
 Using Pearson’s chi-square statistics,  
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2  with V(µ) is a variance model. V(µ) is written as follows: 

 
 Poisson distribution: ( ) µµ =V  and  
 NB distribution: ( ) 2µµµ kV += . 
 
 If the estimate of the dispersion parameter (φ ) is substantially larger than 1, 
overdispersion might be present.  However, it should be noted that such deviation from 1 might 
result not only from overdispersion in the data but also from other problems such as incorrect 
model specification, missing explanatory variables, and outliers in the data (Heinzl and 
Mittlbock, 2003).  Therefore, the dispersion parameter should be used with caution, and it is 
recommended that other tests for overdispersion be used also when overdispersion is detected by 
the dispersion parameter. 
 
Regression-Based Equidispersion Test 
 
 One common way of testing equidispersion is a nested chi-square ( 2χ ) test comparing 
the Poisson model against an alternative model that has the Poisson model as a nested case, such 
as the NB model.  However, this test requires a particular parametric assumption for the density 
of the response values (e.g., NB distribution).  Cameron and Trivedi (1990) proposed a 
regression-based test for equidispersion that does not require a parametric assumption such as to 
this, but requires only the specification of the relationship between the mean and the variance of 
the response variable.  
 
 The following regression models are estimated to perform the test: 
 



 18

 ( )( )
y

yor
y

yor
y

yyy
ˆ2

ˆ
ˆ2

ˆ
ˆ2

ˆ 22

××=
−− γβα  

 
where y = observed count value (e.g., number of crashes in 4 years); ŷ  = estimated count value 
by the Poisson model; andα , β , and γ  are regression parameters to be estimated and used for 
the equidispersion test.  Ifα , β , and γ  are not statistically different from zero (i.e., statistically 
insignificant), there is no overdispersion remaining from the estimated Poisson model, which 
means that the Poisson model is appropriate.  Otherwise, overdispersion still exists; thus, the 
current Poisson model is not appropriate.  This implies that more variables with the Poisson 
model are needed to explain the remaining overdispersion or that other models handling 
overdispersion such as the NB model are needed.  Since more variables could not be obtained in 
most real circumstances and the most frequently used model with overdispersed data is the NB 
model, the statistical significance of the coefficients (α , β , and γ ) implies that the NB model is 
more appropriate than the Poisson model. 
 
Confidence Interval of NB Dispersion Parameter  
 
 One of the parameters in the NB model estimated using the maximum likelihood 
technique is the NB dispersion parameter, k, which appears in the variance function, 

( ) 2µµµ kV += .  If the parameter equals zero, the model reduces to the Poisson model.  The 
95% Wald confidence interval of the dispersion parameter was produced from the model 
estimation.  If the confidence interval includes zero, the Poisson model is more appropriate than 
the NB model.  If not, the NB model is appropriate.  
 
Lagrange Multiplier (or Score) Test for Overdispersion 
 
 Cameron and Trivedi (1998) proposed a score (or Lagrange multiplier) statistic to test 
overdispersion in the Poisson model against the NB model (NegBin II Type) with the mean 
dispersion function (i.e., variance function), 2)( µµµ kV += , where µ is the conditional mean 
and k is the dispersion parameter of the NB model.  This test is designed to detect a specific type 
of overdispersion: the NegBin II Type.  
 

V
sLM

2

=   

 
where s = score statistics of the test for overdispersion in the Poison model against the NegBin II 
Type model with the restriction of k = 0.  This test is similar to the regression-based 
equidispersion test.  This test is detailed in a report by Cameron and Trivedi (1998).  
 
Step MD2.3: Goodness of Fit  
 
 Once the final model type (i.e., Poisson versus NB model) is determined in step MD2.2 
and the final model estimates are obtained, a goodness of fit model is examined using several fit 
measures and a graphical comparison.  As for the fit measures, four pseudo R-squared measures 
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were used.  As for the visual comparison, mean observed and predicted probabilities for each 
count response were calculated and drawn in one graph so that the closeness of the predictions 
made by different models to observed responses could be visually compared.   
 
Pseudo R-squared Measures 
 
 The four fit measures are (1) likelihood-ratio index, 2

LR ; (2) correlation-based R-
square, 2

CR ; (3) deviance-based R-square, 2
DR ; and (4) dispersion parameter-based R-square, 2

kR . 
The fourth is applicable for the NB model, not the Poisson model.  Pseudo R-squares in non-
linear models are analogous to the R-square in linear models.  However, the interpretation of the 
R-square, the percentage of total variation of data explained by the model fitted to the data, does 
not carry over to the pseudo R-squares because of the non-linear nature of the models for which 
the pseudo R-squares are computed.  
 
 The four pseudo R-squared measures are written as follow: 
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where 1L  is the likelihood value of the estimated model; 0L  is the likelihood value of the 
intercept-only model; 2r is a square of the correlation coefficient between the count response and 
its predicted mean, [ ]2)ˆ,( µycorr ; 1KL is the Kullback-Leibler (KL) divergence of the estimated 
model, [ ]1lnln2 LLS −  with SL being the likelihood value of the saturated model; 0KL  is the KL 
divergence of the intercept-only model, [ ]0lnln2 LLS − ; 1k  is a dispersion parameter of the 
estimated model with an NB error structure; and 0k  is a dispersion parameter of the intercept-
only model with an NB error structure. 
 
 The deviance-based R-square was proposed by Cameron and Windmeijer (1997), and the 
dispersion parameter-based R-square was proposed by Miaou (1996).  However, these measures 
might be biased if the sample size is small.  For example, Miaou (1996) tested the validity of the 
dispersion parameter-based R-square with large simulation data and recommended its use for a 
large sample size.  Heinzl and Mittlbock (2003) found that the deviance-based R-square for the 
Poisson model could be significantly biased in the case of a small sample size. 
 
 Each pseudo R-square measure has a different interpretation, yet none of their 
interpretations is as intuitive as the R-square for linear models.  The likelihood-ratio index ( 2

LR ) 
means the ratio of improvement in log-likelihood values between the model with only intercept 
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and the model of interest.  The correlation-based R-square ( 2
CR ) is basically meant to show the 

degree of correlation between the predicted counts by the model and the observed counts.  The 
deviance-based R-square ( 2

DR ) is somewhat similar to, but more complicated than, the 
likelihood-ratio index.  It shows the ratio of improvement in KL information values between the 
model with only intercept and the model of interest.  The KL information for the model of 
interest, for example, implies improvement in log-likelihood values between the saturated model 
and the model of interest.  The dispersion parameter-based R-square ( 2

kR  ) shows the percentage 
of total dispersion of data explained by the model of interest.   
 
 As indicated, these pseudo R-square measures do not have the good statistical 
interpretation that the R-square has for linear models.  Moreover, there seems to be no consensus 
with regard to using one measure over others; thus, more than one measure is typically presented 
in a study.  Although several measures are computed and presented, they do not seem to carry 
much importance partly because there is no good interpretation of them and partly because of the 
absence of thresholds generally accepted for judging how well models are fitted to data.  This 
study used the four measures presented because they can still offer some sense of a relative 
goodness of fit among different models and the use of the pseudo R-square measures appears to 
be common in many studies using non-linear models. 
 
 All pseudo R-squared measures should have two properties; (1) they should range from 0 
to 1 and (2) they should not decrease as explanatory variables are added to a model (Demaris, 
2004).  The four measures have these two properties.  However, other characteristics should also 
be noted.  The likelihood-ratio index cannot approach 1; thus, it may underestimate the fitness of 
the model.  The correlation-based R-square may violate the “nondecreasing” property.   
 
Graphical Comparison of Mean Observed and Predicted Probabilities 
 
 The mean observed and predicted probabilities can be calculated respectively as follows: 
 

 ( )∑
=

==
N

i
iobserved myI

N
m

1

1)(rP   

 ( )∑
=

==
N

i
iipred my

N
m

1

|rP̂1)(rP x  

 
where m is a unique value in the count responses (e.g., crash count); I(·) is an indicator function 
equaling 1 if the condition inside the parenthesis is true and 0 otherwise; i is an index for an 
entity (e.g., intersection) with i = 1,…, N; iy is the value of the count response of the entity i; and 

ix is a set of explanatory variables.  The mean observed probability is just a proportion of count 
responses equaling a certain value from the set of unique count response values.  In the predicted 
probability, the individual conditional probability, ( )ii my x|rP̂ = , is calculated using the 
estimated count model.  For the Poisson model, the individual conditional probability is 
calculated by 
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where β̂ is a set of estimated parameters of the Poisson model. 
 

Figure 6 illustrates the difference between the mean observed and predicted probabilities.  
The comparison of the four mean probabilities indicates that the mean probability predicted by 
the NB model fits very well with the observed probability and is much better fitted than those of 
the Poisson model or the univariate Poisson.  The visual comparison in Figure 6 clearly shows 
how well models fit data.  In the end, the visual comparison turned out to be more useful than the 
pseudo R-squares in assessing goodness of fit models.  See Demaris (2004) and Long (1997) for 
more illustrations of the graphical comparison using general count data.  
 

 
 

Figure 6.  Mean Observed and Predicted Probabilities 
 
Step MD3: Variance Model Development 
 
 To apply the EB method, the variance model should also be estimated along with the 
mean model in step MD2.  A typical linear regression model can be used to estimate the variance 
model.  Hauer (1997) reported that the following specification for variance models works well 
for traffic crash data: 
 

 ( ) ( ) ( )
b

EEV i
ii i

2
22 κκβσκ κ =⋅==  

 
where iκ  is the true expected crash frequency, V is the variance, and b1=β  is the coefficient 

parameter of ( )2κE  to be estimated.  Note that an intercept is excluded from the model; thus, the 
model is forced to go through the origin.  When the Poisson model was selected as the final 
model from step MD2.2, there was no need to develop the variance model because in theory, 
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( )iV κ  equals zero; thus, the conditional variance of the count response equals the conditional 
mean. 
 

Empirical Bayes (EB) Application 
 

The EB method can be implemented in four steps once the estimates of the final mean 
and variance models are obtained from the model development procedure. 
 

1. Calculate the mean and variance of the entity of interest. 
2. Calculate the weight for the entity of interest. 
3. Calculate the expected crash frequency of the entity of interest. 
4. Calculate the variance of the expected crash frequency of the entity of interest. 

 
Step EB1: Calculate Mean and Variance of Entity of Interest  
 
 The values of the explanatory variables of the entity of interest (e.g., a pair of two 
conflicting vehicle movements) enter into the estimated mean and variance models, producing 
the estimated mean and variance of the expected crash frequency of the entity.  The following 
equations are used for the calculation: 
 
 )ˆexp(ˆ)(ˆ

jjjE xβ′== µκ  
  

 ( ) ( )
b

E
V j

j i ˆ
ˆ

ˆˆ
2

2 κ
σκ κ ==  

where j is an index of an entity of interest; β̂  and b̂  are obtained from the final mean model and 
the final variance linear model, respectively; and jx is a set of values of the explanatory variables 
in the final mean model.  
 
Step EB2: Calculate Weight for Entity of Interest 
 
 The weight for the EB method is computed using the estimates of the mean and the 
variance as follows: 
 

 
)(ˆ)(ˆ1

1ˆ
jj

j EV κκ
ω

+
= . 

 
If the Poisson model was selected, the variance should be zero; thus, the weight equals 1.  
 
Step EB3: Calculate Expected Crash Frequency of Entity of Interest 
 
 The expected crash frequency is computed using the estimates of the mean and the 
weight and the actual crash count as follows: 
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 jjjjjjj KEKE ⋅−+⋅== )ˆ1()(ˆˆ)|(ˆˆ ωκωκκ  
 
where jK  is the number of actual traffic crashes of the entity of interest, j. 
 
 If the Poisson model was selected, the weight equals 1; thus, the actual crash count does 
not affect the calculation of the expected crash frequency and the estimated crash frequency 
equals the estimate of the mean crash count, )(ˆ

jE κ . 
 
Step EB4: Calculate Variance of Expected Crash Frequency of Entity of Interest  
 
 The variance of the expected crash frequency is computed using the estimates of the 
expected crash frequency and the weight as follows:  
 
 jjjjj KV κωκσ ˆ)ˆ1()|(ˆˆ 2 ⋅−== . 
 
If the Poisson model was selected, the variance equals zero in theory.  
 
 Using the estimated expected crash frequency from step EB3 and the estimated variance 
from step EB4, the probability that the entity of interest carries an abnormally high risk can be 
calculated based on the normal distribution assumption. 
 
 
 

RESULTS AND DISCUSSION 
 
 This section provides the EB procedure developed in this study and describes how it was 
developed.  The subsection on the EB procedure summarizes the finalized procedure for 
identifying high-risk four-legged intersections in VDOT’s NOVA District, and the subsection of 
the development of the procedure provides the results of the steps described in the Methods 
section.  This subsection will be useful for researchers and/or engineers when they develop or 
update the EB procedure. 
 

 
EB Procedure 

 
 This section describes the 10-step EB procedure developed to identify high-risk four-
legged signalized intersections (and high-risk conflicting traffics within such intersections), the 
use of the procedure by traffic engineers, and a case study applying the procedure.   
 
Final EB Procedure 
 
 Step 1. Select a crash pattern for safety evaluation from crash patterns 1, 4, and 6.   
These crash patterns are explained in Table 3. 
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Table 3.  Descriptions of Crash Patterns 
Crash Pattern Configuration Description 

1 

 

• Collision of multiple vehicles with the first two contributing 
vehicles having exited from an intersection and moving forward 
after the intersection. 

• Collision occurs outside the intersection box after the 
intersection. 

• Collision type could be a rear-end, same-direction sideswipe, or 
angle crash. 

4 

 

• Collision of multiple vehicles with the first two contributing 
vehicles entering straight-through into an intersection from two 
approaches perpendicular to each other. 

• Collision occurs inside the intersection box. 
• Collision type would be a right-angle crash. 

6 

 

• Collision of multiple vehicles with one of the first two 
contributing vehicles moving straight-through from an approach 
and the other one left-turning from an opposing approach.  

• Collision occurs inside the intersection box. 
• Collision type could be a head-on, angle, or opposite-direction 

sideswipe crash for a left-turn movement, and a rear-end, angle, 
right-angle, same-direction sideswipe crash for a U-turn 
movement. 

 
 Step 2. Select a time of day for the safety evaluation: A.M. peak, mid day, P.M. peak, or 
evening off peak.  For crash pattern 4, the period from the beginning of A.M. peak until the end 
of evening off peak should be used.  
 
 Step 3. Determine a crash population reference group from groups 1 through 9.  A crash 
population reference group is automatically determined when a crash pattern and a time of day 
are selected.  The nine crash population reference groups are explained in Table 4.   
 
 Step 4. Collect the data required for the selected crash population reference group.  The 
data required for each of the nine crash population reference groups are listed in Table 5. 
 
 Step 5. Select the correct models.  The final mean and variance models for each of the 
nine crash population reference groups are listed in Table 6. 
 

Table 4.  Crash Population Reference Group 
Crash Population Reference Group Crash Pattern Time of Day 
1 1 A.M. peak 
2 1 Mid day 
3 1 P.M. peak 
4 1 Evening off peak 
5 4 From A.M. peak until evening off peak 
6 6 A.M. peak 
7 6 Mid day 
8 6 P.M. peak 
9 6 Evening off peak 
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Table 5.  Required Input Data 
Crash Population 
Reference Group 

Crash 
Pattern 

 
Time Period 

 
Basic Inputs 

Additional 
Input 

1 A.M. peak Straight-through volume 
Left-turn volume 
Right-turn volume 
Number of hours of A.M. peak 

2 Mid day Straight-through volume 
Left-turn volume 
Right-turn volume 

3 P.M. peak Straight-through volume 
Left-turn volume 
Right-turn volume 
Number of hours of P.M. peak 

4 

1 

Evening off peak Straight-through volume 
Left-turn volume 
Right-turn volume 
Number of hours of evening off peak 

5 4 A.M. peak through 
evening off peak 

Straight-through volume 

6 A.M. peak Straight-through volume 
Left-turn volume 
Left-turn signal type (permissive-plus-
protected or others) 

7 Mid day Straight-through volume 
Left-turn volume 
Left-turn signal type (permissive-plus-
protected or split or permissive) 

8 P.M. peak Straight-through volume 
9 

6 

Evening off peak Left-turn volume 

Number of 
crashes of 
specified crash 
pattern in past 4 
years during 
specified time 
period 

 
 Entering required inputs into the selected mean and variance models will produce 
estimates of the mean and variance of the expected crash frequency for each of the four pairs of 
conflict movements.  The input values should be within the valid ranges presented in Table 7.  
Because all models were developed using the data within the ranges shown in Table 7, the results 
from the models will be valid only when the input values fall within the specified ranges.  
Although results can still be obtained using inputs outside the ranges, the validity of the results 
will be questionable. 
 
 Step 7. Calculate the EB weight.  An EB weight is calculated for each of the four pairs of 
conflict movements using the following equation: 
 

 

)(ˆ
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=  

 
where i indexes the four pairs of conflict movements (I = 1, 2, 3, and 4; see step 6 for an 
example)  and )(ˆ

iE κ  and )(ˆ
iV κ  are estimates of the mean and the variance, respectively, from 

step 6.  
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Table 6.  Mean and Variance Models 
Model Crash Population  

Reference Group Type Estimate 
Mean/Poisson ( ) ( )sAMPeakHourFlowE total 088.1log6566.01012.9expˆ ++−=κ  1 

Variance ( ) 0ˆ =κV  
Mean/NB ( ) ( )totalFlowE log3113.08844.1expˆ +−=κ  2 

Variance ( ) 6661.0ˆˆ 2µκ =V  
Mean/NB ( ) ( )sPMPeakHourFlowE total 8731.0log08012.02153.9expˆ ++−=κ  3 

Variance ( ) 6529.1ˆˆ 2µκ =V  
Mean/Poisson ( ) ( )rsOffPeakHouFlowE total 8731.0log7337.08123.8expˆ ++−=κ  4 

Variance ( ) 0ˆ =κV  
Mean/NB ( ) ( )minorFlowE log5780.04740.3expˆ +−=κ  5 

Variance ( ) 4022.2ˆˆ 2µκ =V  
Mean/Poisson 

( ) 










++

−+−
=

−− turnleftturnleft

throughthrough

PmPtFlow

FlowFlow
E

7209.0log3212.0

0013.0log7736.08155.6
expˆ κ  

6 

Variance ( ) 0ˆ =κV  
Mean/NB 

( )


















+++

−+

−+−

=

−−−

−−

turnleftturnleftturnleft

turnleftturnleft

throughthrough

PmPtPermSplit

FlowFlow

FlowFlow

E

2094.17704.25125.1

0096.0log3497.1

0026.0log6388.19690.14

expˆ κ  
7 

Variance ( ) 6739.0ˆˆ 2µκ =V  
Mean/NB ( ) ( )throughFlowE log3309.01953.2expˆ +−=κ  8 

Variance ( ) 5561.0ˆˆ 2µκ =V  
Mean/NB ( ) ( )turnleftturnleft FlowFlowE −− −+−= 0102.0log6355.11126.7expˆ κ  9 

Variance ( ) 3685.0ˆˆ 2µκ =V  
 Flowtotal is a sum of straight-through volume, left-turn volume, and right-turn volume. ( ) µκ ˆˆ =E .   
 
 Step 8. Calculate the expected crash frequency.  An expected crash frequency is 
calculated for each of the four pairs of conflict movements using the following equation: 
 

 iiiiiii KEKE ⋅−+⋅== )ˆ1()(ˆˆ)|(ˆˆ ωκωκκ  
 
where K is the number of recorded crashes of the specified crash pattern (from step 1) in the past 
4 years during the specified time period (from step 2). 
 
 Step 9. Calculate the variance of the expected crash frequency.  A variance of the 
expected crash frequency is calculated for each of the four pairs of conflict movements using the 
following equation: 
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Table 7.  Valid Range of Input Values 
Crash Population Reference Group Input Variable Minimum Maximum 

Flowtotal 12 3,562 1 
AMPeakHours 2.5 4 

2 Flowtotal 8 3,338 
Flowtotal 3 3,268 3 
PMPeakHours 3.5 5.1 
Flowtotal 9 2,053 4 
OffPeakHours 1.5 3 

5 Flowminor 1 785 
Flowthrough 1 2,406 
Flowleft-turn 4 584 

6 

PmPtleft-turn 0 1 
Flowthrough 1 1,860 
Flowleft-turn 1 568 
Splitleft-turn 0 1 
Permleft-turn 0 1 

7 

PmPtleft-turn 0 1 
8 Flowthrough 1 2,958 
9 Flowleft-turn 1 756 

       Flowtotal is a sum of straight-through volume, left-turn volume, and right-turn volume. 
 
 Step 10. Calculate the expected crash frequency and its variance for an intersection.  An 
expected crash frequency and its variance for an entire intersection are calculated by summing 
the expected crash frequencies and their variances over the four pairs of conflict movements: 
 

 ∑
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Note that independent variances are assumed for the summation.  
 
Use of the EB Procedure by Traffic Engineers  
 
 Traffic engineers can apply the EB procedure to identify high-risk four-legged signalized 
intersections (and high-risk conflicting traffics within such intersections).  Safety evaluations can 
be conducted at an intersection level using the expected crash frequency and its variance from 
step 10.  An evaluation can also be conducted at a conflict movement level within an intersection 
using the expected crash frequency and its variance from steps 8 and 9.   
 
Example Application of the EB Procedure 
 
 An example of an application of the EB procedure is presented here. 
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Description of Example 
 

At a four-legged signalized intersection, there were two crashes involved with a straight-
through vehicle and an opposing left-turn vehicle in the past 4 years. One crash occurred at 5:30 
P.M.: the first vehicle was going straight from the east approach and the second was turning left 
from the west approach.  The other crash occurred at 8:00 P.M: the first vehicle was turning left 
from the north approach and the second was going straight from the south approach.  The typical 
P.M. peak hours of this intersection are from 5:00 P.M. through 8:30 P.M.  Straight-through 
traffic volumes during a typical P.M. peak hour are 700 vehicles per hour heading north, 900 
heading south, 1,500 heading east, and 750 heading west.  A traffic engineer wants to know if 
this intersection is associated with an abnormally high crash risk. 
 
Application of the EB Procedure 
 
 Step 1. Select a crash pattern for safety evaluation from crash patterns 1, 4, and 6.  The 
two crashes in this example are classified as crash pattern 6 because straight-through and 
opposing left-turning traffics contributed to their occurrence (see Table 3). 
 
 Step 2. Select a time of day for the safety evaluation: A.M. peak, mid day, P.M. peak, or 
evening off peak.  The two crashes occurred during the P.M. peak hours.  
 
 Step 3. Determine a crash population reference group from groups 1 through 9. 
According to Table 4, crash pattern 6 and P.M. peak corresponds to crash population reference 
group 8. 
 
 Step 4. Collect the data required for the selected crash population reference group.  
According to Table 5, the required data for crash population reference group 8 are straight-
through traffic volumes during a typical P.M. peak hour.  Because there are four approaches in 
this intersection, there are four straight-through volumes: 700, 900, 1,500, and 750 heading 
north, south, east, and west, respectively. 
  
 Step 5. Select the correct models.  In accordance with Table 6, for crash population 
reference group 8, the following two models are selected for a mean model and a variance 
model, respectively:  
 

( ) ( )throughFlowE log3309.01953.2expˆ +−=κ  with NB and ( ) 5561.0ˆˆ 2µκ =V  
 
The mean model is a negative binomial (NB) type.  
 
 Step 6. Calculate the mean and variance using the selected models.  According to Table 
7, the straight-through traffic volume should be between 1 and 2,958.  Because the four traffic 
volumes given in the example are within the valid range, the following results are valid for use in 
the steps that follow. 
 

( ) ( ) 2854.0700log3309.01953.2expˆ =+−=northE κ , ( ) 1465.05561.02854.0ˆ 2 ==northV κ  
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( ) ( ) 2959.0900log3309.01953.2expˆ =+−=southE κ , ( ) 1575.05561.02959.0ˆ 2 ==southV κ  

( ) ( ) 3184.01500log3309.01953.2expˆ =+−=eastE κ , ( ) 1823.05561.03184.0ˆ 2 ==eastV κ  

( ) ( ) 2882.0750log3309.01953.2expˆ =+−=westE κ , ( ) 1494.05561.02882.0ˆ 2 ==eastV κ  
 
 Step 7. Calculate the EB weight. 
 

[ ] [ ] 6608.02854.01465.011)(ˆ)(ˆ11ˆ =+=+= northnorthnorth EV κκω  
[ ] 6527.02959.01575.011ˆ =+=southω  
[ ] 6359.03184.01823.011ˆ =+=eastω  
[ ] 6586.02882.01494.011ˆ =+=westω  

 
 Step 8. Calculate the expected crash frequency. 
 

5278.013392.02854.06608.0)ˆ1()(ˆˆˆ =×+×=⋅−+⋅= northnorthnorthnorthnorth KE ωκωκ  
1931.003473.02959.06527.0ˆ =×+×=southκ  

2025.003641.03184.06359.0ˆ =×+×=eastκ  
5312.013414.02882.06586.0ˆ =×+×=westκ  

 
 There were two traffic crashes.  One crash occurred between the first vehicle going 
straight from the east approach (i.e., heading west) and the second vehicle turning left from the 
west approach (i.e., heading east). Thus, 1=westK .  The other crash occurred between the first 
vehicle turning left from the north approach (i.e., heading south) and the second vehicle going 
straight from the south approach (i.e., heading north).  Thus, 1=northK . 
 
 Step 9. Calculate the variance of the expected crash frequency. 
  

1790.05278.0)6608.01(ˆ)ˆ1(ˆ 2 =×−=⋅−= northnorthnorth κωσ  
0671.01931.0)6527.01(ˆ 2 =×−=southσ  

0731.02025.0)6359.01(ˆ 2 =×−=eastσ  
1814.05312.0)6586.01(ˆ 2 =×−=westσ  

 
 Step 10. Calculate the expected crash frequency and its variance for an intersection. 
 

4546.15312.02025.01931.05278.0ˆˆˆˆˆ =+++=+++= westeastsouthnorth κκκκκ  
5006.01814.00731.00671.01790.0ˆˆˆˆˆ 22222 =+++=+++= westeastsouthnorth σσσσσ  

 
 For the variance resulting from the summation of the four variances, an independence 
assumption is required. This assumption was verified with the data used for this study. 
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Interpretation of Results 
 
 Once expected crash frequencies (means;κ̂ ’s) and their variances ( 2σ̂ ’s) are obtained, 
the traffic safety associated with each of the four pairs of conflict movements and an entire 
intersection for crash population reference group 8 can be evaluated (i.e., crash pattern 6 during 
P.M. peak hours).  For the entire intersection, the expected crash frequency during P.M. peak 
hours in crash pattern 6 in 4 years is 1.4546, and the observed crash frequency is 2.  The traffic 
engineer might be tempted to conclude that the intersection is associated with a higher crash risk 
than would normally be expected because what was observed was greater than what was 
expected.  However, in order to draw such a conclusion, a variance should be taken into account.   
 
 One way of accounting for a variance is a confidence interval.  A confidence interval can 
be computed using the following equation: 
 
 σκ α ˆˆ.. 2/ ×±= zIC  
 
Using the results of the example, the confidence interval for the entire intersection is constructed 
at a 90% confidence level (i.e., 10% significance level; α = 0.1) as follows: 
 
 ]6184.2,2908.0[7075.0645.14546.15006.04546.1.. 05.0 =×=×±= mzIC  
 
This interval implies that the expected crash frequency can be located between 0.2908 and 
2.6184 at the 90% confidence level.  Because the upper limit of the interval, 2.6184, is greater 
than the observed crash frequency, 2, the traffic engineer can conclude that the intersection is not 
associated with an abnormally high risk of crash pattern 6 during P.M. peak hours. 
 
 The other way of accounting for a variance is a z-test. The null and alternative hypotheses 
can be set as follows: 
 

Ho: No difference (implying that the expected crash frequency, 1.4546, is not statistically 
different from the observed frequency, 2, for the example)   

 
Ha: Difference 
 

 A z-score can be calculated using the following equation: 
 

 
σ

κ
ˆ

ˆ cscorez −
= . 

Basically, the z-test will lead to the same conclusion as that drawn using the confidence interval. 
 
EB Case Study  
 
 The EB procedure was applied to the data used in developing the procedure to illustrate 
the use of the study results.  Appendix D presents the outcomes of the EB procedure for crash 
pattern 6 using the data of the 35 intersections used for model development.  By entering 
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straight-through and left-turn traffic volumes and the type of left-turn signal phase of those 
intersections, the estimated expected crash frequency, )|(ˆ KE κκ = , corresponding to the input 
condition and the predicted probability that the condition is unsafe was calculated.   
 
 Since occurrences of crash pattern 6 were rare during the mid day and evening off peak 
periods, all pairs of conflict movements of crash pattern 6 (i.e., straight-through and opposing 
left-turn traffic movements) with at least 1 crash in 4 years were marked as being “unsafe.”  This 
means that when at least one crash between the two traffic movements occurred during the mid 
day period (or during the evening off peak period) in 4 years, that condition is believed to be 
associated with abnormally high risk even without the application of the EB procedure.  This 
finding was foreseeable from Figures 15 and 19 discussed later in this report.  Most of the points 
in these figures were below 1 in terms of the average number of crashes, and this implies that the 
expected number of crashes is likely to be less than 1 in 4 years over all ranges of traffic flows.  
Therefore, even 1 crash in 4 years between the two traffic flows is higher than what is expected, 
regardless of traffic volume and type of left-turn signal.   
 
 However, most pairs of traffic conflict movements of crash pattern 6 associated with 1 
crash in 4 years were determined to be safe (at the 95% confidence level) for the P.M. peak 
period whereas two pairs of the movements with 1 crash were determined to be safe (at the 95% 
confidence level) for the A.M. peak period.  The remaining pairs with 1 crash during the A.M. 
peak were determined to be unsafe at the 95% confidence level.  
 
 

Development of EB Procedure 
 
Exploratory Analysis 
 
 After combining the 16 crash patterns and the four times of day described in the Methods 
section, a total of 64 crash population reference groups were identified for multi-vehicle crashes.  
The original intention was to develop an SPF for each of the 64 groups, and the intention was to 
apply the EB method for each group using the estimated SPF.  
 
 However, many of the 64 groups had too few crash counts throughout the 4 years of the 
study period (2001–2004); thus, they were likely to be excluded from model development 
because it would to be difficult to estimate their SPFs.  Although the function might be 
estimated, it is not likely to be useful for the EB application because crashes of those groups are 
rare so that even 1 crash occurrence in a group is considered to constitute an abnormally high 
risk.  In such cases, a daily aggregation approach might be used.  Aggregating the data over 1 
day (i.e., total traffic crash count over the entire time period covering the four times of day and 
hourly traffic volume averaged over the hours of the time period) might be used to estimate an 
SPF.   
 
 Table 8 shows the traffic crash counts from the 33 intersections for 4 years from 2001 
through 2004 by crash patterns and times of day.  A total of 643 traffic crashes occurred at the 33 
intersections in the 4 years.  Of the 643 crashes including 36 single-vehicle crashes, 35% (223 
crashes) match crash pattern 1, 25% (163 crashes) match crash pattern 6, and 10% (66 crashes)  
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Table 8.  Crash Counts for Four Years by Reference Population Group 
Time of Day Crash 

Pattern A.M. peak Mid day P.M. peak Off peak 
Total 

0 4 8 16 8 36 
1 47 71 66 39 223 
2 0 0 0 0 0 
3 0 1 1 0 2 
4 14 23 19 10 66 
5 3 1 5 0 9 
6 37 38 54 34 163 
7 0 5 7 0 12 
8 9 9 7 4 29 
9 1 4 6 0 11 
10 6 10 8 6 30 
11 1 6 4 3 14 
12 1 3 2 0 6 
13 1 1 1 1 4 
14 1 2 3 1 7 
15 1 1 3 1 6 
16 5 13 6 1 25 
Total 131 196 208 108 643 

     Crash Pattern 0 represents a single-vehicle crash.  
 
match crash pattern 4.  These three crash patterns make up 70% of all multi-vehicle crashes at 
the intersections, and they were the main focus of the analysis.  
 
 Only crash patterns 1 and 6 appeared to be eligible for a separate analysis by the four 
times of day, and the other crash patterns seemed to have too few crashes to capture a 
meaningful relationship (i.e., SPF) between crash occurrence and traffic flow (and other 
variables) by a separate time of day.  However, for crash pattern 4, it appears that a daily 
aggregate analysis probably would identify a useful relationship.  In the end, crash patterns 1 and 
6 were analyzed by the four times of day, and crash pattern 4 was analyzed over the entire period 
of the four times of day.  Thus, for the nine crash reference population groups (i.e., crash patterns 
1 and 6 by four times of day and crash pattern 4 over the period of the four times of day), the 
final estimated SPFs were estimated, and the expected crash frequencies were computed based 
on the EB method using the SPFs.  The SPFs of the nine reference groups were estimated for 
each group. The three crash patterns that were included in the analysis, and they can be defined 
as follow: 
 

• Crash pattern 1: Same-direction crash (angle, rear-end, or sideswipe) that occurs 
after exiting the intersection. 

 
• Crash pattern 4: Right-angle crash between two adjacent straight-through vehicle 

movements in the intersection. 
 

• Crash pattern 6: Angle, head-on, or opposite sideswipe crash between a straight-
through vehicle movement and an opposing left-turn vehicle movement in the 
intersection. 
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Model Development  
 
 The procedure for developing final mean and variance models was described in steps 
MD1 through MD3.  The model development results of the same procedure applied to the nine 
crash reference population groups are summarized here.  
 
Crash Pattern 1 in A.M. Peak   
 
 A total of 35 intersections were included for this reference population group.  Because 
there are four approaches per intersection, 140 (35  4) observations (or approaches) can be 
used in the model development in theory.  However, one approach had to be removed because a 
data value was missing.  Therefore, a total of 139 observations were used to develop an SPF for 
this reference population group.  The quick diagnostic check for overdispersion (variance = 
0.846 versus 2  mean = 0.987) described in step MD1 turned out to be indecisive in indicating 
the presence of overdispersion.   
 
 In order to propose an appropriate functional form for the relationship between traffic 
crash and the traffic flow exiting from an intersection and the ratio of straight-through traffic, 
scatter plots of average aggregated crash counts, described in step MD2.1(a), were created and 
are shown in Figure 7.  Plots of the cumulative sum of residuals, described in step MD2.1(b), 
confirmed that all the functional forms were appropriate for use in the mean model (i.e., SPF).  
However, the ratio variable in the model turned out to be statistically insignificant; thus, it was 
removed from the final specification.  
 
 The final models with the Poisson and NB error structures were estimated separately.  
Using the results of these two models, four different overdispersion tests, described in step 
MD2.2, were performed: (1) dispersion parameters using deviance and Pearson’s Chi-square 
statistics, (2) regression-based equidispersion test using the final Poisson model, (3) confidence 
interval of the NB dispersion parameter of the NB model, and (4) Lagrange multiplier (or score) 
test using the final NB model.   
 
 The dispersion parameters estimated by deviance and Pearson’s Chi-square statistics 
suggested no or very weak overdispersion; the regression-based equidispersion test using the 
final Poisson model suggested the presence of overdispersion.  The confidence interval of the 
NB parameter included zero implied no overdispersion, and the Lagrange multiplier test using 
the final NB model confirmed the absence of overdispersion.  Thus, the Poisson model was 
selected for this reference group: crash pattern 1 in the A.M. peak.  
 
 To evaluate the goodness of fit, three pseudo R-squared measures, described in step 
MD2.3 (a), were computed, but deviance-based R-square ( 2

DR ) was excluded because of a 
problem in estimating the fully saturated model.  The likelihood-ratio index ( 2

LR ) read 0.151, and 
the correlation-based R-square ( 2

CR ) read 0.168, which seemed fine as compared to those in other 
population reference groups.  As discussed in the Methods section, the pseudo R-squared 
measures do not have a good statistical interpretation, such as the proportion of an explained 
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Figure 7.  Average Aggregated Crash Counts Against Flow Variables for Crash Pattern 1 in A.M. Peak.  Plot 
(a) suggests the functional form of βαµ Flow⋅=  for total traffic flow exiting from an intersection.  The ratio of 
the straight-through traffic flow in the total exiting traffic flow was also considered for the SPF, and two forms are 
suggested by plot (b): βαµ Ratio⋅=  or  )log(RatioRatio γβαµ +⋅= .  (See Ardekani et al. [2002] for an 
illustration of these functional forms.) 
 
variance for a linear model.  Thus, they should not be compared with typical values found in 
studies using linear models but rather should be used for relative comparisons among non-linear 
models.  
 
 For visual comparison, mean observed probabilities, univariate Poisson probabilities, 
Poisson model probabilities, and NB model probabilities were computed using the final Poisson 
and NB models described in step MD2.3(b); they are drawn in Figure 8.  It seems that the NB  
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Figure 8.  Mean Observed and Predicted Probabilities for Crash Pattern 1 in A.M. Peak 
 
model fits the data slightly better than does the Poisson model.  However, the probabilities by the 
Poisson model are not significantly different from the observed probabilities (underestimated for 
the zero-crash case and overestimated for the one-crash case), and the tests for overdispersion 
suggested that the Poisson model is appropriate. 
The estimated final Poisson mean model (or SPF) is written as follow: 
 
 ( ) ( )iitotalii sAMPeakHourFlowE 088.1log6566.01012.9expˆˆ , ++−== κµ  
 
where i is an index of an approach; iµ̂  is the estimated mean crash count in 4 years; itotalFlow ,  is 
the total traffic flow on an approach i exiting from an intersection (vehicles per hour [veh/hr]); 
and isAMPeakHour  is the number of hours of the A.M. peak period.  itotalFlow ,  ( ) is 
summation of left-turn ( ), right-turn ( ), and straight-through ( ) traffic flows coming from 
three different approaches and moving toward an approach i.  A variance model was not needed 
because the Poisson model was selected over the NB model.  
 
Crash Pattern 1 at Mid Day 
 
 A total of 35 intersections were included, and 140 observations (or 140 approaches) were 
used to estimate the SPF for this population reference group.  The quick diagnostic check 
indicated probable presence of overdispersion (variance = 4.38 > 2  mean = 2.414). 
 
 Scatter plots of average aggregated crash counts were created against the total traffic flow 
and the ratio of straight-through traffic and are presented in Figure 9. 
 
 The final Poisson and NB models were estimated, and the four tests for overdispersion 
were performed using the parameter estimates of these models.  All four tests confirmed that the 
crash count in this population reference group is overdispersed.  Therefore, the NB model was 
chosen as the final model for the reference group of crash pattern 1 for mid day. 
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Figure 9.  Average Aggregated Crash Counts Against Flow Variables for Crash Pattern 1 in Mid Day.  Plots 
(a) and (b) suggest the functional forms of βαµ Flow⋅= for traffic flow and βαµ Ratio⋅=  or 

)log(RatioRatio γβαµ +⋅=  for the ratio, which were supported by the plots of the cumulative sum of residuals.  
 
 Three pseudo R-squared measures (excluding 2

DR because of an estimation problem of the 
fully saturated model) were computed, and they were lower than those for crash pattern 1 in the 
A.M. peak: 2

LR  = 0.031, 2
CR = 0.026, and 2

kR  = 0.067.  Figure 10 allows a visual evaluation of the 
goodness of fit.  The NB model fitted the crash counts very nicely, and the two Poisson 
probabilities deviate greatly from observed probabilities at the crash counts, 0, 1, and 2.   
The final NB mean model (or SPF) and the final variance model were estimated as follows: 
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Figure 10.  Mean Observed and Predicted Probabilities for Crash Pattern 1 in Mid Day 
 
 ( ) ( )itotalii FlowE ,log3113.08844.1expˆˆ +−== κµ  with 3839.2ˆ =k  for the mean model 
and 

 ( )
6661.0
ˆˆˆ

2
2 i

iV
i

µ
κσ κ ==  for the variance model 

where itotalFlow ,  is the total traffic flow on an approach i exiting from an intersection (veh/hr) 

and k̂  is an estimate of the NB dispersion parameter. 
 
Crash Pattern 1 in P.M. Peak 
 
 A total of 35 intersections were included in this population reference group, and 139 
observations (or approaches) (excluding 1 approach with missing information) were used for 
developing the final SPF (or mean model).  A quick diagnostic check for overdispersion 
indicated possible overdispersion in the crash counts in this reference group.  
 
 Figure 11 shows scatter plots for identifying probable functional forms between crash 
counts and the total traffic flow and the ratio of straight-through traffic flow.  All of the forms 
were found to be acceptable by the plots of cumulative sum of residuals.  However, the 
estimations of the models with the above variable forms revealed that βαµ Flow⋅=  is best 
suited for this population reference group according to the statistical significance of coefficient 
parameters corresponding to the forms and the goodness of fit models.  
 
 The final Poisson and NB models were estimated, and the four overdispersion tests were 
performed using the final models.  All four tests suggested a remaining overdispersion, which 
implies that the NB model is preferred over the Poisson model for the reference group of crash 
pattern 1 in the P.M. peak.   
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Figure 11.  Average Aggregated Crash Counts Against Flow Variables for Crash Pattern 1 in P.M. Peak.  Plot 
(a) suggests βαµ Flow⋅=  (with β  being close to 1) or )log(FlowFlow γβαµ +⋅= , and plot (b) suggests 

βαµ Ratio⋅=  (with β  being close to 1) or βαµ Ratio⋅= .   
 
 Three pseudo R-squared measures were computed: 
 

1. 2
LR  = 0.198 

2. 2
CR = 0.168 

3. 2
kR = 0.341. 

 
 All three measures are relatively high compared to those for other population reference 
groups, and the dispersion parameter-based R-square is especially high.  Figure 12 allows a  
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Figure 12.  Mean Observed and Predicted Probabilities for Crash Pattern 1 in P.M. Peak 
 
visual comparison of different predicted probabilities.  The NB model resulted in the closest fit 
to the data in terms of the mean probabilities.  The Poisson model and univariate Poisson 
overestimated the probability of no crash occurrences by about 40% and underestimated the 
probabilities of 1, 2, and 3 crashes by between 45% and 55%.  
 
The final NB mean model (or SPF) and the final variance model are written as follows: 
 
 ( ) ( )iitotalii sPMPeakHourFlowE 8731.0log08012.02153.9expˆˆ , ++−== κµ   

for the mean model with 6944.1ˆ =k  for the mean model and 
 

 ( )
6529.1
ˆˆˆ

2
2 i

iV
i

µ
κσ κ ==  for the variance model 

 
where itotalFlow ,  is the total traffic flow on an approach i exiting from an intersection (veh/hr), 
and isPMPeakHour  is the number of hours of the P.M. peak period. 
 
Crash Pattern 1 in Evening Off Peak 
 
 A total of 35 intersections were included, and 139 observations (or approaches) exclusive 
of one approach with missing information were used for the development of the final mean 
model.  The result of the quick diagnostic check was indecisive, implying that there is a chance 
for the crash counts of this reference group to be overdispersed.  
 
 Figure 13 presents scatter plots for offering hints on appropriate functional forms for the 
mean model (or SPF).  These forms were found to be acceptable by the plots of the cumulative 
sum of residuals.  However, the estimation results (i.e., the statistical significance of the 
coefficients and the goodness of fit) using the forms suggest βαµ Flow⋅=  is the most suitable 
for this population reference group.  
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Figure 13.  Average Aggregated Crash Counts Against Flow Variables for Crash Pattern 1 in Off Peak.  Plot 
(a) suggests βαµ Flow⋅=  (with β  being close to 1) and )log(FlowFlow γβαµ +⋅= , and plot (b) suggests 

βαµ Ratio⋅=  (with β  being close to 1) and βαµ Ratio⋅= .   
 
 Using the estimated final Poisson and NB models, the four tests for overdispersion were 
performed.  All four tests suggested that overdispersion was not present after some explanatory 
variables were added to the models.  This test result implies that the Poisson model is appropriate 
for this reference group.  For assessing the goodness of fit, two pseudo R-squared measures were 
computed as 2

LR =0.097 and 2
CR =0.077.  In addition, Figure 14 provides a graphical comparison 

of the model fitness using mean predicted probabilities.  Although the Poisson model is more 
appropriate than the NB model according to the results of the four overdispersion tests, the plot 
of mean probabilities looks slightly more favorable for the NB model than for the Poisson model.  
However, the difference across different average predictions appears negligible.  
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Figure 14.  Mean Observed and Predicted Probabilities for Crash Pattern 1 in Off Peak 
 
 The final Poisson mean model (or SPF) is written as: 
 
 ( ) ( )iitotalii rsOffPeakHouFlowE 8731.0log7337.08123.8expˆˆ , ++−== κµ  where 

irsOffPeakHou  is the number of hours from the end of the P.M. peak to the start of the night 
“free operation” signal plan, and itotalFlow ,  is the total traffic flow on an approach i exiting from 
an intersection (veh/hr) (see the SPF of crash pattern 1 in the A.M. peak for a detailed 
description of the total traffic flow).  Because the Poisson model was selected over the NB 
model, it was not necessary to estimate a variance model. 
 
Crash Pattern 6 in A.M. Peak 
 
 A total of 33 intersections were included for this reference group, and 131 (33  4) 
observations (or pairs of straight-through and opposing left-turn traffic flows) excluding 1 pair 
with missing information were used for model development.  The quick diagnostic check for 
overdispersion resulted in an indecisive outcome; thus, further tests were required to understand 
the nature of the crash counts for this reference group.  
 
 Figure 15 offers visual clues on the functional forms of the SPF with respect to traffic 
flow variables.  They were all confirmed as acceptable by plots of the cumulative sum of their 
residuals and used for the final models.  
 
 Using the estimates of the final Poisson and NB models, the four tests for overdispersion 
were performed.  All four tests suggested no overdispersion; thus, the Poisson model was chosen 
for this reference group of crash pattern 6 in A.M. peak.  For the goodness of fit, two pseudo R-
squared measures were computed as 2

LR =0.136 and 2
CR =0.155, which appear high relative to 

those values for other reference groups.  For visual evaluation of the model fit, mean 
probabilities of observed and predicted crash counts were computed and are displayed in Figure 
16.  The Poisson and NB models appear to be equally well fitted to the observed data.  
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Figure 15.  Average Aggregated Crash Counts Against Flow Variables for Crash Pattern 6 in A.M. Peak.  
Plot (a) suggests ( )FlowFlow ⋅⋅⋅= γαµ β exp , equivalently, ( )FlowFlow ⋅++ γβα logexp *  for straight-

through flow, and plot (b) suggests βαµ Flow⋅=  or ( )FlowFlow ⋅⋅⋅= γαµ β exp  for left-turn flow.   
 
 The final Poisson mean model (or SPF) is written as: 
 

 ( ) 










++

−+−
==

−− iturnleftiturnleft

ithroughithrough

ii PmPtFlow

FlowFlow
E

,,

,,

7209.0log3212.0

0013.0log7736.08155.6
expˆˆ κµ  
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Figure 16.  Mean Observed and Predicted Probabilities for Crash Pattern 6 in A.M. Peak 
 
where 
 
 i is an index of a pair of straight-through traffic flow and opposing left-turn traffic flow 
 
 ithroughFlow ,  is a straight-through traffic flow from an approach (veh/hr) 
 
 iturnleftFlow ,−  is a left-turn traffic flow from an approach opposite to the approach of the 
straight-through flow (veh/hr) 
 
 iturnleftPmPt ,−  is an indicator of permissive and protected left-turn signal phase (1 if so, 0 if 
not).   
 
 A variance model was not needed for this reference group because the Poisson model was 
selected over the NB model.  
 
Crash Pattern 6 at Mid Day 
 
 A total of 35 intersections were included, and 137 observations (or pairs of straight-
through and opposing left-turn traffic flows) excluding three pairs with missing information were 
used for developing final models.  The quick overdispersion diagnostic check identified probable 
overdispersion in the crash data of this reference group.  Figure 17 suggests appropriate 
functional forms for the SPF.  They were all acceptable according to plots of the cumulative sum 
of their residuals.  According to the statistical significance of the coefficients and the goodness of 
fit, ( )FlowFlow ⋅⋅⋅= γαµ β exp  was best suited for both flow variables.  
 
 Using the final estimates of the Poisson and NB models, the four tests for overdispersion 
were performed.  Their results confirmed the presence of overdispersion.  Therefore, the NB 
model was selected for the reference group of crash pattern 6 in mid day.   
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Figure 17.  Average Aggregated Crash Counts for Crash Pattern 6 in Mid Day.  Plots (a) and (b) suggest 

βαµ Flow⋅=  and ( )FlowFlow ⋅⋅⋅= γαµ β exp  for both straight-through and left-turn flows.   
 
 For the goodness of fit, three pseudo R-squared measures were computed as 2

LR =0.158, 
2
CR =0.092, and 2

kR =0.445.  The dispersion parameter-based R-square shows a very high value 
compared to the other two R-squared measures.  Figure 18 allows a graphical comparison among 
different predictions of mean probabilities.  As expected, the NB model provided the best fit to 
the data.  
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Figure 18.  Mean Observed and Predicted Probabilities for Crash Pattern 6 in Mid Day 
 
 The final NB mean model (or SPF) and the final variance model were estimated and are 
written as follows: 
 

 ( )
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where iturnleftSplit ,−  and iturnleftPerm ,−  are indicators for split and permissive signal phases for left-
turn traffic, and the other parameters and variables are the same as described previously in crash 
pattern 6 in A.M. peak.  
 
Crash Pattern 6 in P.M. Peak 
 
 A total of 34 intersections were included, and 135 observations (or pairs of straight-
through and opposing left-turn traffic flows) excluding 1 pair with missing information were 
used for model development.  The quick diagnostic check suggested potential overdispersion in 
that the unconditional variance of the crash counts (1.531) was greater than twice the 
unconditional mean of the crash counts (2  0.5182 = 1.0365).   
 
 Scatter plots of average aggregated crash counts by traffic flow group were created to 
gain insights into functional forms for the SPF and are displayed in Figure 19.  The suggested 
forms were considered acceptable according to the plots of the cumulative sum of the residuals.  
The forms βαµ Flow⋅=  for straight-through flow and ( )FlowFlow ⋅⋅⋅= γαµ β exp  were.   
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Figure 19.  Average Aggregated Crash Counts Against Flow Variables for Crash Pattern 6 in P.M. Peak.  Plot 
(a) suggests βαµ Flow⋅=  for straight-through flow, and plot (b) suggests βαµ Flow⋅=  or 

( )FlowFlow ⋅⋅⋅= γαµ β exp  for left-turn flow.   
 
selected for the final model development based on the statistical significance of the coefficients 
of the flow variables and the goodness of fit.  
 
 Using the final estimates of the Poisson and NB models, the four tests for overdispersion 
were performed.  All four tests confirmed the presence of overdispersion.  Therefore, the NB 
model was selected for the reference group of crash pattern 6 in P.M. peak.  To evaluate the fit of 
the model, three pseudo R-squared measures were computed as 2

LR =0.044, 2
CR =0.031, and 

2
kR =0.14, which were low compared to those for the other reference groups.  Figure 20 allows a 
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Figure 20.  Mean Observed and Predicted Probabilities for Crash Pattern 6 in P.M. Peak 
 
visual comparison of the mean probabilities predicted by different models.  The predictions of 
the NB model seem to fit the data better than those of the Poisson models. 
  
The final NB mean model (or SPF) and the final variance model were written as follows: 
 
 ( ) ( )ithroughii FlowE ,log3309.01953.2expˆˆ +−== κµ  with 9570.1ˆ =k for the mean model,  
 
and 

 ( )
5561.0
ˆˆˆ

2
2 i

iV
i

µκσκ ==  for the variance model. 

 
Crash Pattern 6 in Evening Off Peak 
 
 A total of 34 intersections were included in this reference group, and 133 observations (or 
pairs of straight-through and opposing left-turn traffic flows) excluding 3 pairs with missing 
information were used for model development.  The result of the quick diagnostic check for 
overdispersion was indecisive.   
 
 Figure 21 provides clues to functional forms for the SPF with respect to traffic flows.  
The proposed forms were regarded as acceptable according to the plots of the cumulative sum of 
the residuals. Form ( )FlowFlow ⋅⋅⋅= γαµ β exp  was selected for the final model development 
for both flows based on the statistical significance of the coefficients of the flow variables and 
the goodness of fit models.  
 
 The final estimates of the Poisson and NB models were obtained, and four tests for 
overdispersion using those estimates were performed.  All four tests confirmed overdispersion 
conditional on the explanatory variables.  Thus, the NB model was chosen for the reference 
group of crash pattern 6 in off peak.  Three pseudo R-squared measures were computed for  
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Figure 21.  Average Aggregated Crash Counts Against Flow Variables for Crash Pattern 6 in Off Peak.  Plot 
(a) suggests ( )FlowFlow ⋅⋅⋅= γαµ β exp  for straight-through flow, and plot (b) suggests βαµ Flow⋅=  or 

( )FlowFlow ⋅⋅⋅= γαµ β exp  for left-turn flow. 
 
evaluating the goodness of fit, 2

LR =0.062, 2
CR =0.087, and 2

kR =0.351, which were somewhat low 
except for the dispersion parameter-based R-square.  Figure 22 provides a graphical comparison 
among different models.  As expected, the NB model outperformed the other models. The final 
Poisson mean model (or SPF) and the final variance model were estimated as follows: 
 
 ( ) ( )iturnleftiturnleftii FlowFlowE ,, 0102.0log6355.11126.7expˆˆ −− −+−== κµ   
 
with 6200.1ˆ =k for the mean model, and 
 

 ( )
3685.0
ˆˆˆ

2
2 i

iV
i

µκσκ ==  for the variance model. 
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Figure 22.  Mean Observed and Predicted Probabilities for Crash Pattern 6 in Off Peak 
 
Crash Pattern 4 from A.M. Peak Through Off Peak 
 
 A total of 35 intersections were included in this reference group, and 140 observations (or 
pairs of two through traffic flows from two approaches perpendicular to each other) were used 
for model development.  The quick diagnostic check suggested no overdispersion in the crash 
counts in this reference group.   
 
 Figure 23 provides hints about the proper functional forms for the SPF.   
 
 Using the final estimates of the Poisson and NB models, the four tests for overdispersion 
were performed.  The tests suggested overdispersion; thus, the NB model was selected for the 
reference group of crash pattern 4 from A.M. peak through off peak.  The results of the tests 
conflict with the result of the quick diagnostic check, but this is not a serious concern because the 
result of the quick diagnostic check is preliminary in its nature for assessing overdispersion.  
 
 For the model of the goodness of fit, three pseudo R-squared were computed as 

2
LR =0.104, 2

CR =0.111, and 2
kR =0.444, and the dispersion parameter-based R-square ( 2

kR ) was 
very high relative to the other two measures.  Figure 24 provides a visual comparison.  As 
expected, the NB model outperformed the other models in terms of mean predicted probability.   
 
 The final NB mean model (or SPF) and the final variance model were written as follows: 
 
 ( ) ( )iminorii FlowE ,log5780.04740.3expˆˆ +−== κµ   
 
with 8072.0ˆ =k for the mean model, and 
 

 ( )
4022.2
ˆˆˆ

2
2 i

iV
i

µκσκ ==  for the variance model 
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Figure 23.  Average aggregated crash counts for crash pattern 4 during hours from A.M. peak until off peak.  
As seen from plot (a), there seems to be no noticeable relationship between crash counts and major traffic flow.  Plot 
(b) suggests βαµ Flow⋅=  for minor straight-through flow.  
 
 
where i is an index of a pair of two through traffic flows from two perpendicular approaches and 

iminorFlow ,  is a smaller straight-through traffic flow (veh/hr). iminorFlow ,  is an average straight-
through traffic volume over the hours from the start of the A.M. peak to the end of the off peak, 
which is the beginning of the night “free operation” signal phasing.  
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Figure 24.  Mean Observed and Predicted Probabilities for Crash Pattern 4 During Period from A.M. Peak 
Until Off Peak 

 
 

Summary of Procedure Development 
 

For crash pattern 1 (i.e., collision between straight-through traffic flows after the 
intersection), the A.M. peak and evening off peak periods were different in the type of a mean 
model (i.e., Poisson versus NB model), and the four times of day were quite different in the 
coefficients of traffic flow variables in the mean models.  The Poisson model was chosen for the 
A.M. peak and evening off peak periods, whereas the NB model was chosen for the mid day and 
P.M. peak periods.  A total traffic flow summing straight-through, left-turning, and right-turning 
traffic volumes was included in the final mean models for all four periods.  However, the 
estimates of their coefficients varied from 0.08 to 0.73 depending on the time of day.   
 

For crash pattern 6 (i.e., collision between straight-through traffic flow and opposing left-
turn traffic flow in the intersection), the A.M. peak period was different in the type of a mean 
model (i.e., Poisson versus NB models), and the four times of day had different traffic flow 
and/or left-turn signal phase variables in the mean models.  The Poisson model was chosen for 
the A.M. peak period, whereas the NB model was chosen for the other three times of day.  
Straight-through and left-turn traffic flows were included in the final mean models for the A.M. 
peak and mid day periods.  Only straight-through traffic flow was included in the final mean 
model for the P.M. peak period, whereas only left-turn traffic flow was included for the evening 
off peak period.   
 

The permissive-plus-protected left-turn signal type was found to be statistically different 
from other signal types for the A.M. peak and mid day periods.  However, different left-turn 
signal types were found to be statistically indistinguishable in terms of their influences on traffic 
safety for the P.M. peak and evening off peak periods.  This suggests a more frequent crash 
occurrence of crash pattern 6 during the A.M. peak and mid day periods for the intersections 
with the permissive-plus-protected left-turn phase than for those with the protected left-turn 
phase.  However, the crash frequency of crash pattern 6 during the P.M. peak and off peak 



 52

periods was expected to remain the same across different left-turn signal types if traffic 
conditions are the same.  
 

For crash pattern 4 (i.e., collision between straight-through traffic flows perpendicular to 
each other in the intersection), only the minor traffic flow variable was found to be statistically 
influential on crash occurrence.  Thus, it was included in the final NB mean model.   
 
 
 

CONCLUSIONS  
 
• The EB procedure developed in this study can be used by traffic engineers to evaluate the 

safety of a four-legged signalized intersection.  Traffic engineers can follow the procedure 
using field data and will obtain the expected crash frequency and its variance for different 
crash patterns and different times of day.  By using fundamental statistical methods such as a 
confidence interval or a hypothesis test, traffic engineers can determine whether the 
intersection of interest is associated with an abnormally high crash risk.    

 
• Additional data do not need to be collected in order to apply the EB procedure.  Because all 

the data required for applying the EB procedure should be obtainable from VDOT’s crash 
database and from Synchro input data that are already available to traffic engineers for traffic 
signal phase plans, the EB procedure is cost-effective and readily applicable.   

 
• The EB procedure is valid for use with only four-legged signalized intersections in VDOT’s 

NOVA District within the valid input ranges.  The data used to develop the estimated mean 
and variance models in Table 6 in the full report were collected from four-legged signalized 
intersections in the district.  If the intersection geometry, traffic patterns, and driver behavior 
were similar to those in VDOT’s NOVA District, the EB procedure might be usable for other 
areas.  However, the results for such areas might not be valid; a proper validation process 
using local data would be necessary to confirm the results.   

 
• The EB procedure may not be very useful for some of the nine crash population reference 

groups.  Traffic crashes for some crash population reference groups, such as reference group 
9 (i.e., crash pattern 6 during the evening off peak period), were rare during the 4-year data 
period.  The expected crash frequency for such reference groups would be less than 1 crash 
per 4 years over the entire range of input values.  Thus, even 1 crash in 4 years is likely to 
lead to a conclusion that an intersection is associated with an abnormally high crash risk 
(e.g., reference groups 6 and 9, corresponding to crash pattern 6 in mid day and off peak 
periods, respectively, as shown in the EB case study in the full report and Appendix D). 

 
• An EB Spreadsheet, which aids in the application of the EB procedure, and a users’ guide 

were developed.  For easier application of the EB procedure, an EB spreadsheet was 
developed using Microsoft Excel, and a users’ guide was prepared.  They are available from 
the author upon request.  
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RECOMMENDATIONS  
 
1. VDOT’s Information Technology Division (IT Division), VTRC, and VDOT’s NOVA District 

should facilitate the application of the developed EB procedure for the NOVA District.  
Although the EB procedure is not difficult for traffic engineers to follow, it can be 
cumbersome and time-consuming for them to apply to the many intersections that would 
need to be evaluated for traffic safety.  Thus, the IT Division, VTRC, and the NOVA District 
should collaborate to automate the application of the EB procedure to assess the safety of 
four-legged signalized intersections in the NOVA District. 

 
• The IT Division should integrate data for calibration of the EB procedure and automate the 

application of the EB procedure.  The IT Division should extract the necessary data (i.e., 
traffic volumes, left-turn signal types, times of data, traffic crash characteristics and counts, 
and vehicle information) from Synchro files, time-based coordinate event sheets, and 
VDOT’s crash database and integrate them into datasets in a format suitable for calibrating 
the EB procedure.  After the calibration is done by VTRC, the IT Division should automate 
the application of the calibrated EB procedure for the NOVA District. 

 
• VTRC should calibrate the EB procedure using the datasets that the IT Division integrates.  

Using the datasets that the IT Division integrates, VTRC should calibrate all the model 
parameters embedded in the EB procedure.  In addition, it should develop new models if 
necessary to enhance the reliability and accuracy of the EB procedure.   

 
• The NOVA District should provide assistance to the IT Division and VTRC.  In the process 

of data integration and/or procedure calibration, practical insights and local information will 
more than likely be needed from the NOVA District.   

 
2. VTRC and VDOT’s NOVA District should update the EB procedure when traffic 

characteristics of the four-legged signalized intersections change.  The EB procedure is 
based on the data believed to represent the prevailing traffic characteristics of the four-legged 
signalized intersections in the NOVA District during the years from 2001 through 2004.  
Intersection geometry, traffic patterns, and driver behaviors continue to change over time; as 
a consequence, the traffic characteristics influencing crash occurrence change.  Thus, when 
the traffic characteristics of these intersections become significantly different from those 
used in this study, the EB procedure should be updated using newly collected data 
representing contemporary prevailing traffic characteristics.  There are no established criteria 
for determining when the results should be updated.  Engineers’ judgment will certainly play 
a major role in such a determination.    

 
 
 

COSTS AND BENEFITS ASSESSMENT  
 
 This study provided an explicit procedure whereby traffic engineers in VDOT’s NOVA 
District can quickly evaluate the safety of four-legged signalized intersections.  Such an 
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intersection carrying a crash risk higher than normally expected can be identified by following 
the EB procedure with input data.   
 
 Using the EB procedure, traffic engineers can identify not only which intersections carry 
a high risk but also what traffic movements at the intersection and which time of day carry a high 
crash risk for the intersection.  Thus, they can focus only on the identified movements and time 
of day to improve the safety of the intersection.  In addition, when a site visit to the identified 
high-risk intersection is needed, the most appropriate time for the visit (e.g., A.M. peak or P.M. 
peak) can be identified using the results from the EB procedure.   
 
 Moreover, the EB procedure does not require additional data collection efforts as long as 
Synchro input data are available, which is common for signalized intersections in Virginia.  Use 
of the EB procedure is likely to save a considerable amount of time and cost involved with field 
data collection whenever VDOT’s NOVA District conducts a safety evaluation of its four-legged 
signalized intersections.  
 
 If the entire procedure from data preparation to application of the EB procedure were 
automated, traffic engineers could instantly assess the safety of the four-legged signalized 
intersections at any time just by choosing intersections of interest without manually entering the 
input.  Moreover, calibrating the models and updating the results should be much more efficient 
and much less time-consuming.  When the automated process is established, development and 
application of the EB procedure can be readily achieved by other VDOT districts as long as the 
appropriate data are provided.   
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APPENDIX A 
INTERSECTIONS SELECTED FOR STUDY  

 
Table A-1.  The 49 Intersections Initially Selected for the Study 

No. Intersection Note
1 Leesburg Pike (Rt. 7) @ Shreve Rd./Haycock Rd. (Rt. 703)
2 Jefferson Davis Hwy. (Rt. 1) @ Optiz Blvd./Reddy Dr. (Rt. 2000)
3 Church St. (Rt. 625) @ Sterling Blvd. (Rt. 846)
4 Whiele Ave. (Rt. 828) @ Barron Cameron Ave. (Rt. 606)
5 Little River Tnpk. (Rt. 236) @ Wakefield Chapel Rd./Shelley Ln. (Rt. 710)
6 Chain Bridge Rd. (Rt. 123) @ Jermantown Rd./Blake Ln. (Rt. 655)
7 Gallows Rd. (Rt. 650) @ Prosperity Ave. (Rt. 6066) /Park Tower Dr.
8 Braddock Rd. (Rt. 620) @ Twinbrook Rd. (Rt. 652)
9 Burke Centre Pkwy./Lee Chapel Rd. (Rt. 643) @ Burke Lake Rd. (Rt. 645) X
10 Jefferson Davis Hwy. (Rt. 1) @ Cardinal Dr./Neabsco Rd. (Rt. 610)
11 Lawyers Rd./Reston Pkwy. (Rt. 602) @ West Ox Rd. (Rt. 608)/Folkstone Dr. (Rt. 5640) 
12 Lee Hwy. (Rt. 29) @ Nutley St. (Rt. 243)
13 Lee Hwy. (Rt. 29) @ Cedar Ln. (Rt. 698)
14 Burke Lake Rd. (Rt. 645) @ Private Dr./Shiplett Blvd. (Rt. 5236)
15 Fair Lakes Pkwy. (Rt. 7700) @ Fair Lakes Cir. (Rt. 7701)
16 Waxpool Rd./Smith Switch Rd./Loudoun Co. Pkwy. (Rt. 607) @ Farmwell Rd. (640) 
17 Richmond Hwy. (Rt. 1) @ Southgate Dr. (Rt. 1779) X
18 Old Bridge Rd. (641) @ Rolling Brook Dr. (1389)
19 Old Keene Mill Rd. @ Greeley Blvd. /Bauer Dr.
20 Arlington Blvd. (Rt. 50) @ Nutley St. (Rt. 10272)
21 Leesburg Pike (Rt. 7) @ Towlston Rd. (Rt. 5020 & 676)
22 Fairfax County Pkwy. (Rt. 7100) @ Rugby Rd. X
23 Lee Jackson Mem. Hwy. (Rt. 50) @ Pleasant Valley Rd. (Rt. 609)/Dulles South Ct. X
24 Centreville Rd. (Rt. 28) @ Green Trails Blvd. (Rt. 8024)/Old Mill Rd. 
25 Jefferson Davis Hwy. (Rt. 1) @ Joplin Dr./Fuller Rd. (Rt. 619) X
26 Lee Hwy. (Rt. 29) @ James Madison Hwy. (Rt. 15) X
27 Lee Jackson Hwy. (Rt. 50) @ Centreville Rd./Walney Rd. (Rt. 657)
28 Leesburg Pike (Rt. 7) @ Patrick Henry Dr. (Rt. 2327)
29 Old Keene Mill Rd. (Rt. 644) @ Lee Chapel Rd. (Rt. 643)
30 Hayfield Rd. (Rt. 635) @ Kingstowne Village Pkwy. (Rt. 8690)
31 Braddock Rd. (Rt. 620) @ Clifton Rd. (Rt. 645)
32 Sideburn Rd. (Rt. 653) @ Zion Dr./Rd. (Rt. 654) X
33 Hooes Rd. (Rt. 636) @ Silverbrook Rd. (Rt. 600) X
34 Lawyers Rd. (Rt. 673) @ Hunter Mill Rd. (Rt. 674) X
35 Spring Hill Rd. (Rt. 684) @ Old Dominion Dr. (Rt. 738) X
36 Great Falls St. (Rt. 694) @ Idylwood Rd./Kirby Rd. (Rt. 695) X
37 Arlington Blvd. (Rt. 50) @ Prosperity Ave. (Rt. 699)
38 Lee Hwy. (Rt. 29) @ Prosperity Ave. (Rt. 699)
39 Braddock Rd. (Rt. 620) @ Guinea Rd. (Rt. 651)
40 Guinea Rd. (Rt. 651) @ Braeburn Rd. (Rt. 2430) X
41 Harry Flood Byrd Hwy. (Rt. 7) @ Potomac View Rd. (Rt. 637)
42 Charles Town Pike (Rt. 9) @ Berlin Turnpike (Rt. 2887) X
43 Minnieville Rd. (Rt. 640) @ Dale Blvd. (Rt. 784)
44 Jefferson Davis Hwy. (Rt. 1) @ Neabsco Mills Rd./Blackburn Rd. (Rt. 638)
45 Lee Hwy. (Rt. 29) @ Stringfellow Rd./Clifton Rd.(Rt. 645)
46 Lee Hwy. (Rt. 29) @ Gallows Rd. (Rt. 650)
47 Hoadly Rd. (Rt. 642) @ Purcell Rd. (Rt. 643)/Dale Blvd. (Rt. 784) X
48 Minnieville Rd. (Rt. 640) @Smoketown Rd. (Rt. 2000)
49 Prince William Pkwy. (Rt. 3000) @ Minnieville Rd. (Rt. 640)

Note: “X” indicates that the intersection was excluded from analysis for all crash population reference groups.



 60



 61

APPENDIX B 
SYNCHRO DATA REPORT 

 

 
 

Figure B-1.  Example of Synchro report of intersection of Leesburg Pike at Shreve Rd./Haycock Rd. 
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APPENDIX C 
TIME BASE COORDINATION EVENTS SHEET  

 

 
 

Figure C-1.  Example of signal timing plan of intersection of Leesburg Pike at Shreve Rd./Haycock Rd. 
(Screen from MIST Operator Interface). 
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APPENDIX D 
EB CASE APPLICATION 

 
Table D-1.  Results of Empirical Bayes Application to Crash Pattern 6 in A.M. Peak, Mid Day, P.M. Peak, and Evening Off Peak 

Note: “Unsafe” indicates being unsafe at the 95% confidence level. 
Bound A.M. Peak Mid Day P.M. Peak Off Peak Intersection 

No. Through Left-turn Crash E(k|K) Unsafe Crash E(k|K) Unsafe Crash E(k|K) Unsafe Crash E(k|K) Unsafe 
1 E W 0 1.01E-02 No 1 9.73E-05 Yes 1 5.61E-01 No 0 7.16E-03 No 
1 W E 0 1.25E-02 No 1 8.14E-05 Yes 1 5.52E-01 No 0 2.11E-03 No 
1 N S 0 1.96E-02 No 0 1.31E-04 No 0 1.58E-01 No 0 7.92E-03 No 
1 S N 0 2.17E-02 No 0 7.96E-05 No 0 1.56E-01 No 0 6.55E-03 No 
2 E W 0 8.01E-03 No 0 2.12E-04 No 0 1.62E-01 No 0 7.92E-03 No 
2 W E 0 1.13E-02 No 0 2.06E-05 No 0 1.65E-01 No 0 1.00E-03 No 
2 N S 1 5.98E-03 Yes 1 4.86E-04 Yes 1 5.20E-01 No 0 7.92E-03 No 
2 S N 1 2.31E-02 Yes 2 3.83E-04 Yes 2 8.64E-01 Yes 0 3.32E-03 No 
3 E W 1 8.36E-03 Yes 0 6.18E-04 No 0 1.55E-01 No 1 2.80E-02 Yes 
3 W E 0 8.29E-03 No 0 6.67E-04 No 0 1.57E-01 No 0 5.37E-03 No 
3 N S 0 1.41E-02 No 0 7.95E-05 No 0 1.88E-01 No 0 4.89E-03 No 
3 S N 0 1.67E-02 No 0 1.40E-04 No 0 1.84E-01 No 0 7.86E-03 No 
4 E W 0 1.65E-02 No 1 5.13E-04 Yes 1 5.05E-01 No 1 2.62E-02 Yes 
4 W E 0 1.45E-02 No 0 1.56E-04 No 0 1.81E-01 No 0 7.86E-03 No 
4 N S 1 2.30E-02 Yes 0 1.45E-04 No 0 1.69E-01 No 0 7.87E-03 No 
4 S N 1 1.71E-02 Yes 4 1.76E-03 Yes 4 1.38E+00 Yes 0 5.63E-03 No 
5 E W 0 3.43E-03 No 0 3.42E-05 No 0 1.96E-01 No 0 4.75E-03 No 
5 W E 0 8.83E-03 No 0 3.54E-05 No 0 1.96E-01 No 0 2.08E-03 No 
5 N S 0 8.14E-03 No 0 4.94E-05 No 0 1.34E-01 No 0 7.49E-03 No 
5 S N 0 8.23E-03 No 0 5.91E-06 No 0 1.18E-01 No 0 1.30E-03 No 
6 E W 0 9.10E-03 No 0 1.81E-04 No 0 1.65E-01 No 0 2.47E-03 No 
6 W E 0 1.20E-02 No 0 5.91E-05 No 0 1.62E-01 No 0 2.32E-03 No 
6 N S 0 8.69E-03 No 1 2.28E-04 Yes 1 5.42E-01 No 2 3.96E-02 Yes 
6 S N 1 1.61E-02 Yes 3 4.82E-04 Yes 3 1.25E+00 Yes 1 2.19E-02 Yes 
7 E W 0 6.89E-03 No 0 5.15E-06 No 0 1.09E-01 No 0 7.49E-03 No 
7 W E 0 3.96E-03 No 0 8.82E-06 No 0 1.24E-01 No 0 6.92E-03 No 
7 N S 0 7.25E-03 No 0 6.83E-05 No 0 1.95E-01 No 0 3.26E-03 No 
7 S N 2 1.51E-02 Yes 3 7.40E-04 Yes 3 1.24E+00 Yes 0 2.08E-03 No 
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Table D-1.  Results of Empirical Bayes Application to Crash Pattern 6 in A.M. Peak, Mid Day, P.M. Peak, and Evening Off Peak (Continued) 
Bound A.M. Peak mid day P.M. Peak Off Peak Intersection 

No. Through Left-turn Crash E(k|K) Unsafe Crash E(k|K) Unsafe Crash E(k|K) Unsafe Crash E(k|K) Unsafe 
8 E W 1 7.96E-03 Yes 0 3.95E-05 No 0 1.94E-01 No 0 2.32E-03 No 
8 W E 2 7.71E-03 Yes 2 4.36E-04 Yes 2 8.92E-01 Yes 0 5.50E-03 No 
8 N S 0 8.56E-03 No 0 9.08E-05 No 0 1.14E-01 No 0 6.42E-03 No 
8 S N 0 1.86E-02 No 0 3.37E-05 No 0 1.28E-01 No 0 4.99E-03 No 
10 E W 0 8.52E-03 No 0 5.24E-05 No 0 1.31E-01 No 0 7.92E-03 No 
10 W E 0 4.95E-03 No 0 8.38E-06 No 0 1.46E-01 No 0 2.47E-03 No 
10 N S 0 8.36E-03 No 0 1.19E-04 No 0 1.87E-01 No 1 2.96E-02 Yes 
10 S N 1 1.71E-02 Yes 0 1.24E-04 No 0 1.87E-01 No 0 7.66E-03 No 
11 E W 0 6.63E-03 No 0 1.03E-04 No 0 1.23E-01 No 0 3.26E-03 No 
11 W E 1 8.44E-03 Yes 0 2.58E-04 No 0 1.34E-01 No 0 6.92E-03 No 
11 N S 0 7.04E-03 No 0 1.19E-04 No 0 1.81E-01 No 0 4.16E-03 No 
11 S N 2 1.67E-02 Yes 1 5.76E-04 Yes 1 5.14E-01 No 1 2.74E-02 Yes 
12 E W 0 7.73E-03 No 0 9.33E-05 No 0 1.82E-01 No 0 4.16E-03 No 
12 W E 0 2.33E-02 No 0 3.16E-05 No 0 1.82E-01 No 0 3.04E-03 No 
12 N S 0 0.01216 No 1 2.77E-05 Yes 1 4.90E-01 No 0 2.58E-04 No 
12 S N 2 8.69E-03 Yes 3 2.27E-03 Yes 3 1.12E+00 Yes 3 6.65E-02 Yes 
13 E W 0 5.38E-03 No 0 7.20E-05 No 0 1.94E-01 No 0 7.29E-03 No 
13 W E 1 1.88E-02 Yes 0 4.03E-05 No 0 1.95E-01 No 0 5.50E-03 No 
13 N S 0 9.29E-03 No 0 1.94E-04 No 0 1.59E-01 No 0 7.92E-03 No 
13 S N 0 8.47E-03 No 2 1.41E-03 Yes 2 7.23E-01 Yes 2 5.05E-02 Yes 
14 E W 0 2.95E-03 No 0 7.20E-05 No 0 1.09E-01 No 0 0.00744 No 
14 W E 0 2.11E-03 No 0 2.90E-05 No 0 1.09E-01 No 1 2.09E-03 Yes 
14 N S 0 9.34E-03 No 0 4.89E-05 No 0 1.84E-01 No 0 1.00E-03 No 
14 S N 0 5.96E-03 No 0 2.25E-04 No 0 1.85E-01 No 0 NA NA 
15 E W 1 1.77E-02 Yes 0 2.35E-05 No 0 1.97E-01 No 0 5.63E-03 No 
15 W E 0 1.43E-02 No 0 4.25E-05 No 0 1.98E-01 No 0 7.77E-03 No 
15 N S 0 1.70E-02 No 0 1.23E-04 No 0 1.61E-01 No 0 7.38E-03 No 
15 S N 0 1.48E-02 No 0 1.05E-04 No 0 1.57E-01 No 0 5.76E-03 No 
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Table D-1.  Results of Empirical Bayes Application to Crash Pattern 6 in A.M. Peak, Mid Day, P.M. Peak, and Evening Off Peak (Continued) 
Bound A.M. Peak Mid Day P.M. Peak Off Peak Intersection 

No. Through Left-turn Crash E(k|K) Unsafe Crash E(k|K) Unsafe Crash E(k|K) Unsafe Crash E(k|K) Unsafe 
16 E W 1 4.75E-03 Yes 0 2.52E-05 No 0 1.98E-01 No 2 3.29E-02 Yes 
16 W E 0 1.01E-02 No 0 3.44E-05 No 0 1.98E-01 No 2 4.12E-02 Yes 
16 N S 0 7.28E-03 No 0 3.55E-05 No 0 1.24E-01 No 0 6.42E-03 No 
16 S N 0 5.26E-03 No 0 2.74E-05 No 0 1.18E-01 No 0 6.77E-03 No 
18 E W 1 0.000876 Yes 1 2.89E-04 Yes 1 5.44E-01 No 0 7.98E-03 No 
18 W E 1 NA NA 0 9.83E-06 No 0 1.96E-01 No 0 8.05E-04 No 
18 N S 0 NA NA 0 NA NA 0 0.111 No 0 NA NA 
18 S N 0 1.92E-03 No 0 6.82E-06 No 0 9.28E-02 No 0 5.58E-03 No 
19 E W 0 1.69E-03 No 0 2.46E-05 No 0 1.88E-01 No 0 4.89E-03 No 
19 W E 0 8.26E-03 No 0 3.25E-05 No 0 1.87E-01 No 0 7.97E-03 No 
19 N S 0 2.88E-03 No 0 7.91E-05 No 0 1.09E-01 No 0 7.65E-03 No 
19 S N 0 2.79E-03 No 0 4.19E-05 No 0 1.09E-01 No 0 4.21E-03 No 
20 E W 0 2.29E-03 No 0 2.09E-05 No 0 1.96E-01 No 0 3.26E-03 No 
20 W E 2 1.25E-02 Yes 0 3.76E-05 No 0 1.98E-01 No 3 5.03E-02 Yes 
20 N S 0 5.55E-03 No 0 8.48E-05 No 0 1.18E-01 No 0 4.87E-03 No 
20 S N 0 3.48E-03 No 0 5.82E-05 No 0 1.09E-01 No 0 7.65E-03 No 
21 E W 1 0.001051 No 0 1.28E-05 No 0 2.05E-01 No 0 7.92E-03 No 
21 W E 0 7.99E-03 No 0 1.19E-05 No 0 2.05E-01 No 0 4.89E-03 No 
21 N S 0 6.61E-03 No 0 3.06E-04 No 0 1.36E-01 No 0 7.65E-03 No 
21 S N 0 5.13E-03 No 0 2.09E-04 No 0 1.28E-01 No 0 6.42E-03 No 
24 E W 0 6.75E-03 No 0 2.32E-04 No 0 1.34E-01 No 0 7.65E-03 No 
24 W E 0 5.78E-03 No 0 3.37E-04 No 0 1.41E-01 No 0 6.42E-03 No 
24 N S 0 2.91E-03 No 0 2.45E-05 No 0 2.02E-01 No 0 3.72E-03 No 
24 S N 2 7.62E-03 Yes 1 7.45E-05 Yes 1 5.69E-01 No 0 7.65E-03 No 
27 E W 0 2.41E-03 No 0 1.82E-07 No 0 2.06E-01 No 0 3.32E-03 No 
27 W E 0 2.01E-03 No 0 1.11E-07 No 0 2.06E-01 No 0 6.37E-04 No 
27 N S 0 9.11E-03 No 0 2.43E-05 No 0 1.85E-01 No 0 5.37E-03 No 
27 S N 1 9.80E-03 Yes 0 4.23E-05 No 0 1.78E-01 No 0 7.53E-03 No 
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Table D-1.  Results of Empirical Bayes Application to Crash Pattern 6 in A.M. Peak, Mid Day, P.M. Peak, and Evening Off Peak (Continued) 
Bound A.M. Peak Mid Day P.M. Peak Off Peak Intersection 

No. Through Left-turn Crash E(k|K) Unsafe Crash E(k|K) Unsafe Crash E(k|K) Unsafe Crash E(k|K) Unsafe 
28 E W 0 1.01E-02 No 0 1.33E-04 No 0 1.57E-01 No 2 2.46E-02 Yes 
28 W E 3 9.82E-03 Yes 1 7.76E-04 Yes 1 4.46E-01 No 0 7.98E-03 No 
28 N S 0 6.08E-03 No 0 2.11E-05 No 0 2.02E-01 No 1 2.94E-02 Yes 
28 S N 0 1.04E-02 No 0 3.28E-05 No 0 2.00E-01 No 0 7.92E-03 No 
29 W E 0 2.24E-02 No 0 1.72E-04 No 0 1.73E-01 No 0 7.96E-03 No 
29 N S 0 1.11E-02 No 0 4.70E-06 No 0 1.69E-01 No 0 3.68E-04 No 
29 S N 0 8.51E-03 No 1 1.72E-03 Yes 1 4.68E-01 No 1 1.55E-02 Yes 
30 E W 0 1.11E-02 No 1 1.05E-03 Yes 1 4.23E-01 Yes 3 2.87E-02 Yes 
30 W E 0 8.18E-03 No 2 3.97E-03 Yes 2 7.17E-01 Yes 0 6.00E-03 No 
30 N S 0 1.51E-02 No 0 1.43E-04 No 0 1.82E-01 No 0 7.48E-03 No 
30 S N 0 1.51E-02 No 0 1.44E-04 No 0 1.80E-01 No 0 6.42E-03 No 
31 E W 0 5.95E-03 No 0 1.23E-04 No 0 1.87E-01 No 0 7.58E-03 No 
31 W E 1 0.02422 No 2 2.64E-04 Yes 2 8.61E-01 Yes 0 2.25E-03 No 
31 N S 1 1.60E-02 Yes 2 1.07E-03 Yes 2 7.28E-01 Yes 0 7.92E-03 No 
31 S N 0 1.56E-02 No 0 1.47E-04 No 0 1.59E-01 No 1 2.88E-02 Yes 
37 E W 1 0.001644 Yes 10 1.18E-03 Yes 10 3.76E+00 Yes 3 3.50E-02 Yes 
37 W E 1 1.16E-02 Yes 4 3.70E-04 Yes 4 1.62E+00 Yes 1 2.96E-02 Yes 
37 N S 0 1.01E-02 No 0 4.15E-05 No 0 1.67E-01 No 0 9.67E-04 No 
37 S N 0 8.20E-03 No 0 1.98E-04 No 0 1.59E-01 No 0 7.96E-03 No 
38 E W 0 9.83E-03 No 1 2.80E-04 Yes 1 5.30E-01 No 1 6.08E-03 Yes 
38 W E 1 1.67E-02 Yes 0 8.22E-05 No 0 1.92E-01 No 0 6.42E-03 No 
38 N S 1 1.36E-02 Yes 1 7.20E-04 Yes 1 4.88E-01 No 0 7.92E-03 No 
38 S N 1 2.18E-02 Yes 2 4.52E-04 Yes 2 7.74E-01 Yes 1 1.13E-02 Yes 
39 E W 0 5.34E-03 No 0 8.09E-06 No 0 1.93E-01 No 0 5.79E-04 No 
39 W E 0 3.69E-03 No 0 1.66E-05 No 0 1.96E-01 No 1 2.04E-02 Yes 
39 N S 0 6.13E-03 No 0 4.04E-05 No 0 1.64E-01 No 0 5.50E-03 No 
39 S N 0 9.18E-03 No 0 4.49E-05 No 0 1.60E-01 No 0 7.96E-03 No 
41 E W 0 1.69E-03 No 0 6.40E-06 No 0 2.02E-01 No 0 7.58E-03 No 
41 W E 0 3.32E-03 No 0 3.28E-06 No 0 2.06E-01 No 0 7.96E-03 No 
41 N S 0 0.009107 No 0 7.02E-06 No 0 1.64E-01 No 1 1.19E-02 Yes 
41 S N 0 8.05E-03 No 0 4.15E-05 No 0 1.59E-01 No 0 3.26E-03 No 
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Table D-1.  Results of Empirical Bayes Application to Crash Pattern 6 in A.M. Peak, Mid Day, P.M. Peak, and Evening Off Peak (Continued) 
Bound A.M. Peak Mid Day P.M. Peak Off Peak Intersection 

No. Through Left-turn Crash E(k|K) Unsafe Crash E(k|K) Unsafe Crash E(k|K) Unsafe Crash E(k|K) Unsafe 
43 E W 0 2.88E-03 No 1 6.20E-05 Yes 1 5.35E-01 No 0 3.83E-03 No 
43 W E 1 1.05E-02 Yes 0 2.20E-05 No 0 1.89E-01 No 1 1.50E-02 Yes 
43 N S 0 1.20E-02 No 0 1.40E-05 No 0 1.80E-01 No 0 2.78E-03 No 
43 S N 0 8.56E-03 No 0 1.90E-05 No 0 1.79E-01 No 0 5.37E-03 No 
44 E W 0 7.72E-03 No 0 1.46E-04 No 0 1.49E-01 No 0 7.87E-03 No 
44 W E 0 6.61E-03 No 0 4.69E-05 No 0 1.24E-01 No 0 7.92E-03 No 
44 N S 1 5.47E-03 Yes 1 4.09E-04 Yes 1 5.29E-01 No 0 7.49E-03 No 
44 S N 0 2.08E-02 No 1 1.76E-04 Yes 1 5.20E-01 No 1 1.03E-02 Yes 
45 E W 0 4.36E-03 No 1 1.84E-04 Yes 1 5.40E-01 No 1 1.46E-02 Yes 
45 W E 2 2.38E-02 Yes 1 4.02E-05 Yes 1 5.39E-01 No 0 9.67E-04 No 
45 N S 2 2.00E-02 Yes 3 1.28E-03 Yes 3 1.03E+00 Yes 2 4.29E-02 Yes 
45 S N 0 1.98E-02 No 0 1.54E-04 No 0 1.63E-01 No 4 9.18E-02 Yes 
46 E W 1 1.22E-02 Yes 0 5.44E-05 No 0 1.90E-01 No 0 7.48E-03 No 
46 W E 0 1.62E-02 No 0 6.73E-05 No 0 1.88E-01 No 0 7.04E-03 No 
46 N S 2 9.77E-03 Yes 2 3.52E-04 Yes 2 8.75E-01 Yes 3 5.39E-02 Yes 
46 S N 2 1.94E-02 Yes 0 1.14E-05 No 0 1.85E-01 No 1 1.67E-02 Yes 
48 E W 2 4.50E-03 Yes 18 0.000854 Yes 8 0.272 Yes 3 3.60E-02 Yes 
48 W E 1 9.67E-03 Yes 5 7.45E-04 Yes 5 1.80E+00 Yes 1 2.19E-02 Yes 
48 N S 0 1.07E-02 No 0 4.23E-05 No 0 1.79E-01 No 0 6.80E-03 No 
48 S N 0 8.66E-03 No 1 1.10E-04 Yes 1 5.02E-01 No 2 1.54E-02 Yes 
49 E W 0 4.26E-03 No 0 2.89E-05 No 0 1.90E-01 No 0 7.86E-03 No 
49 W E 0 1.13E-02 No 0 1.91E-05 No 0 1.81E-01 No 0 6.42E-03 No 
49 N S 0 5.75E-03 No 0 8.43E-06 No 0 1.93E-01 No 0 2.70E-03 No 
49 S N 0 5.48E-03 No 0 1.03E-06 No 0 1.94E-01 No 0 4.03E-05 No 

 


