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ABSTRACT 

This report describes an experimental investigation performed at live intersections to 
gather infrastructure-based naturalistic driver approach behavior data.  Data were collected and 
analyzed with the goal of understanding how drivers approach intersections under various speeds 
and environmental conditions.  Six stop-controlled intersection approaches across five 
intersections in the New River Valley, Virginia area were selected for data collection.  The sites 
were selected based on the intersection characteristics and crash statistics.  Data were collected 
from each site for at least two months resulting in over sixteen total months of data.  

A data acquisition system was devised and implemented to obtain the first intersection 
dataset with fidelity sufficient for developing intersection collision avoidance threat assessment 
algorithms.  An explorative analysis of driver stopping behavior and vehicle trajectories was also 
performed.  Results indicate that an intersection collision system for stop-controlled intersections 
is feasible.  The infrastructure required to implement a collision avoidance system will have a 
significant cost associated with it.  Additional research will be required to determine if that cost 
can be outweighed by the safety benefits provided by such a system.  Avenues for future 
research and potential uses of this new database are highlighted. 
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INTRODUCTION 

Intersection crashes constitute over 35% of the nation’s traffic-related fatalities (NHTSA, 
2005).  Currently, there is a major federal/industry initiative underway to determine the efficacy 
of Cooperative Intersection Collision Avoidance Systems (CICAS).  One objective of a CICAS 
warning system is to mitigate crashes by providing imminent warnings to drivers who might 
otherwise violate a signalized or stop-controlled intersection control device.  This report presents 
an initial step in an effort to determine driver approach behavior at intersections for the purpose 
of supporting development of a warning algorithm component of a stop-controlled intersection 
collision avoidance system (ICAS) to prevent violations. 

To provide an effective violation warning to a driver, the ICAS must discriminate 
between compliant and non-compliant stopping behavior.  This discrimination must be 
performed significantly upstream from the intersection such that drivers have sufficient time to 
perceive the warning, react, and stop their vehicles.  Drivers with varying levels of experience, 
judgment, risk tolerance, and mood/emotions will respond differently as they approach an 
intersection.  As a result, the behavior of a compliant driver may overlap with that of a violating 
driver at locations where a countermeasure should be deployed.  This could lead to cases in 
which a driver that did not need a warning receives one, or vice versa.  Thus, engineers and 
designers must work to construct a threat assessment algorithm that enhances safety while 
avoiding unnecessary alarms. 

Over the past three years, a significant volume of test-track research has been completed 
on ICAS (e.g., Lee et al., 2005; Neale, Perez, Doerzaph, & Stone, 2005).  From this research, a 
substantial amount of knowledge has been acquired about driver response to various ICAS 
countermeasure types.  Countermeasures tested include in-vehicle visual, auditory, and haptic 
displays as well as visual alerts located on the roadway infrastructure.  The test track 
environment has worked well for making relative comparisons between countermeasure options 
and determining at what point an inattentive driver must receive a warning in order to stop.  
Nonetheless, test track data are limited when applied to algorithm design.  This is due to the 
complex and dynamic nature of the real-world event, experimental effects, and the interaction 
with human behavior (e.g., distractions, motivations, etc.) that cannot be re-created on the test 
track.  This deficiency resulted in a need to gather observational data at actual intersections 
across a variety of experimental conditions.  From this observational data, an algorithm can be 
created to better represent actual driver behavior as an intersection is approached.  The algorithm 
can then be combined with the previous and ongoing countermeasure work to determine the 
ICAS performance (e.g., will a timely warning also result in an unacceptable number of nuisance 
alarms).  

Warning timing will ultimately determine the effectiveness of an ICAS.  Alarms that are 
too early will likely deflate the safety benefits of collision avoidance systems because of 
annoyance and loss of user trust in the system (Dingus, Jahns, Horowitz, & Knipling, 1998).  
Warnings that are too late will fail to prevent an intersection collision.  Thus, it is imperative that 
researchers and engineers thoroughly investigate driver behavior at intersections.  In particular, 
the frame-by-frame trajectories of the intersection approaches must be analyzed to understand 
how and when to warn appropriately. 
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This report describes an experimental investigation performed at live stop-controlled 
intersections to gather naturalistic driver approach behavior.  Data were collected and analyzed 
with the goal of understanding how drivers approach intersections under various speeds and 
environmental conditions.  The data from this collection were used to explore the feasibility of 
providing violation collision warnings to drivers who would otherwise violate the stop sign.  Six 
stop-controlled intersection approaches across five intersections in the New River Valley, 
Virginia area were selected for data collection.  The sites were selected based on the intersection 
characteristics and crash statistics.  Data were collected from each site for at least two months 
resulting in over sixteen total months of data.  

The database described and the analyses performed herein will feed into a growing body 
of knowledge regarding intersection collision avoidance.  Intersection collision avoidance has 
been identified by the Federal Highway Administration (FHWA) as a key initiative and will thus 
receive a significant level of attention and funding over the next several years.  Prior to a field 
operation test (FOT), the threat algorithm to warn drivers at stop-controlled intersections must be 
identified and optimized.  It is the purpose of this study to contribute to this effort by developing 
the research protocols and data collection system for obtaining data for stop-controlled algorithm 
development.  Furthermore, an explorative analysis was performed to understand driver stopping 
behavior and to demonstrate a proof of concept for a stop-controlled ICAS algorithm.   

Previous ICAS and general intersection research provided a substantial amount of 
preliminary knowledge regarding the appropriate warning timing.  The following sections 
introduce the work completed to date.  Numerous studies, consisting primarily of database 
analyses, have been conducted in order to examine factors that may be involved in intersection 
control device violations and crashes.  A review of these studies provides numerous scenarios, 
environmental factors, and driver characteristics that were found to contribute to the large 
number of intersection crashes each year.  This ICAS background is used as a foundation for the 
experimental design and site selection presented in the methods section. 

Purpose and Scope 

Relative to other roadway segments, intersections occupy a small portion of the overall 
infrastructure; however, they represent the location for a large portion of the annual automotive 
crashes in the United States.  Thus, intersections are an inherently dangerous roadway element 
and a prime location for vehicle conflicts.  Traditional safety treatments are effective at 
addressing certain types of intersection safety deficiencies; however, cumulative traffic data 
suggests these treatments do not address a large portion of the crashes that occur each year.   

 
ICAS represent a new breed of countermeasures that focus on the types of crashes that 

have not been reduced with the application of traditional methods.  One objective of an ICAS is 
to mitigate crashes by providing imminent warnings to drivers who might otherwise violate a 
signalized or stop-controlled intersection control device.   The present study is the first 
investigation of continuous driver behavior at stop-controlled intersections aimed at investigating 
ICAS.  This report provides evidence for the efficacy of ICAS and roadside data collection for 
the purpose of ICAS algorithm development. 
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Overview of the Intersection Crash Problem 

Crashes at intersections represent about 35% of all annual crashes (NHTSA, 2005).  Most 
intersection crashes can be categorized as either rear-end or crossing path (CP) conflicts.  Other 
crash types include single vehicle, pedestrian/cyclist, head-on and sideswipe.  CP crashes cause 
an estimated 26.7% of all crash-caused delays totaling approximately 120.3 million vehicle hours 
annually (Wang & Knipling, 1994).  Violation-related CP maneuvers account for 393,000 annual 
crashes at a cost of 39 billion dollars (Lee et al., 2005).   

The investigation discussed herein addresses CP crashes at stop-controlled intersections 
resulting from a violation of the traffic control device (TCD).  Overall, stop-controlled CP 
crashes account for 374,000 (38%) of the annual intersection crashes, resulting in 3,994 fatalities  
(Lee et al., 2005).  CP crashes in which a violation was cited in the police report occur 184,000 
times each year.   

The purpose of the next sections is to decompose the intersection CP crash problem.  It 
will begin by introducing terminology followed by a review of the factors that influence 
intersection crashes.  The typical vehicle intersection approach will then be dissected by 
considering environmental factors and required driver decisions with respect to human 
capabilities and limitations.  The focus of this discussion is to understand and attempt to predict 
the factors leading to intersection CP crashes. 

Intersection and Crash Taxonomy 

The incidence and severity of intersection-related crashes vary with, among other factors, 
the relative positions and travel directions of the vehicles involved.  For this reason, various 
researchers have created different taxonomies of intersections and intersection crash types.  
These taxonomies are based on the various combinations of vehicle conflicts that can occur at a 
typical intersection.  Use of these classification systems allows researchers to gather statistics, re-
create, analyze, experiment, and communicate particular intersection-crash situations in a 
repeatable manner.  For this study, these taxonomies were used to select intersections, identify 
maneuvers for study, and communicate the results throughout this report. 

Crash taxonomies consider the two different vehicles that must be present for an 
intersection crash to occur: the subject vehicle (SV) and the principal other vehicle (POV).  The 
vehicle of interest is the SV; its travel path is intersected by the POV.  The actions of the SV 
initiate the conflict sequence since this is a violating vehicle.  The POV has the right of way in 
these crash sequences.  Combining taxonomies from several sources (Ferlis, 2001b; Wang and 
Knipling, 1994; Najm et al., 1995; Pierowicz et al., 2000), three primary taxonomies are 
presented in a graphical format (Figure 1, Figure 2, Figure 3). 
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Figure 1.  Intersection straight crossing path (SCP). 
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Figure 2.  Left turn across path (LTAP). 
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Figure 3.  Turn into path (TIP) – Merge conflict: a) Right – RTIP, b) Left -– LTIP. 
 

A majority of intersection crashes result from a vehicle traveling straight through an 
intersection (over 50%), followed next by drivers making a left turn (Wang and Knipling, 1994).  
Left-turn-across-path lateral-direction (LTAP/LD) crashes are the most frequent at signalized 
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intersections, while SCP crashes are the most frequent at stop-controlled intersections (Bellomo-
McGee, Incorporated [BMI], 2001a).    

Another crash type related to intersections is rear-end crashes, which occur most 
frequently at or near signalized intersections (National Transportation Safety Board, 2001; Yan, 
Radwan, & Abdel-Aty, 2005).  A majority of these collisions are due to an abruptly stopping 
lead vehicle, in which the following vehicle’s driver is labeled by a reporting officer as either 
inattentive or following too closely (Yan et al., 2005). 

Intersection Crash Causation 

Several researchers have analyzed national databases, collected data at intersections, or 
collected in-vehicle driver data to understand the occurrence of particular intersection crash types 
and causation.  Crash causation theories provide the reader with background in order to explain 
the intersection selection criteria used for the present research as well as general background of 
the primary ICAS objective: reducing intersection crashes.  The following paragraphs summarize 
the crash causation findings of previous research efforts.   

Intersection Geometry 

Intersection geometry consists of multiple sub-variables including the angle of 
approaches, approach curvature, presence of pedestrian crossings, and dimensions.  Intersection 
dimensions include the stopping sight distances, width between legs and the distance from the 
stopbar to the adjacent traffic lanes (i.e., the distance over the stopbar a vehicle can traverse 
before entering the adjacent traffic stream).  

Wierwille et al. (2000) found a relationship between intersection complexity and crash 
rate; intersections with simpler geometric designs had fewer crashes.  Research by Hendricks et 
al. (1999) analyzed a sample of 723 driver-at-fault crashes from 1996 to 1997.  The most 
frequent fundamental factors cited for SCP crashes were “looked, did not see,” “driver 
inattention/traffic control device violation,” and “crossed intersection with obstructed view.”  
The researchers provided typical infrastructure characteristics for each of these causal factors: 

Looked, did not see 
• All cases occurred at stop-controlled 90-degree intersections. 
• In 71% of the cases, the victim vehicle (POV) was struck on the passenger side. 

Driver inattention/traffic control device violation 
• All crashes occurred at 90-degree intersections that typically use traffic signals. 

Crossed intersection with obstructed view 
• All cases occurred at stop-controlled 90-degree intersections. 
• In 57% of the cases, the victim vehicle (POV) was struck on the passenger side. 

 
Retting et al. (2003) completed research of stop-controlled intersection violations through 

reviewing police reports of 1,788 crashes from selected areas.  A majority of the drivers (i.e., 
two-thirds) reportedly came to a stop before proceeding into the intersection, while 17% of 
drivers admitted to neglecting to stop before entering the intersection.  Failure to see another 
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vehicle (44%) and obstructed vision (16%) were reportedly the most frequent reasons for a 
vehicle to proceed into an intersection despite the presence of another vehicle.  It was also 
reported that approximately 50% of the stop-controlled collisions occurred at “T-intersections” 
(i.e., “locations where the stop sign-controlled approach road terminates at the intersection”) 
(Retting et al., 2003, p. 488). 

Time of Day 

As reported by Wang and Knipling (1994), a majority of intersection crashes occur 
during the peak hours of the day, with twice as many CP crashes occurring in the mornings (6:31 
to 9:30) than during afternoon traffic hours (15:31 to 18:30).  Additionally, the influence of the 
day of the week and day of the month were used to determine the effect on intersection 
violations.  Ambient lighting conditions present during the times evaluated have not been 
considered directly.   

Driving Conditions 

Numerous studies, based on data collected from the General Estimates System (GES) 
databases, have reported that a majority of intersection crashes occur in clear weather and on dry 
pavement.  SCP crashes at both signalized (Tijerina et al., 1994) and unsignalized (Chovan et al., 
1994) intersections occur mainly on dry pavement, in good weather, and during daylight 
conditions.  More specifically, 74% of unsignalized crashes take place on dry pavement, while 
only 24% occurred when the pavement was wet or snowy (Chovan et al., 1994).   

Speed 

Liu (2007) completed a study in which he examined two separate signalized intersections 
in order to determine contributing violation factors.  Numerous decisions must be made as a 
driver approaches an intersection.  The speed at which a driver is traveling when arriving at the 
intersection is a large determinant as to how the driver reacts. 

Through a database analysis, Wang and Knipling (1994) reported that most intersection-
related crashes occur when the posted speed limit is 15 m/s (35 mph) or less.  Yang and Najm 
(2006) reported from their research that a majority of crashes occurred at around 8 m/s (18 mph) 
with an average speed of 14 m/s (32 mph).  Similarly, Chovan et al. (1994) reported that a 
number of the crashes occurred on urban roads with lower speed limits.  Conversely, Brewer et 
al. (2002) reported that the number of drivers who committed red-light violations increased as 
their approach speeds increased, with the largest number of violations occurring at travel speeds 
of 55 mph. 

Definition and Prevalence of Violations 

Not every violation of the TCD results in a crash.  Wierwille et al. (2001; 2000) showed 
that TCD violations for both signalized and stop-controlled intersections are not uncommon (up 
to 15 violations per hour [ITE, 2003] have been reported).  However, crashes result when the 
timing of the violation aligns with the presence of conflicting vehicle(s).  Identifying when a 
crash will occur based on the interactions of multiple vehicles is a difficult problem.  An easier 
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and equally effective method for preventing intersection crashes due to violations is to mitigate 
the violations themselves.  As such, characteristics of violation approaches contribute to the 
design of the threat assessment algorithm.  The purpose of this section is to determine factors 
that influence a driver’s decision to violate.  The following includes research on signalized 
intersections as complimentary studies relating to stop-controlled intersections that have not been 
completed to date. 

The goal of an ICAS system is to mitigate intersection crashes by preventing violations.  
Thus, it is productive to review the types and causes of intersection violations.  Fakhry and 
Salaita (2002) have provided some definitions of violations for stop-controlled intersections.  
These classifications, provided below in Table 1, categorize the vehicle as either “at speed” or 
“rolling stop”.  This particular classification does not provide a breakdown of the speed at which 
the driver is moving through the intersection under each classification. 

Table 1. Summary of taxonomies of stop-controlled intersection violations. 
 

Intersection Type Violation Definition 

Stop-controlled “At Speed” 
Vehicle does not slow down and proceeds through the intersection.  

Also included are vehicles that “barely slowed” as they approached the 
intersection. 

Stop-controlled “Rolling Stop” Wheels of a vehicle are slowing but not stopping and the vehicle 
continues through the intersection. 

*As cited in Fakhry and Salaita, 2002. 

Direct observations of violations provide some insight into the extensive violation 
problem.  Fakhry and Salaita (2002) reported that “at speed” violations at stop-controlled 
intersections were recorded approximately 20 times more often than at signalized intersections.  
They also reported that out of 1,000 vehicles, 17.5 vehicles committed stop-controlled TCD 
violations and 1.5 committed signalized TCD violations.  In addition, “rolling stop” violations 
greatly exceeded “at speed” violations at both signalized and unsignalized intersections.   

Sudweeks, Neale, Wiegand, Bowman & Perez (Unpublished data) conducted an analysis 
of stop-controlled TCD violations and near violations.  This study identified 77 drivers and 174 
stop-controlled intersections from the data collected in the 100-Car Naturalistic Driving Study 
(Dingus et al., 2006), in which 100 cars were instrumented to collect behavioral and 
environmental data in a naturalistic driving setting.  The study found that 61% of stop-controlled 
TCD violations occurred at speeds greater than 10 mph, while 39% occurred between 6 and 10 
mph.  Regarding driving maneuvers, 50% of violating drivers crossed straight through the 
intersection, 27% of violators performed left turn maneuvers, and 23% performed right turn 
maneuvers.   

Driver error is frequently regarded as the primary casual factor in intersection CP crashes 
through either an intentional or unintentional disregard of the TCD, as reported by ITE (2003).  
For instance, 40% of red-light violators claimed that they “looked but did not see” the TCD.  
Another 12% mistook the signal color, claiming they had a green indication.  Four percent 
blindly followed another vehicle into the intersection and did not look at the signal.  Finally, 3% 
of the drivers were confused about which signal indication was theirs.  In a study of driver error 
at intersections, Wierwille et al. (2000, 2001) found that 3.3% of all drivers entering a complex 
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signalized intersection committed some sort of error.  Driver distraction may have contributed to 
many of these errors, particularly those that were made unintentionally.  This group of inattentive 
drivers may represent the population which can most effectively be addressed by an ICAS. 

Both Pierowicz et al. (2000) and Tijerina et al. (1994) have presented causal factors that 
imply a deliberate disobedience of TCD.  In a survey of drivers, 8% admitted to intentionally 
running the red light (ITE, 2003).  Drivers in the survey were provided with a GO/NO-GO 
scenario in which the GO decision could be interpreted as aggressive.  Twenty-nine percent of 
the drivers opted to take the aggressive action.  Of those drivers, 69% indicated that their 
motivation was due to being in a rush/save time and 12% reported doing it out of frustration 
(ITE, 2003).  The decision to run or attempt to beat a traffic signal is due to a belief that a 
collision can be avoided.  This belief could be based upon the failure to see cross traffic, 
misjudgment of the velocity, distance or direction associated with perceived traffic, or the 
assumption that other vehicles will yield to the violating vehicle.  Although 99% of surveyed 
drivers acknowledged the dangers of red light running, they also perceived a low likelihood of 
receiving a ticket for the infraction (ITE, 2003).   

Algorithm Development 

Most human factors research is concerned with how a typical person responds under a 
given set of circumstances.  Often, human factors engineers design a system to be used by a 
majority of  people by considering a certain percentile of the population (Sanders & McCormick, 
1993).  In contrast, a collision avoidance system is specifically designed to address uncommon 
behaviors.  For ICAS, these behaviors consist of two similar groups: 1) drivers that will violate 
the TCD and 2) somewhat aggressive drivers who appear to be violators even though they are 
complying with traffic regulations.  To avoid false alarms, the ICAS algorithm must distinguish 
between aggressive drivers and violators such that a countermeasure is only delivered to those 
drivers for which it is a necessity. 

An ICAS algorithm should, at a minimum, predict four possible scenarios for a driver 
approaching a stop-controlled intersection: 1) the approaching driver is aware of the TCD and 
stops appropriately, 2) the approaching driver is aware of the TCD, initiates stopping but does 
not stop (e.g. “rolling stop”), 3) the approaching driver is aware of the TCD but stops 
aggressively, and, 4) the approaching driver is either aware or not aware of the TCD and does 
not stop.  “Rolling stop” cases are of particular interest because they have been found to be 
common and relatively safe vehicle maneuvers (Fakhry and Salaita, 2002).  As such, in an effort 
to reduce nuisance alarms, perhaps these drivers should not receive a warning.  Aggressive 
compliant drivers should also be identified in order to prevent unnecessary warnings.  
Distinguishing between attentive and inattentive violations may not be feasible through the 
methods proposed here, nor can it currently be integrated into an ICAS.  Existing data supporting 
the three remaining scenarios will be reviewed for a variety of potential algorithm inputs.  As 
with the previous sections, much of the literature reviewed in this chapter is from signalized 
intersections due to its availability, while there is a general lack of research concerning stop-
controlled intersections. 
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Support for the feasibility of an ICAS algorithm at live intersections was provided by a 
naturalistic observation study of human intersection approach behavior (White & Ferlis, 2004).  
A hand-held radar gun was used to collect the intersection approach behavior of drivers at four 
intersections.  The researchers collected data for two groups of drivers: those that were stopping 
for a red light and those that were going through a green light.  It was presumed that drivers who 
went through a green signal would act identically to an inattentive violator.  Drivers that received 
the phase change were not included in the sample so the scenario is similar to a stop-controlled 
approach (approaching a red light should be similar to approaching a stop sign).   

The dataset consisted of 270 samples taken at four separate intersection sites.  The speed 
and acceleration profiles of vehicles were then used to distinguish into which group the given 
driver fell in advance of the intersection.  The initial speeds of both groups would overlap 
considerably.  As the intersection was approached, drivers that intended to proceed through 
would exhibit a relatively constant speed profile, whereas the stopping group would exhibit 
decreasing speed.  At some point the two curves would completely diverge, which was thought 
to indicate a location at which the threat assessment could be made.  The authors were hesitant to 
suggest that this separation was at a sufficient distance to initiate a warning.  They did suggest 
that performing the assessment on acceleration rather than speed could increase the assessment 
distance. 

The ICAS work conducted by the Virginia Tech Transportation Institute (VTTI) under 
the Intersection Decision Support (IDS) contract performed some preliminary algorithm 
development (Neale et al., 2005).  Three general types of algorithms were constructed based on 
three types of potential sensing equipment used in the ICAS:  single point (i.e., vehicle data were 
measured at a single point on the approach), multi-point (i.e., vehicle data were measured at 
several discrete points on the approach), and continuous (i.e., vehicle data were measured at all 
points on the approach).  From a comparison of the schemes it was clear that an algorithm based 
on continuous detection performed better than the other two options.  In addition, the ongoing 
ICAS projects indicate that a continuous detection scheme is the most likely deployment 
architecture.  Thus, it was necessary to collect continuous intersection approach behavior for the 
present study rather than measure the vehicle attributes at specified locations. 

The IDS algorithm investigation was intended to be exploratory in nature; this was 
primarily due to the data source.  In particular, the data were based on a small sample of drivers 
that approached a signalized intersection on a test track.  The small sample of drivers did not 
capture the range of possible intersection approaches.  Furthermore, the study did not fully 
account for the variety of factors that can affect the intersection approach (e.g., distractions, 
motivations, weather).  Finally, the study considers the behavior of drivers at stop-controlled 
intersections.  These factors highlight the need for the data collection described and executed 
during the present research project. 

METHODS AND MATERIALS 

Six stop-controlled intersection approaches across five intersections in the New River 
Valley area of southwestern Virginia were selected for data collection.  While considering the 
literature described previously, these sites were selected based on intersection characteristics, 
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crash statistics, and Virginia Department of Transportation (VDOT) recommendations.  Data 
were collected from the sites for approximately two months, resulting in sixteen months of 
intersection approach data. 

To gather this data, an array of sensing and collection equipment was installed at the test 
sites.  These systems included radar, video cameras, data pre-processing, and data storage.  The 
parametric data and digital video were retrieved through a manual hard drive swap at the test site 
every five to seven days.  The following sections describe the test sites, Data Acquisition System 
(DAS) installations, data post-processing, data validation, data reduction, and data analysis 
methods. 

Site Selection 

In preparation for the present research, potential test sites were identified based on 
geographic region, DAS compatibility, geometric attributes, design speed, traffic volume, and 
crash statistics.  Detailed information about the intersections was gathered with the assistance of 
representatives from the Salem District VDOT, the Blacksburg Police Department, and the 
Christiansburg Police Department.  The information provided anecdotal data as well as crash and 
violation data on intersections in the region.  From these data, several intersections were chosen 
for site visits wherein further information regarding geometry, signage, locality, and intersection 
type was gathered. 

Information collected during the site visits was added to a database and compared to a list 
of selection criterion.  Sites meeting the selection criteria were kept for further consideration.  
The selection criteria, listed below, were defined based on the available literature, the 
requirements of the study, collection apparatus, and feasibility of implementation. 

• Requirements 
o Representative of intersections across the U.S. 
o Contains balanced set of posted approach speeds 
o Free from obstructions to radar sensor 
o Stop sign located on the approach of interest 
o Contains a suitable location to mount DAS 
o Sufficient shoulders to allow for safe DAS access 
o Located reasonably close to VTTI for data retrieval 
o Operated by the Southwest Region VDOT for installation assistance and 

approval 
o In range of differential global positioning system (GPS) corrections for 
calibration/validation 

• Specifications 
o At least 150m radar sight distance 
o Contains speeds of 25 mph, 35 mph, or 45 mph 
o A two hour period each day in which at least five satellites are available for 

calibration/validation 
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The final selection was based on the probability of obtaining relevant data, including 
crash rates and average daily traffic (ADT) statistics, and creating a balanced set of approach 
speeds.  Six approaches at five intersections were selected representing the most common speed 
limits: 25 mph, 35 mph, and 45 mph.   

Table 2 below provides a list of all the selected stop-controlled intersections and the 
corresponding speed limits.  The following figures provide images depicting a map detailing 
measurements of each of the selected stop-controlled intersections, an aerial view, and ground 
images of each site.  

 

Table 2. Stop-controlled intersections. 

Intersection Posted Speed Limit 
Clubhouse & Lusters Gate 25 mph 

Plank & Lusters Gate 25 mph 
Nellies Cave & Woodland Hills 35 mph 

Fairview Church & HW8 35 mph 
Meadow Creek & Childress Eastbound 45 mph 
Meadow Creek & Childress Westbound 45 mph 
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The intersection of Clubhouse Road and Lusters Gate Road is a three-way intersection 
with a single stop sign for vehicles traveling west on Clubhouse (Figure 4, Figure 5, Figure 6).  
No stop-sign ahead signs were present. A driveway opposite to the clubhouse approach may 
appear to some drivers as a fourth leg of the intersection.  The posted speed limit on Clubhouse 
is 25 mph and the posted speed limit for traffic traveling on Lusters Gate is 45 mph.  The 
entering ADT for this intersection is 2,084 (VDOT, 2005) and less than one crash typically 
occurs each year.  

 
Figure 4. Diagram of Clubhouse & Lusters Gate intersection.  
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 Figure 5.  Aerial view of Lusters Gate & Clubhouse intersection.  

 

 
Figure 6. Ground images of Clubhouse & Lusters Gate intersection; Top left: Southbound on Lusters Gate; 

Top right: Southbound on Lusters Gate; Bottom: Westbound on Clubhouse. 
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The intersection of Plank Drive and Lusters Gate Road is a three-way stop-
controlled intersection with a single stop sign for vehicles traveling west on Plank (Figure 
7, Figure 8, Figure 9).  No stop sign ahead signs were present.  The speed limit 
approaching the stop sign is 25 mph and traffic traveling on Lusters Gate has a posted 
speed limit of 45 mph. VDOT records show the entering ADT at 1,794 and less than one 
crash occurs in a typical year.  
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Figure 7. Diagram of Plank & Lusters Gate intersection. 
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Figure 8. Aerial view of Plank X Lusters Gate intersection. 

 

 
Figure 9. Ground images of Plank & Lusters Gate intersection; Top left: Southbound on Lusters Gate; Top 

right: Westbound on Plank; Bottom: Northbound on Lusters Gate. 
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The intersection at Nellies Cave Road and Woodland Hills is a three-way intersection 
with a single stop sign for vehicles traveling north on Nellies Cave (Figure 10, Figure 11, Figure 
12).  There was a stop sign ahead sign on the Nellies Cave approach.  Vehicles traveling through 
the Nellies Cave and Woodland Hills intersection have a posted speed limit of 35 mph.  The 
entering ADT for this intersection is 1,674 and there was an average of one accident per year 
reported at this intersection. 

 

 
Figure 10. Diagram of Nellies Cave & Woodland Hills intersection. 
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Figure 11. Aerial view of Nellies Cave & Woodland Hills intersection. 

  

 
Figure 12. Ground images of Nellies Cave & Woodland Hills intersection; Top left: Northbound on Nellies 

Cave; Top right: Northbound Nellies Cave; Bottom left: Westbound on Woodland Hills; Bottom right: 
Eastbound on Woodland Hills.  
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The intersection of Fairview Church Road and Highway 8 is a four-way intersection with 
stop signs presented to traffic traveling both directions on Fairview Church Road (Figure 13, 
Figure 14, Figure 15).   There were stop sign ahead signs on both Fairview approaches. The 
posted speed limit for traffic traveling through this intersection is 35 mph.  The entering ADT for 
this intersection is 8,110 and there is an average of 4 annual crashes at this intersection. 
 
 

 
Figure 13. Diagram of Fairview Church & HW8 intersection. 

 



 

19 

 
Figure 14. Aerial view of the Fairview Church & HW8 intersection. 

 
 

 
Figure 15. Ground images of the Fairview Church & HW8 intersection; Top left: Eastbound on HW8; Top 

right: Southbound on Fairview Church; Bottom left: Northbound on Fairview Church; Bottom right: 
Westbound on HW8. 
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The intersection of Meadow Creek and Childress is a four-way intersection with multiple 
stop signs presented to traffic traveling in each direction on Meadow Creek (Figure 16, Figure 
17, Figure 18).  There were stop sign ahead signs on both the Meadow Creek approaches as well 
as rumble strips.  There were also intersection-ahead signs on both directions of Childress.  The 
posted speed limit for traffic on both Meadow Creek and Childress is 45 mph.  The entering 
ADT for this intersection is 3,010 and there is an average of 5 annual crashes at this intersection. 
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Figure 16. Diagram of Meadow Creek & Childress intersection. 
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Figure 17. Aerial view of the Meadow Creek & Childress intersection. 

 

 
Figure 18. Ground images from Meadow Creek & Childress intersection; Top left: Eastbound on Meadow 

Creek; Top right: Northbound on Childress; Bottom left: Westbound on Meadow Creek; Bottom right: 
Southbound on Childress. 
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Data Acquisition System 

Data acquisition at the stop-controlled intersections was accomplished through a custom 
non-obtrusive DAS installed at the selected intersection approaches.  The characteristics of the 
stop-controlled intersections created some unusual requirements for the DAS.  In particular, the 
rural nature of some sites meant the DAS would not have access to power or communication 
lines.  Thus, the DAS was designed to be completely self-contained and self-powered.  
Furthermore, the relatively short data collection period suggested that tunneling under the 
roadway should be avoided.  To instrument multiple approaches at the Meadow Creek 
intersection, four independent DAS had to be installed.  The data from these four DAS were 
synchronized post-hoc based on the GPS time.  The resulting DAS was designed from the 
ground up specifically for this collection effort. 

The apparatus consisted of a sensing network, a custom digital signal processor (DSP) 
circuit board, a digital video recorder (DVR), and an enclosure with power source.  The sensing 
network measured raw inputs and provided the measures to the DSP at 20Hz.  The DSP pre-
processed the inputs and assembled the dataset while archiving digital data files on the DVR.  
This system was completely contained at the intersection site and virtually invisible to drivers.  
The DAS time stamped the vehicle data obtained from automotive radar with millisecond time 
provided by the GPS.  The parametric data were accompanied by a MPEG 4 video stream 
obtained from a charge coupled device (CCD) camera focused in the same orientation as the 
radar.  To avoid tunneling below the roadway, each approach of the intersection was monitored 
by an independent DAS.  The DAS is illustrated in Figure 19 with pictures provided in Figure 
20.  The subsequent sections contain detailed descriptions of each DAS component. 

 

Figure 19.  Diagram of stop-controlled data acquisition system including the radar, camera, digital signal 
processor, and digital video recorder 
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Sensing Network 

The sensing network consisted of two major components: vehicle sensing and 
uncompressed video.  A thorough investigation of current sensing technology identified radar as 
the most promising technology for obtaining vehicle kinematic information from the roadside 
(Neale et al., 2005).  Previous research indicates that a minimum range of 150m with an 
accuracy of plus/minus 3 m and a range-rate accuracy of plus/minus 1 km/h is sufficient for 
ICAS operation (Neale et al., 2005).  The radar must also be relatively inexpensive, 
weatherproof, and have Federal Communications Commission (FCC) approval.  The AC20 
Autocruise radar from TRW is adaptive cruise control (ACC) radar that exceeded the 
requirements of this study.  The AC20 has the following specifications: 

• Dimensions:  3.74 in x 3.74 in x 2.48 in 
• Waveform:  76 GHz 
• Interface:  CAN 
• Distance Measurement 

o Range:  3.28 ft – 656.17 ft 
o Accuracy: ± 5% or 3.28 ft 

• Speed Measurement 
o Range:  ± 250 kph 
o Accuracy ± 0.1 kph 

• Lateral Position Measurement 
o Range ± 6° 
o Accuracy ± 0.3° 

Figure 20. Stop-controlled radar and camera unit.  
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The second raw data input provided by the sensing network are uncompressed video.  
This video was later used to derive measures via manual reduction techniques.  The video was 
recorded using a robust all-weather NTSC video camera mounted in an inconspicuous location, 
providing a view of the desired approach.  The camera selected was a SuperCircuits 
PC219ZWPH with the following specifications: 

Horizontal Resolution: 480 Lines   

• Illumination: 2.5 Lux/ F1.8  
• Image Sensor: 1/3 in CCD Sensor Interline  
• Power Requirements: 320 mA at 12V DC  
• Video Format: NTSC  
• Pixels: 492 (V) X 771 (H)  
• Video Connection: BNC Female S/N Ratio 48 dB  
• Lens Type: .20-1.97 in  
• Zoom Lens Control: Auto Iris DC Driven  
• Backlight: Built-in Backlight Compensation  
• Weight: 27.87 oz (790 grams)  
• Dimensions: 7.64 in X 3.50 in X 7.52 in 

The NTSC signal provided by the camera was attached to the DVR for compression as 
choreographed by the DSP.  The compressed video along with the other raw data from the 
sensing network were transmitted to the data DSP for pre-processing. 

Digital Signal Processor Circuit 

The DSP, housed on a proprietary circuit board with hardware and firmware, was 
designed specifically for this study.  The DSP detects inputs from the sensing network, and pre-
processes, aligns in time, integrates, and transfers them to the DVR and solid state memory for 
storage.  

In addition to the data collection tasks, the DSP board housed the power management 
system and sampling scheme.  The power management system controlled the on/off state of the 
sensing network and DVR.  Battery voltage was monitored and if it dropped below a specified 
threshold, the entire DAS would systematically shut down to prevent data loss.  Furthermore, to 
maximize battery life, the DSP would switch the sensing components and the DVR off when 
vehicles were not present at the approach. 

Data from the sensing network was sent to two separate locations by the DSP.  
Parametric data were processed by the DSP, time stamped, and sent to a 2 GB solid state 
memory card.  Video data were time stamped and sent to the 100 GB DVR for compression and 
storage. 
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Digital Video Recorder 

An Archos AV 500 was selected for compressing and storing the video collected by the 
DAS.  This highly portable DVR uses an extremely efficient MPEG4 compression algorithm for 
reducing video file size.  The hardware based compression system is configurable such that the 
balance between file size and quality can be manipulated.  For the purpose of this study, a high 
compression was selected to minimize file size and reduce the possibility of attaining personal 
information (e.g., license plate number – discussed further in the Institutional Review Board 
[IRB] section). 

The compressed video was sent a 100 GB hard drive housed within the DVR.  The 
storage space needed to be sufficient for collecting over a week of uninterrupted video.  This 
hard drive was retrieved as needed and transported to VTTI for storage.  The AV 500 has the 
following specifications: 

• Capacity: 100 GB Hard drive 
• Display: 4 in LCD 480x272 pixels, 262 000 colors 
• Video recording: MPEG-4 SP up to 640x480 @ 30 f/s, in AVI format.  
• Video playback: MPEG-4 SP up to 720x480 @ 30 f/s  
• AV connections: Audio & Video line out.  IR emitter  
• Interfaces: USB 2.0 high-speed device 
• Power source: Rechargeable Lithium-Ion Battery 
• Battery life: Up to 15 hours 
• Dimensions: 2.99 in x 4.88 in x .94 in 
• Weight:  315 g - 11.11 oz 

Enclosure and Power Source 

To minimize behavioral adaptation by the driver, it was essential for the DAS to be as 
unobtrusive as possible.  The sensing network was mounted inside a standard 
telecommunications box frequently seen on roadsides.  These boxes were buried approximately 
1/2 m underground with roughly 1 m protruding above the surface.  The above-ground portion 
included a lid that was field-removable and was secured with a security screw.  The 
telecommunications box was constructed from thin uniform plastic which was easily penetrated 
by the radar without any cutting, making it completely invisible to drivers.  A small hole was 
drilled for the camera which provided a clear image of the intersection.  Finally, a small box was 
mounted inside the enclosure that contained the DSP board and the DVR.  The 
telecommunications box located the sensing equipment at the recommended heights while 
protecting them from direct moisture and ultraviolet rays (See Figure 21). 

In addition to the above-ground sensing enclosure, a second enclosure resided 
underground near the telecommunications box.  The second enclosure was a Pelican® 
waterproof high-impact case with security lock.  The enclosure provided storage for the power 
source.  The enclosure was buried in order to be inconspicuous and to provide temperature 
stability for the power source.  The enclosure had the following specifications: 

• Temperature Rating:  Minimum -23° C, maximum +99° C 
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• Inside dimensions:  21.73 in x 16.81 in x 7.87 in 
• Outside dimensions:  24.25 in x 19.45 in x 8.66 in  
• Water proof 
• Weight:  6 kg  

The DAS was designed to operate at low voltage for at least six days, at which time the 
batteries (two large capacity 12v gel-cell built by MK part number VRLA-Gel 8G31) would 
need to be exchanged for a freshly charged cell.  At the time of the battery exchange, the DVR 
was also swapped for empty units.  Data from the test site were transported back to VTTI and 
uploaded to a secure fiber channel server for long term storage.  The battery has the following 
specifications: 

• Cranking amps:  550 amps@ - 17° C, 780 amps @ 0° C 
•  Discharge time:   

o 100 hrs at 1.08 amp to 1.75VPC @ 27° C 
o 48 hrs at 2.15 amp to 1.75VPC @ 27° C 

• Weight:  32.2 Kg 
• Dimensions:  12.95 in X 6.73 in X 9.37 in 

 
Figure 21. Stop-controlled DAS. 

 

Test Site Installation 

Test sites were outfitted with the DAS sequentially, with each site taking approximately 
one day to install, calibrate, and validate.  VDOT assisted in the installation by providing the 
necessary signage and equipment support.  The enclosures were mounted first, followed by the 
installation of the DAS hardware and cabling.  The battery pack, used to provide power at each 
site, was buried in order to remain as unobtrusive to traffic as possible. 



 

27 

A calibration procedure was initiated once the hardware was installed and powered up.  
During calibration, the camera focal length and zoom was set to obtain the desired image.  This 
image captured the entire vehicle approach into the intersection.  The radar was aimed to capture 
the vehicle from at least 150 m continuously through the stopbar.  Calibration values, such as the 
distance from the radar to the stopbar, were also set to correct sensor mounting configurations. 

Data Retrieval and Management 

As with most stop-controlled intersections, traffic volume at the test sites would decrease 
substantially during non-peak hours.  Collecting data when vehicles were not present on the 
intersection approach would be inefficient.  The power supply would drain faster and the storage 
devices would reach capacity sooner.  Thus, a triggering scheme was used to determine when to 
collect data.  In particular, data were only written to the storage devices when a vehicle was 
present on the intersection approach.  When no vehicles were sensed, the DAS entered a low-
power mode in which the camera and assorted other components were powered off or put into a 
standby mode.   

The frequency with which data were collected from the stop-controlled intersections was 
dependent on the traffic volume at a given site.  Sites with higher traffic volumes placed higher 
demands on the DAS, consuming battery life at a higher rate.  On average, data retrieval 
occurred every five (Meadow Creek intersection) to seven (Nellies Cave intersection) days.  

Trained data retrievers maintained each of the sites in order to eliminate down time in 
which data were not collected.  The system was temporarily shut down for approximately two 
minutes in order to replace the DVR, memory card, and batteries.  

Following data retrieval, the files were transported to VTTI and uploaded onto the VTTI 
database.  Each of the files was named based on the intersection, day, and time at which they 
were retrieved.  This process was completed automatically using a custom software program.   

Data Overview and Post-Processing  

To overcome limitations present in the raw dataset, an extensive post-processing effort 
was undertaken.  Post-processing applied a series of data cleansing, extrapolation, and smoothing 
techniques to prepare the dataset for analysis.  The following sections first describe the raw 
dataset that resulted from the data collection effort.  Next, the validation procedure and 
subsequent analysis to validate the DAS and post-processing method are presented.  Finally, the 
post-processed data are described and summary statistics for the final dataset are provided.  This 
final dataset was used for the remaining analyses described in the subsequent sections. 

 
Raw Dataset 

Data were continuously collected at six stop-controlled intersections in Montgomery 
County, Virginia.  The data were natively recorded by the DAS in two file formats.  The first file 
type stored the parametric data in a compact binary format.  In conjunction with the binary files 
an MPEG4 video file was written.  Each of these files was written for every hour of clock time 
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(e.g., 48 files per day).  The total number and size of files collected for each intersection are 
provided in Table 3. 

Table 3. Raw data collection file information. 

INTERSECTION 
NUMBER OF 

BINARY 
FILES 

SIZE 
(binary) 

NUMBER 
OF VIDEO 

FILES 

SIZE 
(video) 

Meadow Creek & Childress  
(2 approaches equipped) 

3,270 2.59 GB 2,732 574GB 

Clubhouse & Lusters Gate 
(1 approach equipped) 

1,501 568 MB 1,205 169 GB 

Fairview Church & HW8 
(1 approach equipped) 

1,331 622 MB 1,331 119 GB 

Nellies Cave & Woodland Hills 
(1 approach equipped) 

1,192 483 MB 1.027 142 GB 

Plank & Lusters Gate 
(1 approach equipped) 

1,659 384 MB 1,147 94.8 GB 

TOTAL 8,953 2.06 GB 6,416 1.10 TB 
 

The raw dataset was converted from binary to SQL database format to allow rapid testing 
of algorithms.  The raw SQL dataset is essentially a copy of the binary files stored in a single 
clustered index table with null values removed.  This resulted in a table containing 135,063,981 
rows and 38 columns.   

The raw data were limited in utility.  The best radar sensor available at the time of the 
stop-controlled data collection was the AC20.  While the AC20 likely works well in its intended 
application, performance was disappointing when it was placed at the intersection.  Although the 
radar did return accurate measurements of range and velocity, it did not reliably return these 
measures for a given vehicle.  It was common for the sensor to provide sparse data such that a 
measurement was returned at rates well under the data collection rate.  Data dropouts were also 
common in which a vehicle was only returned for a portion of the overall approach.   

In addition, the radar sensor did not provide a unique vehicle ID.  The track ID variable 
used by the sensor would repeat as soon as the vehicle with a given ID was not visible.  For 
example, three vehicles approaching the intersection may be assigned IDs 1 through 3  If a fourth 
vehicle were to enter the field of view of the sensor just after vehicle two exited the view, the 
new vehicle would be designated as vehicle two as well.  For the analysis it was imperative that 
each vehicle be indexed individually so the algorithm could be executed on each vehicle 
trajectory.  Data provided by each vehicle needed to be continuous in order for the algorithm to 
be functional on each data frame.   

Post-Processing 

Post-processing began once the raw binary files were uploaded to the server at VTTI.  
The first step was to populate a structured query language (SQL) database from the binary data 
files.  This was accomplished by using a file conversion tool programmed specifically for this 
purpose.  The resulting database stores the raw data and does not perform any computations.   
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The erroneous radar returns (e.g., image shadows, trees, deer, etc.) were then cleaned 
from the database.  This process was performed primarily through a filter that passed data 
depending on a combination of values for several metrics calculated by the sensor.  These 
metrics are measures of signal quality and magnitude.  Queries were then constructed to filter out 
the erroneous data.   

Once the first-pass of filtering was complete, a more sophisticated set of Matlab 
programs was developed and executed.  This set of programs performed three primary functions.  
First a program was developed to assign a unique identity to each vehicle that approached the 
radar.  The radar reported the location of 4 vehicles at a time but could track up to 24 vehicles 
simultaneously (i.e., six frames would be needed to report all 24 vehicles).  The radar would 
assign an ID to each vehicle on a temporary basis.  Each time a vehicle was out of view, the 
radar would recycle that ID.  This method used by the radar made the derivation of a unique ID 
difficult.  In addition, IDs were frequently assigned to the inappropriate vehicle (e.g., track 
switching). 

To develop the unique ID and fix the track switching problem, a post-hoc tracking 
algorithm was developed to enhance the radar tracking.  This was accomplished by developing 
software that crawled through the data frame by frame.  For each frame, the associated radar 
returns were compared to the returns in the previous points in time at which the subject vehicle 
was believed to exist in the data.  Thus, even if a vehicle dropped out for some time, the program 
would hold information about that vehicle’s prior dynamic state while waiting for it to reappear.   

The time-based comparison was made by the program for up to 16 simultaneous vehicles.  
For a point to be assigned the current vehicle ID, the tracking algorithm required a series of 
criteria to be met.  The criteria were based on a dynamic prediction of the vehicle’s location at 
the current frame based on the dynamic state of the vehicle during its previous incarnation in the 
data.  This prediction was made using the fundamental kinematic equations of motion.  In 
addition, the time between returns, overall distance traveled for the vehicle, and overall number 
of points returned was also part of the comparison.  For the vehicle ID, the assigned track could 
not last more than 15 s, had to contain at least two data points, have reported ranges greater than 
zero, and travel at least 1 m.  The resulting vehicle ID was a database-wide unique ID associated 
with each vehicle that approached the intersection.  Thus, all of the data points returned from a 
single vehicle were assigned a single ID. 

In conjunction with the vehicle ID, a “fit ID” was also created.  The fit ID was essentially 
a more stringent version of vehicle ID.  Where vehicle ID contained all the data points from one 
vehicle, the fit ID contained only the series of points that include sufficient information for 
repairing broken tracks and deriving the acceleration measure.  For a set of points to be assigned 
a fit ID, they were required to contain at least 10 data points, cover at least 2 m, and drop out for 
no more than four seconds.  It is possible for a single vehicle ID to have multiple associated fit 
IDs.  For instance, consider a vehicle track that was returned by the radar at a long range, then 
disappeared for some time, and then reappeared later.  If that dropout was less than 4 s, a single 
fit ID would have been created; however, if that dropout lasted more than 4 s, a second fit ID 
would have been assigned to the second collection of points within that vehicle ID.  The 
resulting fit ID grouped sets of points together in which it was feasible to perform additional 
post-processing to improve the data. 



 

30 

The dataset contained dropouts in which the radar would stop providing updates for a 
period of time.  In addition, the radar sensor used in this project performed some real-time 
smoothing using a Kalman filter; however, based on the data, it was apparent that additional 
smoothing would reduce data dither.  This dither is inherent in all radar systems as a result of the 
changing scattering center of the returned reflections over time.  Thus, a non-parametric 
smoothing spline was fit to each collection of data points within a single fit ID.  The smoothing 
spline was a knotted piecewise polynomial that responds very quickly to changes in the 
underlying form of the data.  No latency was introduced through the use of this fitting technique. 

The polynomial produced by the smoothing spline was used to repair vehicle ID tracks 
with short dropouts.  Thus, the fit ID provided the means to reproduce a complete vehicle 
approach despite missing data points.  In addition, the derivative of the polynomial function 
created by the spline was used to calculate the vehicle acceleration.  Thus, derived acceleration is 
available within each fit ID.  In general, the fit ID will be used for all analysis as it contains data 
of the fidelity required for assessment. 

In addition to acceleration, four other continuous measures were also calculated.  These 
included the time to intersection (TTI), required deceleration parameter (RDP), traffic volume, 
and brake status.  TTI is a calculated value based on the current distance to the intersection and 
speed of the vehicle.  TTI is believed to be a good approximation of the measure used by the 
human visual system to judge whether or not to stop (Horst, 1990).  It combines the effects of 
speed and distance into a single measure (Equation 1). 
 
Equation 1 

V
DTTI s=   

 
Where:  

V = Vehicle speed at the point when driver initiated braking (ft/s) 
Ds = Distance to the trailing edge of the stopbar or start of perpendicular 

roadway when a stopbar was not present (ft) 
  

 
RDP represents the calculated average acceleration required to stop at the stopbar based 

on the vehicle’s current speed and distance from the intersection.  RDP is an easily interpreted 
variable representing the required braking effort to stop at any point during the intersection 
approach.  This equation is provided below. 
 
Equation 2 

gD
VRDP

s ⋅⋅
=

2

2

   

 
Where:  

V = Vehicle speed at the point when driver initiated braking (ft/s) 
Ds = Distance to stopbar when driver initiated braking (ft) 
g = gravitational acceleration constant (32.2 ft/s^2) 
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Brake status was approximated based on the acceleration data.  Brake status is a binary 
indication of whether or not the driver is pressing the brake.  While this variable cannot be 
directly measured with the radar, it can be accurately approximated.  To approximate brake 
status an algorithm was devised to monitor the acceleration rate throughout each vehicle’s 
intersection approach.  The algorithm first used a ten point zero-phase-shift moving-average-
filter to smooth the acceleration.  The smoothed acceleration was monitored for a change point 
that dropped below -0.075 g.  Searching for this change point allowed vehicles to coast, slowing 
through engine braking, without actively pressing the brake.  This threshold was selected through 
investigation of VTTI databases as discussed below and in Appendix A. 

First, the data used for the validation procedure described previously were used to 
determine the threshold at which the radar would reliably show braking when compared to the 
actual brake status information provided by the vehicle data.  This study indicated that a -0.05 g 
rate was a reliable indicator of brake activation.  Next, stop-controlled approaches in the 100-car 
database were analyzed to determine the minimum acceleration rate present before drivers 
initiated braking (i.e., beyond slowing provided by engine braking).  This threshold was found to 
be approximately -0.06 g.  To ensure that drivers were indeed actively braking, the threshold was 
set at -0.075 g for identifying the initial brake activation.  Data from the 100-car analysis were 
then used to correct the brake point by the average reaction time such that the brake status flag 
was activated when the driver was predicted to have actually pressed the brake.  After initial 
brake activation, the brake flag remained on until the smoothed acceleration variable exceeded    
-0.05 g.  After initial braking, -0.05 g was used as the threshold for determining ongoing brake 
status throughout the remainder of the approach.  Additional details of the 100-car analysis to 
determine the brake activation status are provided in Appendix A.  Each vehicle tracking 
variable and its associated operational definition are provided in Table 4. 
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 Table 4. Variables and operational definitions. 
Variable Operational Definition 

Vehicle_ID Groups a series of radar measurements into a single vehicle observation.  This ID is 
unique across the entire database 

Frame Incrementing counter for the current frame.  Started at one for each file and 
incremented at 20 Hz 

File_ID DAS assigned unique file ID.  One file per hour of clock time was written to the hard 
drive 

Fit_ID Groups a series of radar measurements into a single observation.  This group of data 
contained a series of high quality densely populated vehicle measures.  Only point 
series contained in a Fit_ID were used for deriving measures such as acceleration.   

This ID is unique across the entire database 
Range Range as measured by the radar but cleaned and smoothed during post processing.  

Also, the range was offset such that stopbar or adjacent traffic lane is used as the 
origin (ie. Range=0 is the stopbar) 

Velocity Velocity as measured by the radar but cleaned and smoothed during post processing 
Accel Acceleration as measured by the radar but cleaned and smoothed during post 

processing. 
RDP The kinematically calculated average deceleration required to stop at the stopbar 

given the present vehicle speed and distance to the intersection 
Brake_Status A on/off flag that approximates when the driver is actively braking the vehicle 

TTI The time that will elapse until the vehicle reaches the stopbar based on speed and 
intersection distance assuming there is no change in speed 

Angle Angle as measured by the radar but cleaned and smoothed during post processing 
GPS_Time Common time base that permits synchronizing all four intersection approaches. 

System and Post-Process Validation 

A system accuracy validation was performed to ensure accuracy of the stop-controlled 
DAS and post-processing methods.  A small experiment was devised and executed on the Smart 
Road test track in Blacksburg, Virginia.  The DAS described above was installed at the Smart 
Road intersection and set to collect data in the same manner as the live intersection sites.  Next, a 
series of intersection passes were performed using an instrumented vehicle with an independent 
DAS.   

To evaluate the DAS accuracy over a range of realistic scenarios, a total of 36 runs were 
performed.  These runs included three replicates at 25 mph, 35 mph, and 45 mph stop approaches 
with soft (~0.2 g), medium (~0.4 g), and hard (~0.6 g) average braking rates.  In addition, one 
violation at each speed was also performed. 

The vehicle used for this experiment was a highly-capable VTTI test vehicle.  The 
instrumentation included a high-accuracy differential GPS system that has been validated in past 
studies and measures position to within a few centimeters and velocity within one-fourth of a 
meter per second.  The data collected by the roadside and the in-vehicle DAS were compared 
post-hoc.  Data alignment was performed using the millisecond GPS time recorded in each of the 
two systems.  Each of the reported measures were compared using the vehicle DAS as the ‘true’ 
measure.  Any deviation of the infrastructure DAS from the vehicle DAS was considered error.  
These errors were evaluated to develop an overall estimate of system accuracy.   
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Measurements from both the infrastructure and vehicle DAS were recorded and 
subsequently compared post-hoc (Figure 22).  The figure below depicts an exemplar vehicle 
approach trajectory as measured by the vehicle and infrastructure DAS.  Each subplot contains a 
line series for the post-processed radar data, a scatter plot of the raw radar data, and a line series 
for the vehicle data, as appropriate.  Note that an approach with sparse raw radar data were 
intentionally selected to demonstrate the effectiveness of the post-processing method (only 13 
points were returned by the radar during this approach).  The top subplot depicts the range as 
reported from the three data sources.  On this particular approach, the vehicle was initially 
detected by the radar at 178 m and was tracked up to the stopbar.  The second subplot shows the 
vehicle’s velocity during the approach initially traveling at 11.5 m/s (3.36 mph).  The third plot 
depicts the acceleration as measured by an accelerometer inside the vehicle and the acceleration 
that was computed as the first derivative of the post-processed radar velocity.  Finally, the 
bottom plot depicts the difference between the radar-derived acceleration and directly measured 
acceleration.  For this example the maximum error in the computed acceleration occurred near 
the stopbar and resulted in a 0.03 g difference. 
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Figure 22. Infrastructure and vehicle DAS measurements. 
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Based on the results (Table 5), the final dataset was deemed sufficient for the purposes of 
this analysis.  The overall accuracy levels demonstrated through the validation met or exceed the 
accuracy guidelines presented in the ICAV Task 5 report (Lee et al., 2005).  No speed- or 
approach-type bias was observed in the error data (Appendix C. Thus, the radar error should be 
consistent across a variety of intersection approach types.  There are some occasional large errors 
produced by the radar; however, these events are rare and will be mitigated though the statistical 
techniques used in the subsequent analysis.  Given the moderate quality of the initial data, the 
relatively high accuracy of the final dataset demonstrates a successful post-processing method.  
However, if feasible, future DAS should make use of alternative radar that provides a more 
reliable data source that will not require such an involved post-processing. 

Table 5. Infrastructure DAS system error relative to the vehicle high-accuracy DAS. 
 

 Range (m) Range (ft) Speed (m/s) Speed (mph) Acceleration (g) 
Mean 0.828549 2.71834 0.062148 0.139021 -0.00252 

Standard Deviation 2.40099 7.87726 0.151491 0.338876 0.026217 
 

Post-Processed Dataset 

During post-processing, the data structure was re-organized for ease of analysis and 
efficiency.  This resulted in a database one-third the size of the raw dataset despite containing 
significantly more useable data.  The final database that was used for all analysis contained 
40,996,295 rows.  In this database, there were a total of 311,753 vehicles as indicated by the 
number of Unique Vehicle IDs generated.  The breakdown of traffic at each site is provided in  
Table 6 below.  In addition to the vehicle ID, a fit ID (as discussed in the methods section) is also 
provided in the table.  Recall from the methods section that the fit ID contains the level of 
fidelity needed for assessing frame by frame vehicle trajectories.  

  Table 6. Unique vehicle IDs generated for each site. 
 

INTERSECTION APPROACH UNIQUE VEHICLE IDs UNIQUE FIT IDs 
Meadow Creek & Childress (westbound) 73,328 14,714 
Meadow Creek & Childress (eastbound) 79,510 7,759 

Plank & Lusters Gate 14,152 877 
Clubhouse & Lusters Gate 25,348 1,592 

Nellies Cave & Woodland Hills 22,240 5,073 
Fairview Church & HW8 10,141 610 

TOTAL 224,719 30,625 
 

Event Validation and Video Reduction Process 

The data collected for this study were obtained primarily from an infrastructure-mounted 
radar sensor.  Radar has some additional limitations relative to in-vehicle sensors.  While the 
measurements of speed and range are accurate, it is the association of those measures with a 
particular vehicle that is prone to error.  This means that a vehicle reported by the radar is not 
necessarily a valid vehicle.  The quintessential example of this behavior occurs with large 
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vehicles and trailers.  The radar used for this study would frequently treat a large vehicle as two 
separate targets, particularly if a trailer was in tow.  As a result the subject vehicle may have 
completed a stop, however, the secondary false-target located on the rear of the vehicle or trailer 
would appear to violate the TCD as it was pulled through the intersection at-speed. 

The primary purpose of the video reduction was to validate the events of interest.  It was 
important to ensure that false targets were not inadvertently being included in the sample of 
violating and aggressive driver approaches.  In addition to false triggers, other invalid events also 
needed to be removed from the dataset.  These included violations that were a result of atypical 
scenarios such as a funeral procession and the crossing of in-service emergency vehicles.  All of 
the invalid events were marked and were removed from the analysis.   

The dataset contains over 300,000 unique vehicle trajectories.  A typical validation 
average is five minutes per event, suggesting that well over 600 person-hours would be required 
to reduce all events.  While reducing all of the events would provide an excellent dataset for 
investigation, it was simply not possible to perform within the time and budget constraints of this 
study. 

Therefore, a strategy was devised to methodically select approaches of interest for an 
ICAS investigation.  The selection process occurred through the development of a trigger that 
swept through the parametric data and flagged events requiring attention.  The flagged events 
were automatically collected for easy retrieval and accessible to the data reductionists.  A 
detailed discussion of the method used to identify validation events is available in Appendix B.  

The validation process required a reductionist to view each event.  Once the event was 
opened and viewed, it was logical to collect a few additional measures that were not available 
natively in the data collection system.  These measures included environmental factors such as 
weather, lead and following vehicle presence, violation type, vehicle type, and maneuver.  
However, while these measures were recorded, they were not analyzed as part of this research 
effort. 

RESULTS AND DISCUSSION 

One of the main objectives of this project was to demonstrate that a data collection 
system and data management scheme could be constructed to collect the data required for the 
development of an ICAS threat assessment algorithm.  The second objective was to perform an 
exploratory analysis to demonstrate the efficacy of an ICAS threat assessment.  The following 
results and discussion provide evidence to support the feasibility of an ICAS system.  An 
explorative analysis of the intersection approaches is performed; it includes stopbar behavior, 
stopbar speed, brake onset, and overall vehicle trajectories.  These analyses are performed with 
the goal of working toward the development of an ICAS algorithm. 

Driver Behavior Analyses 

An ICAS algorithm must be capable of predicting the driver’s stopping behavior at a 
distance that provides sufficient time for the driver to stop prior to entering conflicting traffic 
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paths.  The analysis reported in this section has two purposes.  The first is to investigate the 
different types of stopping maneuvers that are performed by drivers as they approach stop-
controlled intersections.  The second purpose is to investigate driver behaviors that are likely to 
be assessed by an ICAS algorithm.   

Stopping Behavior 

In theory, drivers are expected to perform a complete stop each time they approach a 
stop-controlled intersection regardless of the environmental state (e.g., traffic, sight distance, 
etc.).  In practice, however, drivers frequently cross stop-controlled intersections without placing 
their vehicle in a stationary condition.  For this report, these slow-moving violations are referred 
to as ‘rolling violations’. 

Consider a driver approaching a stop-controlled intersection at the suggested speed limit.  
This driver may slow his/her vehicle at a sufficient rate to stop at the stopbar, if required.  
However, if visibility of the adjacent traffic lanes is good near the intersection box, the driver 
may cease braking and perform a rolling violation.  While a rolling violation is technically 
illegal, if the driver is cognizant and prepared to stop it is unlikely that this behavior contributes 
to the target population (i.e., behaviors leading to crashes).   

From the stop-controlled data collected it is clear that rolling violation behavior is very 
common.  If a warning is provided to all drivers performing a rolling violation, a nuisance alarm 
problem is likely to result.  Thus, a binary discrimination based on traffic laws is insufficient for 
determining the algorithm effectiveness.  Rather, a stopping behavior classification scheme is 
required to discriminate the infrequent unsafe behaviors from the numerous safe behaviors.  The 
purpose of this section is to determine the classification system based on driver behavior at the 
collection sites.  This classification system will later be used to determine the algorithm’s 
performance.   

Objective clustering of driver stopping behavior 

Although stopping behavior was classified subjectively as part of the data reduction, 
there are reasons to develop a corresponding objective partitioning scheme.  In particular, 
manual reduction was only performed on a subset of the data and therefore a majority of the 
intersection approaches were not classified in the reduction.  During algorithm development it is 
desirable to use a large dataset.  An objective measure of stopping behavior will provide a 
performance metric that is applicable to intersection approaches that were not considered during 
the reduction.  In addition, objective measures are generally preferred over subjective measures 
due to higher repeatability and accuracy. 

A cluster analysis was performed to objectively explore and categorize stopping 
behavior.  Cluster analysis is a statistical method designed to partition data into subsets such that 
data within each subset shares some common trait.  In the present context the clusters represent 
different driver behavior groups.   

There are several potential measures by which the driver’s stopping behavior may be 
classified.  For instance, the speed at the stopbar may be indicative of the driver’s stopping 
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behavior (i.e., a violator would have a higher speed than a compliant driver).  Other possible 
measures include minimum TTI or average deceleration.  

The variable selected for classifying driver stopping behaviors was the maximum RDP.  
This measure was selected because the value has a direct relationship to the ability of the vehicle 
to stop and is therefore easily interpreted.  For instance, if the maximum RDP is 0.3g, the driver 
could have easily stopped by the stopbar.  On the other hand, a driver with a maximum RDP of 
4g committed to the violation and would not have been able to stop by the stopbar.  The 
maximum RDP was only calculated for ranges greater than 2 m from the stopbar. 

A 2 m cutoff was selected because of the behavior of RDP near the stopbar.  As a vehicle 
draws near to the stopbar, RDP will tend toward infinity regardless of travel speed.  By only 
considering RDP values that occur at a range larger than 2 m, this portion of the RDP trajectory 
is not considered, making the measure sensitive to differences in approach behavior.   

The non-parametric kmeans (MacQueen, 1967) method of clustering was selected for this 
analysis.  Kmeans is a partitional unsupervised learning algorithm that minimizes a measure of 
distance between each data point and the center of the corresponding cluster.  The optimization 
occurs in an iterative process that moves the cluster center and recalculates the distances until a 
minimum is obtained.  Kmeans was selected because it is a  common and well understood 
clustering method (Davidson, 2002) that is computationally efficient (Matlab, 2007) and 
sensitive to rare observations (Hauskrecht, 2003) making it a logical choice for this large dataset. 

The cluster analysis was performed on a subset of the data that contained a sample of 
complete vehicle approaches.  As discussed in the post-processing section, it was not unusual for 
a new vehicle track to be generated when vehicles deployed from a standing queue.  Thus, only 
vehicle approaches in which the vehicle was present from 100 m to 2 m were included in the 
analysis.  The 100 m cutoff also ensures that the vehicle was present for the entire warning 
region which will be important when the clusters generated during this analysis are used for 
algorithm development.  This resulted in a sample size of 30,623 observations.   

The kmeans procedure requires prior selection of the distance measure used for 
optimization, initial locations for the clusters’ centers (seeds), and the number of clusters to 
partition the data.  The squared Euclidian distance was used as the distance metric over which 
the optimization was performed.  Euclidian distance was preferred because of the low 
dimensionality of the clustering measure and ease of interpretation.   

To mitigate the chance of a local optimization, the seed locations were determined using 
three methods.  First, the seeds were allowed to be selected at random.  Next, the seeds were 
selected based on the expected cluster groupings.  These seed values were selected based on 
expert knowledge of vehicle deceleration kinematics.  The last method selected seeds by evenly 
distributing them across the range of the cluster variable.  For each of the three seed selection 
methods the kmeans optimization was allowed 100 iterations for convergence and was replicated 
10 times.  For all seeds and replicates, convergence was obtained and resulted at the same total 
sum of distances.  Therefore, local minimums did not appear to exist in the clustering variable; 
thus, seed selection strategy did not influence the resulting clusters.  
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Selection of the number of clusters was based on the stopping behavior groups described 
in the literature review.  In general, the previous research and experimenter experience suggested 
a range of potential groupings from a simple two level to a more comprehensive five level 
grouping scheme.  The potential groups are provided below (Table 7). 

Table 7. Potential cluster groupings. 

2 Level Clustering 3 Level Clustering 4 Level Clustering 5 Level Clustering 
Violation Stop Stop Conservative stop 

No violation Moderate violation Rolling violation Normal stop 
 Severe violation Moderate violation Rolling violation 
  Severe violation Moderate violation 
   Severe violation 

 

To evaluate the appropriate number of clusters, the kmeans analysis was repeated for 
two, three, four, and five groups.  The quality of the clusters was evaluated through 1) the overall 
and within cluster silhouette widths (Rousseeuw, 1987) and 2) the functional implications of the 
cluster thresholds.  The silhouette width is based on the proximity of an observation to other 
observations in its cluster versus the proximity to observations assigned to its brother cluster; the 
width ranges from -1 to 1.  A positive silhouette width indicates an observation that belongs in 
the assigned cluster; the higher the value, the stronger the association.  Negative values represent 
likely misclassifications.   

Considering the analysis results (Appendix D.), the ‘four group’ classification scheme 
was selected.  Although the two group scheme resulted in the highest overall silhouette width 
(0.9924), the groupings were too coarse to segregate the desired behaviors.  For instance, the first 
group contained drivers who demonstrated a maximum RDP of up to 2.23 g.  It is desirable to 
break this group down further as a driver with a very low RDP should not be grouped together 
with a driver with a 2g+ RDP.  On the other hand, the five cluster model contained too much 
resolution with partitions in the data that were not necessary for the algorithm to discriminate.  In 
addition, the five level models failed to converge in 100 iterations for a few of the replicates.  
This may indicate over-partitioning of the data which could lead to lower repeatability in future 
investigations.   

The three and four cluster models performed nearly identically when the overall 
silhouette widths were compared.  However, the within-cluster silhouette widths tended to be 
better for the four cluster model.  In addition, the clusters created (Figure 23) generate logical 
partitions of RDP.  Cluster 1 consists of the normal driver approach containing nearly 25,000 
approaches with an average RDP of 0.25 g.  Cluster 2 contained 5573 drivers with an average 
RDP of 0.75 g and likely contains most safe rolling violations.  Cluster 3 contained 51 drivers 
with an average RDP of 3.15 g representing violations.  Cluster 4 contained the most severe 
violations with only four drivers and an average RDP of 9.8 g.  The error bars displayed on the 
figures represent the 5% and 95% of the population determined by a distribution fit, discussed 
below. 
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The cluster analysis provided a partitioning scheme to describe stopping behavior within 
the sample provided.  However, clustering in itself does not describe how the population is 
distributed into the partitions.  To obtain this information, a distribution fit was performed to the 
overall max RDP measure and within cluster groups.  A variety of distributions were considered 
including normal, exponential, inverse Gaussian, Generalized Pareto, Rayleigh,  Birnbaum-
Sanders, and Gamma.  However, the best performing and most applicable distribution for the 
measure was the Generalized Extreme Value (GEV) distribution.  The GEV distribution is a 
family of continuous probability distributions that are well suited for modeling the tails of other 
distributions (Kotz and Nadarajah, 2001).  As such, it is particularly well suited for the max RDP 
measure that was used as the clustering measure.  In addition, the GEV is good for capturing 
skewed data.  This data includes unusual events which are of particular interest in this 
application (e.g., serious violations which are uncommon).  Finally, when graphically comparing 
the GEV to the other potential distributions listed above, the GEV was superior at capturing the 
empirical distribution of the data. 

To ensure that the GEV was appropriate, a one sample Kolmogorov-Smirnov (KS) 
goodness-of-fit test was performed.  The KS test is a statistical comparison between the 
empirical distribution function of the data and the theoretical underlying population distribution 
(Chakravart, Laha, and Roy, 1967).  The KS test can be sensitive to large data samples, thus the 
datasets were ordered and down-sampled to 50 equally distributed observations.  These 50 
observations were used to construct the cumulative distribution function which was then 
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compared to the GEV using the KS test.  The KS test was significant at a 0.05 alpha for the 
overall max RDP (p=0.195) as well as for each of the within-cluster groups (Appendix D.).  
Thus, the GEV distribution may be used to model driver stopping behavior at stop-controlled 
intersections.  The resulting cumulative distributions are provided below (Figure 24) with the 
parameter estimates provided in Appendix E.  
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Figure 24. Cumulative distribution for the overall max RDP exhibited by drivers as they approached the 

stopbar. 
 
For the overall distribution, the average driver RDP was 0.35 g which is consistent with 

typical driver braking levels.  Ninety-five percent of the population will approach the stopbar 
with an RDP of 0.8 g or less.  This suggests that most drivers approach the stopbar with an RDP 
that allows them to come to a complete stop if required.  However, as will be demonstrated in the 
subsequent section, most of these drivers will roll through the intersection without bringing their 
vehicle to a complete resting state.  These rolling violations result in the seemingly high RDP 
values which represent deceleration rates at which most drivers would not intentionally brake. 

The GEV fit also works well for describing the distribution of drivers within each of the 
cluster groups created (Figure 25).  These GEV fits were used to calculate the error bars 
displayed in Figure 23.  While the first cluster contains considerably more data than any of the 
other three clusters, it is also substantially more compact.  As the clusters’ average RDP 
increases, the number of observations decreases and the variance increases.  The fourth-cluster 
fit is based on only a few data points and is explorative in nature.  Considering the four cluster 
scheme and the data reduction results described in a previous section, it appears that the target 
groups are primarily contained in the third and fourth clusters.  These two clusters represent 
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drivers that violate at speeds that do not permit them to come to a complete stop prior to entering 
adjacent traffic. 
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Figure 25. Cumulative distribution for RDP within each of the clusters 

Stopbar Speed Analysis 

The average RDPs found for the cluster analysis suggested that a large portion of drivers 
do not completely stop at the stopbar.  These drivers are performing a “rolling stop” (i.e., a low 
speed violation performed by an attentive driver).  This type of stopping behavior is performed 
intentionally by a driver that does not want to come to a complete resting state.  Therefore, if a 
warning is issued to this driver it will likely be considered a nuisance.  Such nuisance alarms will 
have a negative impact on driver acceptance which may reduce the effectiveness of a necessary 
alert.     

To investigate the stopbar speed of drivers at stop-controlled intersections, the 
distribution of minimum speed from 2 m prior to the stopbar up to 1 m over the stopbar was 
evaluated (Figure 26).  This region was selected because it allows for variations in the location 
where drivers stop.  Only vehicle approaches in which the vehicle was reported traveling through 
the stopbar region were included in the analysis for a total sample of 28,880 observations.  As 
expected, a significant number of drivers did not fully stop their vehicle.  Half of the drivers 
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maintained a speed of 2 m/s (4 mph) or more as they crossed the intersection.  However, 90% of 
the drivers exhibited a minimum stopbar speed of less than 4 m/s (9 mph). 
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Figure 26.  Empirical cumulative probability of stopbar speed at stop-controlled intersections. 

 
This overall distribution may be partitioned into the driver stopping groups defined by the 

cluster analysis.  The behavior grouping provides insight into the relationship between the RDP 
measure of stopping behavior and the driver’s corresponding stopbar speed.  Figure 27 depicts 
the distribution for stopbar velocity for each of the clusters.  A generalized extreme value 
distribution was fit to cluster 1 while normal distributions were fit to clusters 2, 3 and 4 
(parameters are provided in (Appendix F.).  However, the distribution fits for clusters 1 and 4 are 
for explorative purposes only.  Cluster 4 only contains four observations which are not sufficient 
for modeling the population.  Cluster 1 exhibited a mixed distribution with a substantial number 
of drivers completing a full stop; only the drivers that did not stop are modeled by the depicted 
fit.  

As expected, stopbar speed tends to increase with the stopping behavior group.  The 
cluster analysis suggested that the goal should be to warn all drivers in clusters 3 and 4.  It also 
suggested that warning drivers in the tail of the cluster 2 distributions would not be considered a 
false alarm.  This logic suggests that a minimum speed threshold of 4.4 m/s (10 mph) may be 
appropriate as a warning criterion.  Any driver that is traveling at less than this speed threshold 
would not be warned.  As illustrated in Figure 27, a speed threshold of 5 m/s (11 mph) is 
predicted to warn over 99.9% of the drivers in the third and fourth cluster while only providing 
alerts to 20% of the cluster 2 drivers.   
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Figure 27. Distribution of stopbar speed partitioned by cluster.  Curve fits for clusters 1 and 4 are for 

explorative purposes only. 

Brake Onset Analysis 

The literature reviewed in the introduction suggested that nuisance alarms should be 
minimized to ensure warning acceptance and effectiveness.  One potential method to avoid 
alerting an attentive driver is to monitor the brake status.  If the driver is braking, it may be 
reasonable to assume that he/she is aware of the intersection and does not require an alert.  Thus, 
when the driver is actively braking, an ICAS algorithm would suppress the warning regardless of 
the vehicle’s other kinematic measures.  To investigate the use of brake status as a component of 
the algorithm, a box plot of brake onset for clusters 1 through 3 was drawn (Figure 28).  A box 
plot for the fourth cluster is not included as only one driver in this group applied the brakes 
during the approach.  Cluster 3 only includes ten observations as the rest of this group also did 
not press the brake during their approach.  Thus, the box plot is explorative. 

A box plot is a statistical method that visually shows the empirical distributions of 
different populations without any assumptions of the underlying distribution.  Most of the data 
within a group is contained inside the box which is bounded by the first and third quartile.  The 
line within the box represents the median.  The whiskers depict the regions that lie within 1.5 
times the corresponding quartile.  Values outside the whisker are unusual observations and may 
be treated as outliers.   
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Figure 28.  Box plot for brake onset. 
 

The overlapping boxes indicate that a statistical difference for the onset of braking is 
unlikely.  It is interesting to note that the conservative drivers of cluster 1 appear to brake closer 
to the intersection.  This result was initially unexpected but may be explained by the approach 
style of the conservative drivers.  Discussed further in the subsequent section, drivers in cluster 1 
tended to initiate slowing earlier by coasting; thus, taking advantage of engine braking without 
actually applying the brake.  At some point closer to the intersection an increase in slowing is 
required such that the brake is eventually applied.   

 
The primary lesson that should be extracted from this plot is that conservative drivers do 

not necessarily brake further from the intersection than do aggressive drivers.  Thus, algorithm 
designers should not assume that a braking criterion in the algorithm will preclude compliant 
drivers from receiving a warning.  It may, however, help to suppress the warning for aggressive 
drivers that will perform a compliant stop. 

 
Given that group differences for drivers that apply the brake do not appear to exist, the 

groups were collapsed while the distribution of brake onset was evaluated.  Brake onset followed 
a normal distribution (Figure 29 & Figure 30, parameters available in Appendix G.).  The 
distribution of braking was calculated using both distance and TTI as the dependent measures.  
There are indications that TTI is a better measure for representing variables such as brake onset 
because it is a construct thought to be used by the human visual system to judge when slowing 
should occur.   
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Figure 29.  Cumulative distribution of brake onset as a function of distance to the intersection. 
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Figure 30.  Cumulative distribution of brake onset as a function of TTI. 



 

46 

 
In general, 99% of the drivers appear to have applied the brake by 51 m or a TTI of 4.3 s 

or greater.  This brake onset does provide support for the use of a brake onset component in an 
ICAS algorithm.  Smart Road experiments testing an ICAS warning interface have suggested a 
timing of 2.44 s TTI for issuing a warning and obtaining a high compliance rate.  Based on the 
data above, most drivers that will brake would have applied the brake prior to this warning range. 

Investigation of Driver Trajectories 

Moving beyond the investigation of driver behaviors at a specified point, it is important 
for an ICAS algorithm to consider measures across the entire intersection approach.  The 
algorithm will need to operate on a continuous basis in order to provide a timely warning to the 
violating driver (Neale et al., 2005).  Considering the exploratory nature of this project the 
vehicle trajectories will be graphically analyzed for trends that may be exploited during future 
statistical analysis.  It is beyond the scope of the present work to develop statistical methods to 
fully characterize the trajectory data. 

Plots of the vehicle kinematic measures provide insight into the differences between 
driver groups that may be used for threat assessment.  A figure for each kinematic variable used 
in this study is provided below along with a discussion of the characteristics of the plot.  Each 
plot was created by calculating the average of the depicted kinematic measure every 2 m from 
the stopbar to 100 m from the intersection.  The observations used to produce the figures are the 
same sample that was described in the driver stopping behavior section above.  For the sake of 
clarity, the figures in this section only depict the mean of each measure.  When applicable, the 
confidence intervals for the data will be described.   

The velocity trajectory plot (Figure 31) demonstrates the large separation between the 
cluster 4 stopping behaviors.  While caution should be exercised not to over-interpret the small 
sample in this group, drivers did tend to exhibit higher velocities that demonstrate a minimal 
decrease over the entire intersection approach.  Cluster 1 also tends to exhibit a different 
approach than the other clusters.  As described above in the brake onset results, drivers in cluster 
1 brake earlier resulting in a lower velocity at the maximum range reliably measured by the radar 
(100 m). 
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Figure 31. Mean velocity trajectory of vehicles partitioned by the stopping behavior cluster. 

 
 

The second cluster parallels the velocity trajectory exhibited by the first cluster.  It 
appears that drivers in cluster 1 and 2 are similar except in their desired stopbar speed.  
Functionally, their velocity patterns are identical, except cluster 2 drivers appear to brake later 
and thus carry more velocity into the intersection creating the “rolling stop” behavior.   

Clusters 3 and 2 are extremely similar at longer distances from the stopbar.  As the 
intersection is approached, the two curves deviate with cluster 3 drivers carrying much higher 
speeds into the intersection than cluster 2.  Partitioning drivers from clusters 2 and 3 will be the 
challenge for an ICAS algorithm.  For the mean velocity depicted, the curves for these two 
groups diverge around 33 m.  This distance from the intersection is likely sufficient for providing 
a warning to drivers.  However, when the confidence intervals are considered, the point of 
separation (between the 15% and 85% confidence limits) is reduced to just 10 m.  This distance 
may not provide sufficient warning time for higher speed approaches. 

Like the velocity trajectory plots, the acceleration plots also provide substantial insight 
into the differences among the driver stopping behavior clusters (Figure 32).  Drivers in the 
fourth cluster exhibit a minimal amount of braking early in the approach which tends to drop off 
to nearly no braking after that point.  It is doubtful that this mild acceleration is indicative of an 
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intentional violation as none of the intersections have sight distances that would permit drivers to 
see the adjacent traffic at the speeds exhibited by this group.  It is possible that this early 
acceleration was the result of some other intersection characteristics (e.g., the incline present at 
the Nellies Cave intersection). 

0 33 66 98 131 164 197 230 262 295 328
Range (ft)

0 10 20 30 40 50 60 70 80 90 100
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Range (m)

A
cc

el
er

at
io

n 
(g

)

 

 

Cluster 1
Cluster 2
Cluster 3
Cluster 4

 
Figure 32. Mean acceleration trajectory of vehicles partitioned by the stopping behavior cluster. 

 
Clusters 1, 2, and 3 all exhibited similar decelerations for the first 50 m of the approach.  

Cluster 1 drivers demonstrated the lowest acceleration initially, likely because they pressed the 
brake furthest from the intersection, providing more time over which their speed was able to 
decrease.  Interestingly, the cluster 2 drivers appear to brake harder toward the end of the 
intersection approach.  This may indicate that this group of drivers is more aggressive with their 
approach behavior.  These drivers are aware of the intersection and initiate braking fairly early, 
but carry more speed further into the intersection and brake harder and later than cluster 1 
drivers.  Drivers in cluster 3 may initiate braking such that they can stop if cross traffic is 
present.  However, it appears that at around 40 m, these drivers may feel confident enough that 
cross traffic is not present such that they cease braking behavior.   

The velocity plots indicated that clusters 2 and 3 would be difficult to discriminate.  This 
discrimination may actually be somewhat more sensitive for acceleration.  In particular, the 
cluster 3 group appears to stop braking earlier in the approach than does cluster 2.  This behavior 
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may indicate an intentional violation of the stop-controlled intersection.  However, clusters 1 and 
2 are actually more similar with regard to their acceleration patterns.  Perhaps the algorithm will 
be most effective if it considers a combination of speed and acceleration to take advantage of the 
strengths of each measure. 

In terms of algorithm assessment, RDP appears to have some significant advantages over 
the other kinematic measures (Figure 33).  In particular, the confidence intervals for clusters 1 
and 4 never overlap at any point during the entire intersection approach.  Again, care should be 
taken not to over interpret cluster four; however, this suggests that discrimination between these 
groups will be more effective than for any other kinematic measure.  The cluster 1 and 4 groups, 
in general, are substantially more divergent from every other group demonstrated by the 
additional kinematic measures.  The difficulty in discrimination is once again apparent when 
clusters 2 and 3 are compared.  The confidence limits of these two groups do not completely 
diverge until the intersection stopbar is within 10 m.  It is likely that some drivers in cluster 2 
will be warned in order to catch most of the drivers in cluster 3.  However, the drivers on the tail 
of cluster 2 will have relatively aggressive approaches and will contribute to roughly less than 
5% of the overall population based on the models presented in the cluster analysis. 
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Figure 33.  Mean RDP trajectory of vehicles partitioned by the stopping behavior cluster. 
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The TTI trajectories contain the largest variability of any kinematic measure (Figure 34).  

The spikes present in the data represent locations in which vehicles began to enter queues at the 
intersection.  When a vehicle slows, the velocity approaches zero which in turn causes TTI to 
approach infinity.  Thus, the TTI for any given vehicle may tend toward infinity at a variety of 
locations depending on the queue length at a specific stop-controlled intersection.  However, this 
behavior is one-sided such that TTI could make an effective algorithm component if the 
algorithm looks for values below a set value.  This value, however, must be dependent on the 
distance to the intersection as TTI will always approach zero as the intersection stopbar draws 
nearer. 
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Figure 34. Mean TTI trajectory of vehicles partitioned by the stopping behavior cluster. 

 

From the figure above it appears that only clusters 1 and 2 regularly approached the 
intersection with a queue.  Drivers in cluster 1 tended to encounter queues more frequently and at 
greater distances than cluster 2.  If the cluster 2 TTI trajectory is projected for cases in which the 
queue was not present, it does not appear substantially different than cluster 3.  This may indicate 
that TTI is not the optimal measure for determining when the warning should be initiated. 
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LIMITATIONS OF THE PRESENT STUDY 

As with most research projects, there are certain limitations that need to be considered 
when interpreting the results.  First, the geographic region was limited to southwest Virginia.  It 
is possible that intersection approach behavior depends on regional differences which could 
affect the some of the presented results.  Furthermore, the data collection took place over two 
consecutive months at each site.  Thus, the database collected may not reflect seasonal 
differences in driving behavior.   

Placing the DAS at the intersection was required to obtain the volume of data necessary 
to construct a valid ICAS algorithm.  However, placing the data at the intersection rather than in 
the vehicle has certain limitations.  This study did not provide information about the driver 
actions that led up to the violation.  For instance, it is not be possible to know for certain whether 
a violation was intentional or unintentional. 

Finally, the radar used for this research did not perform at the level anticipated.  The 
radar tended to provide sparse data where continuous data should have been provided.  This 
resulted in a significant post-processing effort to improve the data.  During this effort only 
vehicle tracks that contained sufficient fidelity were carried through to the analysis portion of the 
study.  While there was no direct evidence to suggest that this systematic selection resulted in 
confounding the data, it is possible that certain types of vehicles or vehicle approach 
characteristics were prone to degraded radar performance.  Thus, a certain type of vehicle or 
vehicle approach may be unknowingly underrepresented in the dataset. 

FINDINGS AND CONCLUSIONS 

The primary objective of this research project was to collect a database that could be used 
to develop ICAS algorithms and to provide a proof-of-concept for the efficacy of an ICAS threat 
assessment. An explorative analysis of driver stopping behavior including the vehicle trajectories 
was performed.  The results presented indicate that an intersection collision system for stop-
controlled intersections is feasible.  The following primary conclusions are provided: 

• It is feasible to develop and install a non-obtrusive self-contained DAS for collecting 
continuous vehicle data from stop-controlled intersections.  While this data collection 
was occurring, higher quality radar has become available that will provide more accurate 
data that will require less post-processing and alleviate the issues with dropped vehicle 
tracks.  Future studies should incorporate this radar into their data collection efforts. 
 

• Data from the DAS can be successfully mined to explain driver behavior through 
monitoring vehicle kinematics.  In particular, speed, distance, and acceleration 
trajectories for drivers that stop and violate can be compared.  This DAS cannot capture 
in-vehicle driver characteristics, such as distraction.  Driver-level measures such as this 
must be captured using in-vehicle methods and may be best evaluated during a FOT with 
an algorithm based on data such as the data recorded herein. 
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• Driver stopping behavior can be grouped by differing styles.  Most drivers exhibit 
compliant and non-aggressive intersection approaches.  The sample of intersections 
studied suggests that approximately 18% of drivers will perform a more aggressive 
approach and tend not to slow their vehicle below 4 m/s (10 mph) while crossing the 
stopbar.  The cluster analysis suggested that this may be a good starting point for a low-
speed threshold in the algorithm. 
 

• A step in ICAS development will be defining the target population.  This determination 
should be made cooperatively by state and federal DOTs, OEMs, policy makers, and 
other stakeholders.  To assist in this decision, Table 8 provides a summary of the target 
population as a function of the stopbar speed and the minimum RDP.  The final target 
population should be based on integration of the data provided in this report with 
additional research projects.  In particular, future research should work toward 
determining a relationship between the driver’s behavior at the stopbar and crash risk.   
 

Table 8:  The four selected violation threshold criteria and the resulting samples.   
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2.2 m/s (5mph) 0.34g 35.5% 36.5% 17.6% 100% 100% 100% 
4.52 m/s (10mph) 0.80g 5.5% 5.0% 0% 27.7% 100% 100% 
6.72 m/s (15mph) 1.36g 0.6% 1.1% 0% 4.2% 99.9% 100% 
8.92 m/s (20mph) 2.00g 0.2% 0.3% 0% 1.2% 93.8% 100% 

 
 

• For drivers that brake during the intersection approach, there do not appear to be any 
significant differences in brake onset for different stopping types.  This implies that brake 
status early in the approach does not indicate that a driver is attentive to the stop sign.  
Brake status may be used to suppress warnings for aggressive drivers who will comply 
with the stop sign and do not require an alert. 
 

• The trajectories of the vehicles approaching a stop-controlled intersection tend to diverge 
for the different stopping clusters upstream of the stopbar.  Some measures such as RDP 
appear to be better predictors of stopping clusters than other measures.  In addition, it 
appears that increases in algorithm performance may be obtained by combining several of 
the measures during threat assessment.  Overall, the exploratory trajectory analysis 
provides evidence for the feasibility for the success of an ICAS threat assessment at stop-
controlled intersections. 

OBSERVATIONS AND FUTURE DIRECTIONS 

The research discussed herein is a key step in the development of an ICAS.  Nonetheless, 
future research will be required to bring the ICAS concepts into fruition.   
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1. VTRC and other state and federal DOTs must work with industry to apply the methods 
devised in this research to signalized intersections.  An expanded database of both 
signalized and stop-controlled intersections should be obtained in future analysis to fully 
develop driver approach models across a wide range of intersection geometries, localities, 
and control types. 

2. An algorithm must be devised and tested using the collected data.  By overlaying an 
algorithm on the collected data the actual performance of an algorithm can be measured.  A 
variety of algorithm types should be devised and tested using a systematic optimization 
procedure.  The end result of this research should be an optimal ICAS threat assessment 
algorithm.  Several decisions will need to be made during this process.  Many of the 
decision regarding the algorithm formulation can be made objectively by the researchers.  
Other decision, such as who to warn should be jointly determined by state and federal 
DOTs, OEMs, and other stake holders. 

3. The warning interface must be optimized by researchers.  Studies should be completed to 
determine the appropriate modalities and physical locations for the driver vehicle interface 
(DVI).  There is an interaction between the algorithm timing and the effectiveness of a 
DVI.  For example, a more effective DVI will allow the driver to be warned later in the 
approach.  DVI tests are planned as part of the CICAS -V project and should eventually be 
integrated with the results of this research to verify the algorithm feasibility.   

4. A full cost benefit analysis should be performed using information from the VTRC and 
other state DOTs, OEMs.  Warning effectiveness should first be evaluated based on the 
results from the algorithm development and DVI experiments.  The effectiveness data 
should next be combined with crash statistics to determine the national benefit in terms of 
reduction in injuries and loss of life.  Finally, state DOTs and OEMs can provide cost 
estimates for installing and maintaining the roadside and in-vehicle equipment required for 
the ICAS system.   

5. In addition to the human factors work, a significant volume of engineering development 
must be completed for an ICAS to become reality.  Engineers need to develop the on-board 
equipment, the roadside equipment, and the communications backbone necessary to 
support such a system.  These systems will need to meet specifications necessary to 
compute and deliver the warning in a timely and appropriate manner.   

6. After integrating all the components of the threat assessment algorithms, the warning 
interface, and the hardware/software, the entire system must be validated.  This validation 
should include a large scale FOT to demonstrate the system’s effectiveness on the open 
roadway under natural conditions.  The VTRC is a stakeholder and should be involved in 
the planning and execution of the FOT.  Furthermore, if the FOT is performed in Virginia 
the local VDOT region should be used for planning, engineering, and installation 
assistance. 
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COSTS AND BENEFITS ASSESSMENT 

The data collected through this study provides the first naturalistic dataset on stop-
controlled intersection approach behavior and represents the first step towards the development 
of an algorithm for collision avoidance at stop-controlled intersections.  The data indicate that 
those drivers most likely to violate the stop-controlled intersection at a high rate of speed can be 
identified at a distance sufficient to provide a warning and hopefully prevent a collision with a 
crossing vehicle.  Without a doubt, the infrastructure required to implement a collision avoidance 
system will have a significant cost associated with it.  Additional research will be required to 
determine if that cost can be outweighed by the safety benefits provided by such a system. 
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APPENDIX A. 

DECELERATION TRHESHOLD AND DRIVER REACTION TIME 

Introduction 

The following study was performed to determine the relationship between brake pedal 
status and acceleration for drivers approaching a stop-controlled intersection.  The goal of the 
analysis was to predict driver-induced brake status (on/off) based on the vehicle’s instantaneous 
rate of deceleration.  This relationship was used to infer brake status using radar data which does 
not natively contain brake information.  The primary measures evaluated in this study included 
the deceleration level at which the brake was initially pressed and the time from brake press to 
various pre-determined deceleration levels.  The outputs of this task included a threshold below 
which the brakes will be considered active and the corresponding delay to determine the initial 
point at which the brakes were applied.  This information was used to determine the point of 
brake activation. 

Methods 

The 100-car database was mined for the desired braking information (Dingus et al., 
2006).  This database includes naturalistic continuous in-vehicle data for over 100 participants 
who drove a personal or leased vehicle for one full year.  The parametric data included a variety 
of kinematic and environmental variables collected at 10 Hz.  This parametric data were 
accompanied by a digital video feed containing images of the driver and vehicle environment 
collected at 30 Hz.  The 100-car database was accessed and analyzed using the VTTI Data 
Analysis and Reduction Tool.  

To extract the relevant data samples, a query was created to identify regions in which 
drivers would approach stop-controlled intersections.  From the 1,400 resulting observations, 10 
approaches were selected at random for each of five different vehicle models providing a total of 
60 observations.  Only intersection approaches that contained straight and flat geometry were 
considered in the evaluation.  The task was to determine the threshold values and time offsets for 
each of the approaches.  The parameters that were collected from the database were: 

 
• Trigger ID for each vehicle 
• Vehicle type (e.g. Ford Explorer, Ford Taurus, Chevy Malibu, etc.) 
• Time sync and deceleration values at which time the driver initiated braking; similarly, 

the sync and deceleration values when the car reached -0.05g, -0.075g, -0.10g, -0.12g.  
• Time elapsed before abovementioned deceleration values were calculated.  This was 

obtained by subtracting the sync numbers from the start of braking to the sync number 
when the deceleration reached the specified levels.  
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Results 

Based on the method described above, Table A-1 provides the average deceleration 
thresholds determined for each vehicle.  The table also contains the time it took each vehicle to 
reach pre-determined deceleration values. 

Table A-1. Deceleration thresholds and pre-determined deceleration values from 100-car data. 
CAR  TYPE 

 Chevy 
Malibu 

Toyota 
Corolla 

Toyota 
Camry 

Leased 
Cavalier 

Ford 
Taurus 

Ford 
Explorer 

Average -0.042 -0.040 -0.012 -0.025 -0.052 -0.007 
Std Dev 0.034 0.038 0.022 0.034 0.022 0.017 

Min -0.11 -0.05 -0.04 -0.07 -0.04 -0.04 
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Max 0.01 0.07 0.03 0.04 0.03 0.02 
Average 0.257 0.600 1.450 0.778 1.778 0.840 
Std dev 0.257 0.644 2.514 1.180 1.300 0.609 

Min 0 0 0.1 0 0.6 0.1 
-0.05g 

Max 0.6 2.1 8.5 2.9 4 1.7 
Average 1.600 1.230 2.180 1.200 2.289 1.120 
Std dev 3.090 0.979 2.785 1.217 1.274 0.890 

Min 0.1 0.5 0.2 0.1 0.8 0.3 
-0.075g 

Max 9.8 3.4 9.3 3.4 4.2 3.1 
Average 1.840 1.730 2.520 1.290 2.844 1.3 
Std dev 3.769 1.636 3.134 1.251 1.455 0.885 

Min 0 0.6 0.3 0.1 1.3 0.5 
-0.10g 

Max 12.5 6 10.7 3.7 4.9 3.1 
Average 2.660 2.440 2.810 1.640 3.712 1.460 
Std dev 4.884 2.872 3.252 1.510 1.726 0.916 

Min 0.1 0.7 0.4 0.2 1.7 0.6 T
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-0.12g 

Max 16.2 10.3 11.3 4.1 6.2 3.2 

Conclusion 

The purpose of this study was to determine 1) the deceleration threshold at which it may 
be stated that a vehicle is actively braking and 2) the corresponding time from initiation of 
braking to the selected threshold deceleration value.  Rather than selecting an average threshold 
deceleration value, the 95% value was selected for three primary reasons: 

1. The vehicle data collected for this study were measured by radar.  As radar does not 
directly measure acceleration, the acceleration had to be derived from the velocity.  As a 
derivative, any noise inherent in the velocity data were amplified in the acceleration data.  
Thus, a more strident threshold would minimize early identification of braking. 

2. Drivers initiate braking at a variety of initial levels of acceleration.  It was not unusual for 
the acceleration at the brake onset to be positive (i.e., driver accelerating just prior to 
pressing the brakes).  This explains a number of the low average threshold values 
displayed in the table above.  Given the safety application of an ICAS system, it is 
desirable to select a threshold in which a majority of drivers will have applied the brake. 
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3. The braking points were determined by identifying the threshold deceleration level and 
subsequently subtracting the average time elapsed from the onset of braking until the 
threshold is reached.  Thus, the time measure will take into account the differences in the 
actual brake onset described in the table above. 

The overall average threshold value for the 60 observations was -0.015 g with a standard 
deviation of -0.031 g.  Thus, the 95th percentile driver has initiated braking at a threshold of 
approximately -0.077 g.  From the table above, this corresponds closely to the -0.075 g threshold 
suggesting an average response time value of 1.60 s with a standard deviation of 1.89 s. Thus, 
the brake onset will be identified at 1.60 s before the vehicle acceleration reaches -0.075 g. 
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APPENDIX B.  

VIOLATION TRIGGER PROCESS 
 

The data needs, identified in the methods section, require the validation of aggressive 
intersection approaches.  In particular, it was desired to identify approaches in which drivers 
either committed a violation or performed a stop or near stop in such a way that their behavior 
would be difficult for the algorithm to discriminate.  Thus, the trigger development focused on 
finding a metric that would identify aggressive stopping behaviors.  In addition, a second 
important criterion was to identify a trigger that functioned on sparsely populated data.  As 
discussed in the methods and results section, the radar used for this study did not reliably return a 
measurement for every collection frame.  Thus, the trigger could not operate at a single location 
as it would miss vehicles that were not reported by the radar in that location.  

Several possible trigger strategies were considered with the goal of identifying violations.  
In particular, triggers evaluating the stopbar speed, average deceleration, peak deceleration, and 
minimum speed were assessed.  However, a measure of the average deceleration required to stop 
at the stopbar was identified as the appropriate triggering variable.   

The required deceleration parameter (RDP) is a calculated value computed at each frame 
of data.  RDP is the kinematic relationship between instantaneous velocity and distance to the 
stopbar as described by Equation B-1.   

Equation B-1. Required Deceleration Parameter. 
 

gR
VRDP

**2

2

=  

Where:   V = Instantaneous velocity 
R = Instantaneous range from stopbar 
G = Gravitational constant 

 
RDP has several advantageous characteristics that make it a particularly good metric for 

triggering the data reduction.  First, RDP uses velocity and range which are frequently measured 
by the radar.  This has the advantage of not relying on a derived measure such as acceleration 
which is prone to amplified noise.  Second, RDP is easily interpreted in the context of stopping 
behavior.  A driver that performs an aggressive intersection approach would have to brake hard 
to stop before the stopbar.  Thus, this driver would also exhibit a high RDP.  If that driver did not 
stop, the RDP would likely exceed the capabilities of the vehicle as the stopbar neared.  On the 
other hand, a conservative driver would exhibit a low required deceleration.  Furthermore, unlike 
evaluating velocity at a particular point, RDP can be evaluated at any point along the intersection 
approach and remain valid.  For instance, a driver who initially approached the intersection at a 
high speed followed by a hard brake will be missed by a stopbar speed trigger.  A RDP trigger, 
on the other hand, will catch the high deceleration that was required to slow that vehicle 
upstream of the stopbar.  
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To develop an effective trigger, there are some additional criteria that must be considered 
during the RDP computation.  First, RDP tends towards infinity as the vehicle nears the stopbar.  
This tendency will have a negative impact on the sensitivity of the measure to segregate stopping 
behaviors.  Investigation of RDP indicated that the tendency does not exist for typical 
approaches until the vehicle was within 1 m from the stopbar.  Thus, RDP was only evaluated at 
distances greater than 1 m.  In addition, RDP is a continuous measure existing over the entire 
time period in which the vehicle was tracked.  Thus, to enable a simple trigger comparison the 
maximum RDP was extrapolated and compared to a trigger threshold.  The maximum RDP over 
the entire vehicle approach represents the highest rate at which the driver would have needed to 
stop.  For a violating driver the maximum RDP will exist near the stopbar.  However, for an 
aggressive driver that stops rapidly, the maximum RDP may exist at some point upstream; prior 
to their high deceleration stop.  This makes the trigger particularly advantageous as it is sensitive 
to violators and aggressive drivers as these are the groups of primary interest for the algorithm. 

With the triggering metric identified, the next step was to set a threshold for separating 
the reduction events from the non-reduction events.  To identify the trigger threshold, the 
maximum RDP was calculated for each vehicle approach in the dataset.  The distribution of 
maximum RDP was then analyzed to determine an appropriate threshold.  This analysis will be 
described through the subsequent figures. 

First, in light of time and budget constraints it was important to select a threshold that 
provided a reasonable number of reducible events.  The number of events was evaluated as a 
function of the threshold selected (Figure ).  As the RDP threshold is lowered, the number of 
events rises sharply.  Based on the constraints, a cap was set at 10,000 events, with a desire to 
reduce the number of events to a lower number if possible.  This criterion suggested a threshold 
in the region of 0.8 g to 1.2 g.  While initially these values may appear high, they are actually 
well within the region that provides the data of interest.  Additional details will be provided with 
the figures below as well as during the stopping behavior analysis discussed in the results 
section. 
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Figure B-1. Number of events that would be reduced as a function of the RDP threshold selected. 

 
In conjunction with the results above, the average stopbar speed as a function of the RDP 

threshold was also considered (Figure B-2).  Stopbar speed provides an indication of the severity 
of a violation that is readily understood.  Furthermore, results discussed during the introduction 
indicated that a stopbar speed of 4.47 m/s (10 mph) appeared to separate intentional “rolling 
stops” from a violation resulting from some form of inattention.  Considering the stopbar speed, 
it appeared that a RDP threshold of approximately 1.2 g was appropriate as it corresponded.  To 
ensure that these approaches were obtained a cutoff closer to 1 g looked attractive. 
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Figure B-2. Average minimum velocity for vehicles near the stopbar. 

 
Finally, the empirical distribution of RDP across the entire sample of drivers was 

evaluated (Figure B-3).  With warning systems, such as the ICAS, researchers are interested 
primarily in the tail of a distribution which represents uncommon behavior; in this context, these 
behaviors are dangerous violators.  Considering the distribution, a 1 g RDP threshold addresses 
5% of the sample.  Focusing on the top 5% of the population provides a convenient and logical 
cutoff for investigation.  Furthermore, this cutoff should be conservative as ICAS developers are 
aiming for warning rates significantly lower than 5% to avoid excessive nuisance alarms.  
Setting the reduction threshold for RDP at 1 g provides a conservative cutoff that will include 
nearly all of the severe violations and a sample of the more aggressive intersection approaches. 
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Figure B-3. Empirical cumulative probability distribution for RDP. 
 

Based on the data presented above, a trigger threshold of 1 g was selected for identifying 
the approaches for reduction.  This resulted in the reduction of 6,171 events.  Considering that a 
typical braking maneuver occurs around 0.3 g, the 1g threshold may appear larger than one 
might expect.  There are a few reasons for this.  First, as discussed in the results section, most 
drivers do not come to a complete stop.  Thus, even the drivers performing a slow rolling stop 
will exhibit an elevated RDP; however, these slow rolling cases occur with such frequency that it 
would be a mistake to issue a warning.  Such a low threshold warning system would have an 
impact on driver acceptance and would not be implemented by the automotive manufacturers.  
Furthermore, the purpose of the ICAS system is to mitigate crashes through a violation warning.  
In general, drivers that perform a slow rolling stop are as attentive as a driver that completely 
stops, suggesting no increase in crash likelihood. 
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APPENDIX C.  
STOP SIGN POST-PROCESSING AND RADAR-INDUCED ERROR 

 
Table C-1. Stop sign post processing and radar-induced error. 

 

  
Range 

(m) 
Range 

(ft) 
Speed 
(m/s) 

Speed 
(mph) 

Acceleration 
(g) 

Mean 0.506 1.660 0.164 0.367 -0.013 
Standard 
Deviation 2.154 7.067 0.245 0.548 0.054 

Min -6.579 -21.585  -0.095 -0.213 -0.318  45
 m

ph
 

Max 2.446 8.025 1.520 3.400 0.076  
Mean 1.061 3.481 0.076 0.170 -0.003  

Standard 
Deviation 2.200 7.218 0.159 0.356 0.023  

Min -6.207 -20.364 -0.085 -0.190 -0.140  35
 m

ph
 

Max 4.247 13.934 0.934 2.089 0.047  
Mean 0.833 2.733 0.034 0.076 0.000  

Standard 
Deviation 2.505 8.219 0.102 0.228 0.014  

Min -6.292 -20.643 -0.278 -0.662 -0.115  25
 m

ph
 

Max 5.562 18.248 0.690 1.543 0.029  
Mean 0.829 2.720 0.062 0.139 -0.003  

Standard 
Deviation 2.401 7.877 0.151 0.338 0.026  

Min -6.579 -21.585 -0.278 -0.622 -0.318  O
ve

ra
ll 

Max 5.562 18.248 1.520 3.400 0.076  
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APPENDIX D.  
SUMMARY OF RESULTS FOR THE CLUSTER ANALYSIS PERFORMED TO 

DETERMINE THE APPROPRIATE PARTITIONS FOR UNSIGNALIZED 
INTERSECTION DRIVER APPROACH BEHAVIOR 

 
Table D-1. Summary results from the performed cluster analysis 

   Within Cluster Information Overall Cluster Information 

     Cluster  
1 

Cluster  
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 Clusters Silhouette 

Width 
Sum of 

Differences 
Count 30581 42    

Centroid 0.34418 4.1308    
Standard 
Deviation 0.23626 2.152    

Min 0.000339 2.4224    
Max 2.2254 13.1572    

C
lu

st
er

 

Silhouette 
Width 0.99328 0.35142    

2 0.9924 1896.82 

Count 25083 5499 41     
Centroid 0.25316 0.75972 4.1724   
Standard 
Deviation 0.098582 0.23753 2.1615   

Min 0.000339 0.50647 2.4885   
Max 0.506337 2.42239 13.1572   

C
lu

st
er

 

Silhouette 
Width 0.9221 0.49996 0.1854   

3 0.8453 740.833 

Count 24995 5573 51 4   
Centroid 0.25228 0.75228 3.1587 9.8971  
Standard 
Deviation 0.09762 0.22803 0.93244 2.5392  

Min 0.000339 0.5023 1.9724 7.2506  
Max 0.502221 1.93996 5.15076 13.1572  

C
lu

st
er

 

Silhouette 
Width 0.92056 0.51739 0.56914 0.62755  

4 0.84656 590.728 

Count 21494 6784 2303 38 4 
Centroid 0.22356 0.51428 0.96885 3.5238 9.8971 
Standard 
Deviation 0.070347 0.10409 0.22779 0.79739 2.5392 

Min 0.000339 0.36893 0.74161 2.4224 7.2506 
Max 0.368885 0.741524 2.2254 5.15076 13.1572 

C
lu

st
er

 

Silhouette 
Width 0.8716 0.64893 0.45761 0.76373 0.56416 

5 0.79096 576.093 
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APPENDIX E.  
SUMMARY TABLE OF RESULTS FOR THE GENERALIZED EXTREME VALUE 
DISTRIBUTION FITS AND THE KOLMOGOROV-SMIRNOV GOODNESS OF FIT 

TEST 
 

Table E-1. GEV summary 
Generalized Extremely Value Fit Information 

Centroid 0.3494       
95% 0.8017      

R
es

ul
ts

 

5% 0.1142      

H 0      
p 0.1946      

KSTAT 0.1497      Q
ua

lit
y 

CV 0.1884      

k 0.2787      
k_95% LC 0.2701      
k_95% UC 0.2874      

Sigma 0.1235      
Sigma_95% LC 0.1223      
Sigma_95% UC 0.1248      

Mu 0.2309      
Mu_95% LC 0.2294      

O
ve

ra
ll 

M
ax

 R
D

P 
G

E
V

 F
it 

Fi
t 

Pa
ra

m
et

er
s 

Mu_95% UC 0.2325       

Centroid 0.25228 0.75228 3.1587 9.8971 
95% 0.426 1.2885 5.0285 14.0513 

R
es

ul
ts

 

5% 0.11 0.5187 1.9494 6.8464 

H 0 0 0 0 
p 0.4678 0.7098 0.1571 0.9994 

KSTAT 0.1177 0.0973 0.2152 0.1665 Q
ua

lit
y 

CV 0.1884 0.1884 0.2591 0.6239 

k -0.1249 0.3677 0.0674 -0.0279 
k_95% LC -0.1343 0.3339 -0.3048 -1.6251 
k_95% UC -0.1155 0.4016 0.4396 1.5693 

Sigma 0.0864 0.1224 0.7085 1.8173 
Sigma_95% LC 0.0855 0.1189 0.5351 0.6093 
Sigma_95% UC 0.0872 0.1259 0.9382 5.4205 

Mu 0.2116 0.6292 2.6987 8.8712 
Mu_95% LC 0.2104 0.6252 2.4492 6.4333 

Fo
ur

 P
ar

tit
io

n 
W

ith
in

 C
lu

st
er

 G
E

V
 F

it 

Fi
t 

Pa
ra

m
et

er
s 

Mu_95% UC 0.2128 0.6332 2.9481 11.3091 
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APPENDIX F.  
STOPBAR VELOCITY 

 
Table F-1. GEV fit for Cluster 1. 

 
GEV Fit Information 

      Cluster 
1 

H 0 
p 0.2708 
KSTAT 0.0444 Q

ua
lit

y 

CV 0.0604 

k -0.1392 
k_95% LC -0.1506 
k_95% UC -0.1279 
Sigma 0.9756 
Sigma_95% 
LC 0.9653 

Sigma_95% 
UC 0.986 

Mu 1.203 
Mu_95% LC 1.189 

Fi
t 

Pa
ra

m
et

er
s 

Mu_95% UC 1.2171 

 
 

Table F-2. Normal fit for Cluster 2 through Cluster 4. 
 

Normal Fit Information 

    Cluster 
2 

Cluster 
3 

Cluster 
4 

H 0 0 0 
p 0.1894 0.796 0.9526 
KSTAT 0.05 0.089 0.2373 Q

ua
lit

y 

CV 0.0626 0.1866 0.6239 

Mu 3.8542 11.6836 20.7889 
Mu_95% LC 3.8168 11.0576 14.6622 
Mu_95% UC 3.8917 12.3096 26.9155 
Sigma 1.4254 2.2258 3.8503 
Sigma_95% LC 1.3994 1.8623 2.1811 

Fi
t 

Pa
ra

m
et

er
s 

Sigma_95% UC 1.4523 2.7668 14.356 
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APPENDIX G. 
BRAKE ONSET 

 

Table G-1. Brake onset. 
 

Normal Fit Information 

      Range TTI 
H 0 0 
p 0.7886 0.0761 

KSTAT 0.0295 0.0569 Q
ua

lit
y 

CV 0.0614 0.0604 

Mu 115.6876 6.4111 
Mu_95% LC 115.1761 6.3985 
Mu_95% UC 116.1991 6.4237 

Sigma 26.2639 0.9767 
Sigma_95% LC 25.9071 0.9679 

Fi
t 

Pa
ra

m
et

er
s 

Sigma_95% UC 26.6306 0.9858 


