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ABSTRACT

Stainless steel-clad rebar provides an opportunity to significantly increase the CI
threshold concentration associated with active corrosion initiation compared to plain carbon
steel. However, threshold CI" concentrations for 316L stainless steel-clad rebar are unknown.
Moreover, the impact of possible galvanic corrosion between the clad layer and any exposed
carbon steel core has not been investigated.

The CI  threshold concentrations for corrosion initiation on clad 316L stainless steel (with
a thickness of about 1 mm over a carbon steel core), solid 316LN stainless steel, and plain carbon
steel were examined in saturated Ca(OH), plus various concentrations of NaCl. The
electrochemical properties of “intact” 316L stainless steel-clad rebar were found to be similar to
those of solid 316LN stainless steel according to several electrochemical criteria. The CI
threshold concentrations for corrosion initiation were increased to CI'/OH™ molar ratios as high as
17 to 24 even at high anodic potentials for “intact” 316L-clad and solid 316LN stainless steel,
respectively. Thus, active corrosion of “intact” 316L-clad rebar could be delayed for many years
due to the high CI/OH" molar ratios required at the stainless steel/concrete interface and the slow
transport rate of chloride in concrete. In contrast, the threshold chloride concentration for
corrosion initiation on carbon steel was low (CI/OH molar ratio < 1.5) at all potentials.
Cladding with a physical breech exhibited CI/OH thresholds dominated by the exposed plain
carbon steel. Galvanic coupling between exposed plain carbon steel and the stainless steel-
cladding accelerated corrosion of the plain carbon steel only at and above the CI/OH ratio
necessary for corrosion initiation on carbon steel.
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INTRODUCTION
Corrosion of Carbon Steel Rebar in Concrete

Concrete is approximately 10 times stronger in compression than in tension. Low-cost steel
reinforcement, typically AISI/SAE 1040, has been added to greatly increase the composite tensile
strength in construction applications (Nawy, 2000). However, the corrosion of concrete reinforcing
steel in aggressive environments has been observed for the last 75 years (Tonini and Gaidis, 1980).
Loss of rebar cross sectional area, due to corrosion, results in both a lower tensile strength of the
structure and corrosion product formation that may damage concrete. Corrosion results in the
formation of iron oxides. These oxides occupy a greater volume than the original metal, creating
internal tensile stresses in the concrete, and eventually lead to concrete cracking, spalling, and
rebar/concrete debonding (Mehta, 1986). This damage exacerbates the corrosion process by
creating an easier pathway for oxygen and aggressive ion diffusion to the rebar. In the U.S. alone,
over 50% of the bridges in use are affected by corrosion of the reinforcing steel. Of those 50%,
approximately 20% are known to be structurally flawed (Participant Workbook, 1985). Costly
concrete repairs are often undertaken when non-destructive evaluation indicates extensive cracking
(USDOT, 1998). The economic impact of prevention and repair of damage from rebar corrosion is
a major motivator behind research on the mitigation of reinforcing steel corrosion.

In the presence of a high-pH concrete pore solution, rebar steel is protected from corrosion
by a naturally occurring oxide film (Bentour et al., 1997). Secondary protection may be offered by
deposition of mineral scales inherent to the concrete mix (Mehta, 1986). Such protection of rebar
provided by concrete is highly dependent on both the properties and quality of the concrete. The
quality of the concrete is a function of the initial concrete mix design and greatly affects the
resulting permeability and electrical resistance of the concrete (Hausmann, 1967; Feliu et al., 1989).



Permeability of concrete allows for the transport of corrosive elements such as oxygen and chloride
from the external environment to the rebar surface. The electrical resistivity of concrete is inversely
proportional to permeability of concrete. Low-permeability concrete usually results in longer
corrosion initiation times for rebar in concrete since the diffusion time of aggressive ions to the
rebar surface is prolonged (Bentour et al., 1997). Electrical resistivities of concrete depend greatly
of the degree of concrete hydration and have been measured as high as 10" ohm-cm (oven dried)
and as low as 10° ohm-cm (saturated). Concrete resistivity gives an indication of the relative ease
with which corrosion may occur, since an ionic conducting path is necessary between the anodic
and cathodic reaction sites for corrosion to occur. It has been reported that the probability of
corrosion initiation decreases, from very likely to unlikely, when the resistivity of the concrete is
increased from 6500 ohm-cm to 8500 ohm-cm (Hope and Ip, 1985). The permeability of concrete
is a function of the initial water/cement ratio, the degree of concrete hydration, the size and amount
of aggregate, and the use of concrete admixtures. Generally, a low water/cement ratio results in a
low concrete porosity. A higher degree of porosity results in larger, better-connected, capillary
channels in concrete (Mehta, 1986). The amount and size of coarse aggregates also greatly affect
concrete permeability. Although aggregates themselves generally have a lower permeability than
the surrounding cement, a concrete’s porosity is generally enhanced with increasing coarse
aggregate content and size (Mehta, 1986). This is because as concrete sets, microcracks (generally
larger than the capillaries present in the cement) develop at the transition zone between the coarse
aggregate and the cement paste. The maximum coarse aggregate size influences the amount of
microcracks present at the aggregate/cement paste interface. On the other hand, the use of more
and larger coarse aggregates allows for less paste to be used and can, therefore, reduce the porosity.

The high pH of concrete, generally 12.8 to13.5, allows the formation of a passivating oxide
layer on plain carbon steel rebar (Bentour et al, 1997; Mehta, 1986; Hausmann, 1967). However,
ferrous and ferric oxides and hydroxides are not protective when the pH is less than about 11.5
(Kurtis and Mehta, 1997) or when sufficient chloride ions are present to destabilize them. In
solutions having a moderate pH (approximately 4 to 10), a ferrous oxide forms on the rebar surface,
sheltering the underlying metal from the bulk solution, and maintains the local pH around 9.5
(Uhlig and Greene, 1985). The time until carbonation, chloride ingress, or a combination of both
leads to depassivation is termed the corrosion initiation stage. Corrosion initiation by carbonation
is considered to be a function of the concrete cover and quality only and will not be discussed
further. The intrinsic corrosion properties of the rebar determine the exact values of the chloride
concentration and pH that are required for initiation. The ensuing active corrosion period is known
as the propagation stage (Tuutti, 1982).

The Chloride Threshold for Corrosion Initiation
Mechanisms of Chloride-Induced Corrosion

There is general agreement in the literature that chloride ions lead to depassivation, but the
exact mechanism is not well understood. The critical CI” concentration for corrosion initiation is a
useful metric that helps define the time until corrosion initiation. One theory is that dissolved
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oxygen predominately favors the y-FeOOH conversion reaction. Therefore, localized pitting attack
caused by sufficient chloride ion concentration will preferentially occur at regions of low dissolved
oxygen content (Bentour and Diamond, 1997). The initial oxide film formed on steel in concrete is
Fe(OH),, which is then converted to either ferrous (Fe“) or ferric (Fe3+) oxide (also known as y-
FeOOH) (Bentour and Diamond, 1997). Although y-FeOOH is the more stable of the two oxides, it
forms more slowly. Because these conversions are never complete, chloride ions may compete
with the conversion of Fe(OH), to y-FeOOH by the following reaction:

Fe(OH), + 6Cl" <> FeClg?+20H +¢ 1)

The chloride complex formed in Equation 1 is soluble in the surrounding pore solution and,
therefore, does not provide protection against corrosion of the rebar surface. Pore solutions
containing sufficient chloride concentrations will promote localized areas of depassivation on the
rebar surface where the ferrous oxide has not been converted to y-FeOOH, even if the pore solution
pH is above 11.5.

However, the exact mechanism of breakdown likely differs in the case of a Cr-containing
stainless steel passivated with Cr,O3 or CrOOH. According to the adsorption theory of passivity,
the Cr-rich passive film becomes unstable when chloride ions replace oxygen ions held within the
passive film, causing a difference in electrochemical potential across the film (Rosenberg et al.,
1989). According to the oxide film theory, the Cr-rich oxide layer has inherent defects and pores.
Chloride ions penetrate the oxide layer at these defects due to dissolution of the more reactive
species in the oxide layer (Kurtis and Mehta, 1997). These latter two theories are most applicable
to stainless steel with a bound chromium-rich iron oxide. Chloride adsorption, oxide penetration,
and interference with oxide formation are promoted by raising the electrochemical potential.
Regardless of mechanism, corrosion initiation is a localized phenomenon caused by a sufficient
concentration of chloride ions. The critical chloride content or chloride threshold concentration is
the concentration of Cl  ions that is sufficient to cause active corrosion or induce pitting given
enough time. The chloride threshold is unknown for 316L-clad stainless steel.

For localized corrosion initiation on corrosion-resistant materials like stainless steels, the
threshold potential for pitting and/or crevice corrosion, Eges, has been found to follow the
relationship:

Eitres = A — B log[Cl ] @)

where A and B are constants. The value of B for stainless steel is reported to be between —0.15 and
—0.1 V/decade, depending on temperature (Sedriks, 1996). The critical amount of chloride ions that
causes local active corrosion is known as the threshold chloride concentration. Thus, higher oxygen
levels in conjunction with high chloride would be detrimental because dissolved oxygen (O,) also
raises the open circuit potential (OCP) associated with corrosion. Initiation occurs once sufficient
chloride ion accumulation has depressed the critical pitting potential of the passive steel rebar to
below its OCP (Li and Sagues, 1999). Therefore, the threshold chloride concentration could be
interpreted as the chloride level when Egyes drops to Eqp. In the high-pH concrete pore solutions,



other anions that affect the behavior of Eqes, must also be considered in determination of such a
threshold potential. Ege in concrete is described more accurately as (Kehler et al., 2001):

Eires = A — B log(Cl'/ Z[SO42' + OH’ + other anions]) 3

This is because migration of these other “benign” anions partially offsets the damaging effects of
chloride. Therefore, the molar ratio CI/OH' should always be the method used for expressing the
CI concentration in concrete. A second threshold potential (E;) exists, below which active local
corrosion sites repassivate. E; is also a function of Cl concentration, indicating a Cl” content, below
which repassivation is favored. This potential defines a chloride threshold for corrosion
suppression. These threshold potentials are unknown for 316L-clad stainless steel in a concrete
pore solution containing chloride.

Defining the Active Corrosion State

From a practical standpoint, defining the transition from passive to active corrosion requires
that the conditions favoring depassivation remain over time. Because of this, certain definitions of
active corrosion are less reliable. Observation of the formation of oxides by visual inspection may
not necessarily indicate steady-state active corrosion or, conversely, significant accumulation of
oxides may not occur until some time after the shift to active corrosion. Likewise, during OCP
monitoring, a shift in Eocp may not be detected upon depassivation or may not necessarily mean
significant depassivation, depending on experimental test conditions.

Although it is generally agreed that a unique critical concentration of chloride ions that
leads to depassivation exists, there is little agreement on an exact quantitative amount of chloride
required for depassivating plain carbon steel. The concentration of chloride that causes
depassivation depends heavily on other variables such as oxygen concentration, pH, rebar surface
conditions, presence of other ions in the pore solution, and various concrete properties including
type of aggregate, concrete additives, mix design, moisture level, and air content. Chloride
threshold values published in the literature are generally based upon tests conducted in one of
three experimental setups: rebar cast in concrete, rebar cast in mortar specimens, and rebar in
synthetic pore solution(s). The experimental method chosen has led to different expressions for
the chloride threshold content.

Results from tests conducted in concrete or mortar are commonly presented as the mass of
chloride relative to the mass or volume of concrete, i.e. [kg CI']/ [m3 or kg (concrete)]. Thisis a
relatively simple way to express Cl” concentration in concrete, and it has been documented in
standards (ASTM, 1983; BS 1881, 1988). Despite the ease of using this method, it may not be
adequate for all chloride threshold data since not all of the chloride is necessarily available to
promote corrosion. Soluble CI is usually the culprit in global depassivation of carbon steels.
Presenting the data simply as the mass of chloride over the mass or volume of concrete can be
misleading due to inherently uncontrollable variables when working with concrete. For example,
the influences of bound chloride, precipitated calcium hydroxide, and concrete water content have



been the subject of some debate (Zimmerman et al., 1999; Glass and Buenfield, 2000; Glass et al.,
1997).

Chloride binding is the interaction between porous concrete and chloride ions that results in
their effective removal from the pore solution. A portion of the chloride present in the concrete mix
always becomes bound. One important variable concerning the amount of chloride binding that
occurs is the tricalcium aluminate (C3A) content of the cement (Glass and Buenfield, 2000). A
greater amount of chloride becomes bound with increasing C3A content. This occurs by the
formation of a relatively insoluble hydration compound called Friedel’s salt (C3A.CaCl,-15H,0)
(Kurtis and Mehta, 1997). Other factors including silica fume, granulated blast furnace slag cement
replacement, pore solution pH, cation of the chloride salt, and the water/cement ratio also affect the
chloride binding capacity (Glass and Buenfield, 1997). The effect of chloride binding on the
chloride threshold is unresolved.

Chloride threshold results have also been presented as free chloride (chloride ion
concentration in pore solution, only) or as a chloride (soluble) to hydroxyl ion ratio (Alonso et al.,
2000). Presentation of data via these two approaches takes into account the hypothesis that only
unbound chloride ions contribute to the corrosion activity of steel in concrete. However, presenting
the data this way does not decrease the range of chloride threshold values presented. In some cases
the spread is actually greater (Glass, 2000; Glass and Buenfield, 1997). One possible explanation is
the effect of the water/cement ratio on chloride binding behavior. As the water/cement ratio (w/c)
decreases, free chloride content increases in a non-linear manner. Also, the resistivity of the
concrete and the amount of precipitated Ca(OH), may be affected by a change in moisture content
(Mehta, 1986; Kurtis and Mehta, 1997). Both of these properties affect the corrosion behavior of
the rebar and, therefore, the chloride threshold.

Chloride threshold tests for carbon steel bars studied in synthetic pore solutions show less
variability than the other test methods, possibly due to the elimination of many variables associated
with the concrete matrix and the concrete/rebar interface. Greater control is gained over the
CI/OH molar ratio. However, the results from simulated pore solution tests are more conservative
than tests done in concrete (Yonezawa, 1998). Part of the difference between solution and concrete
testing can be attributed to the presence of solid Ca(OH); crystals at the steel/concrete interface.
Ca(OH); crystals can act as a pH buffer. Dissolution of Ca(OH), crystals during active corrosion
has been observed (Yonezawa, 1998). The Ca(OH), crystals provide an alkali reservoir that can
maintain a high pH, keeping the rebar in the passive range. Kurtis and Mehta (1997) argue that
mineral scales in concrete improve passivity and thus raise the chloride threshold when tests are
conducted in concrete. Although testing in simulated pore solutions may provide results that are
more precise than in concrete or mortars, they are more conservative.

Survey of Existing Methods for Chloride Threshold Determination

Several methods exist for determining the threshold chloride concentrations to initiate
corrosion. However, agreement between threshold chloride contents determined by different
methods has not been accomplished, and not all methods are applicable to all materials. For
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example, a common method for chloride threshold determination on plain carbon steel is
electrochemical impedance spectroscopy (EIS) at OCP for determination of the polarization
resistance, R;, as a function of chloride. The R, value is inversely proportional to the corrosion rate
and, consequently, can be used to describe the corrosion behavior of the rebar, defining it as active
or passive (Jones, 1996). However, this may not be a viable method for stainless steel due to
extended test duration; NaCl saturation of the test electrolyte prior to passivity breakdown; or
uncertainty in the actively corroding area, which must be known to determine R;,. It may be
possible to determine R, for stainless steel under anodic polarization at +200 mV (a conservative
upper bound for the OCP of stainless steel in concrete), as suggested by Bertolini et al. (1996).

Potentiodynamic scans of stainless steel, particularly at high scan rates, can show high
apparent threshold potentials that may or may not be associated with passivity breakdown and the
onset of local corrosion, even in the presence of crevices and chloride (Thompson and Syrett, 1992;
Burstein, 1996). For instance, onset of O; evolution may occur prior to pitting or crevice attack.
Therefore caution must be used when using potentiodynamic methods to study stainless steel rebar.
The most conservative threshold stabilization potentials determined by slow upward scans,
potential holds, or upward steps were found to equal the repassivation potential, E;, determined by
potential step down. The E; is a threshold potential that when exceeded allows pits and crevices to
continue to grow. However, pits and crevices will repassivate at potentials below E,. This is a
more reliable indicator of long-term localized corrosion threshold potentials associated with stable
crevicing or pitting propagation. It has been suggested that this repassivation potential depends on
pit size (Thompson and Syrett, 1992; Dunn and Sridhar, 1995). More recently, however, the
dependency of E; on the amount of corrosion damage has been questioned in the case of crevice
corrosion. It appears that the crevice dimensions control mass transport rather than the depth of
crevice attack (Kehler et al., 2001). The crevice repassivation potential (E,) is the recognized,
reproducible, localized corrosion threshold potential that is independent of scan rate, electrode area,
exposure time, and oxide film thickness. By systematically stepping down the potential after
crevice corrosion has been initiated and propagated for a brief period, the repassivation potential
(E;) can be observed, circumventing the problem caused by the semi-stochastic crevice initiation
stage of attack (Shibata and Takeyama, 1977). To date, conservative E; methods have not been
applied to stainless steel rebar.

Survey of Existing Data for Chloride Initiation Thresholds Pertinent to Concrete

A summary of chloride threshold results for carbon steel and stainless steel in all three of
the common chloride threshold test environments and using a variety of test methods is presented in
Tables 1 and 2.



Table 1. Survey of existing data for the chloride threshold concentration to initiate active corrosion on carbon
steel rebar (% wc = percent by weight of cement; CI'/OH molar ratio). After Glass and Buenfield (1997) and
Alonso et al. (2000).

Reference Environ- Threshold Values or Ranges o .
ment Depassivation
Carbo? .Steel Free detection
(Conditions) Cr ;r‘;:t::c;:l CI/OH" method
(% wc)

Solutions simulating (Hausmann, Solution 0.60 Shift in E ¢

concrete 1967)

Solutions simulating (Gouda and Solution 0.35 Anodic

concrete Halka, 1970) polarization,

shift in E o,
visual
inspection
Steel in alkaline solutions  (Goni and Solution 0.25-0.8  Avg. corrosion
with chlorides Andrade, rate
1990)
Mortar suspensions (Gouda and OPC 242 Anodic
Halka, 1970) BESC 1.21 polarization
Cements with high or low  (Petterson, Mortars Corrosion rate
alkali content 1992; 1994;  80% RH 0.6-1.8 1.7-2.6
1996) 100% RH 0.5-1.7 1.7-2.6
Brit. OPC and Sp. BESC ~ (Andrade, OPC 0.15-0.69 Corrosion rate
(CI" added as admixture) 1986) BESC 0.12-0.44
Three OPC mortar (Hanssonand 100% RH 0.6-14 Corrosion rate,
(external chloride) Sorensen, 50% RH potentiostatic
1988)
Concrete slabs stored in (Petterson, Concrete 1.8-2.9 Corrosion rate
10% seawater 1992; 1994;
1996)
Concrete (external (Lambert et Concrete 3.0 Corrosion rate
chloride) al., 1991)
Concrete with added CI’ (Gouda and OpPC 3.04 Anodic
Halaka, BESC 1.01 polarization
1970)

No pre-cleaning bars (Gouda and OPC 0.6 Anodic
Halaka, polarization
1970)

CI" added as admixture (Kayyaliand  Concrete Assuming
Med. strength concrete  Hague, 1995) 1.15 threshold CI
High strength concrete 0.85 /OH =0.6
High strength concrete 0.80
+ supplement
High strength concrete 0.45

+ supplement + fly ash




Environ-

Reference Threshold Values or Ranges D ivati
Carbon Steel ment epassnia on
(Conditions) Free  rotal Cr detection
Cr (% we) CI/OH method
(% wc)

Cement with different (Hussain et Concrete Assuming
C;A content al., 1995) threshold CI
CA=243% 0.14 0.35 /OH =0.3

C3A =7.59% 0.17 0.62
C3;A = 14.00% 0.22 1.0
Concrete with admixed (Schiessl and 0.5-1 Macrocell
CI and externally Breit, 1996) 1-1.5 currents
exposed to CI
Concrete prisms at (Thomas et Concrete 0.5 Visual
marine exposure al., 1990) observation,
mass loss
Reinforced concrete (Thomas, Concrete Mass loss
prisms with fly ash at 1996)
marine exposure
Fly ash = 0% 0.70
Fly ash = 15% 0.65
Fly ash = 30% 0.50
Fly ash = 50% 0.20
Congcrete slabs with (Hope and Ip, OPC 0.1-0.19 Corrosion rate,
added CI to various 1987) visual
exposure conditions inspection,
mass loss
Simulated pore solution (Li and pH 12.6 0.25-0.7 Shift in E o,
Sagues, pH 135 1.05-1.25 polarization
2001) resistance
Simulated pore solution (Alonso et Solution 0.25-0.8  Various
and mortars al., 2000) Mortars 1.24- 0.39-1.16 1.17-3.98
3.08

OPC = ordinary portland cement, BESC = blast furnace slag cement, RH = relative humidity

Table 2. Summary of reported chloride threshold values for solid stainless steel rebar.

Stainless Steel Reference  Environ- Threshold Values or Ranges Depassivation
(Conditions) ment Free O Total CF  CL/OKC detection
(% we) (% we) method
Concrete prisms (Cox and Concrete >32% Visual
302, 315,316 bar Oldfield, inspection after
1996) 22 years showed
no signs of
active corrosion
Ca(OH); based pore (Bertolini pHY 1-4 Corrosion rate,
solutions etal, 1996) pH12.6 >2 potentiostatic
304, 304L, 316, 316L pH 139 >8 hold at +200
mV (vs. SCE)




The results for carbon steel generally agree that the CI'/OH™ molar ratio threshold is less
than 1 for solution tests, and some results suggest the threshold 1s less than 4 in concrete. However,
stainless steel exposed at OCP in chloride-contaminated concrete showed no signs of active
corrosion after 22 years, and results in solution tests show a CI/OH molar ratio threshold greater
than 8. Stainless steel also exhibited a higher chloride threshold as the pH was raised. However,
little is known about chloride thresholds for clad stainless steel or solid stainless steel tested in a
simulated pore solution at a pH of 12.6 or greater.

Alternative Rebar Types

Epoxy-Coated Rebar

Epoxy-coated rebar is desirable from a corrosion standpoint because it provides both a
physical barrier between the rebar and aggressive ions and electrical insulation. Although epoxy-
coated bars have performed well in laboratory tests, their reported effectiveness in construction
applications has been mixed (USDOT, 1998). Coatings in good condition serve as an effective
barrier against chloride-induced corrosion. However, the weakness of the coating lies in its
susceptibility to mechanical or chemical damage resulting from improper handling or exposure to
ultraviolet rays during storage, transport, or placement of the rebar. Epoxy-coated rebar has been
ineffective in concrete constantly exposed to tropical seawater (Smith et al., 1993). In contrast it
was generally effective in inland concrete exposed only to deicing salts (Smith et al., 1993; Allen,
1993; Sohanghpurwala and Scannell, 1998), despite some reports of problems (Clear, 1996).
Undamaged epoxy coatings usually have a thickness in the range of 130 um to 300 um, which
allows for flexibility without cracking and protection from aggressive ions (Bentour et al., 1997).
However, holidays or pinholes in the epoxy coating may create a super aggressive corrosion
environment due to the crevicing conditions present at the epoxy/rebar interface. This can lead to
epoxy debondment from the rebar by underpaint corrosion processes, which negatively impacts the
structural performance of the rebar (Bentour et al., 1997). Also, the epoxy coating may be poorly
bonded at the rebar-concrete interface, which detrimentally impacts the load bearing capacity of the
reinforced concrete composite. Consequentially, epoxy-coated rebar does not offer an adequate
increase in rebar performance in all scenarios, and alternatives are desired.

Stainless Steel Rebar

Stainless steel is an attractive alternative to carbon steel due to its inherently higher
corrosion resistance. The term stainless steel refers to a class of steels alloyed to improve corrosion
resistance, foremost having a chromium content greater than 12% (Nurnberger, 1996). This
enables natural formation of a passive, chromium-rich, oxide layer. The corrosion resistance
improvements afforded by the chromium addition can be predicted by thermodynamic principles
(Pourbaix, 1974). The corrosion resistance can be increased further by the introduction of
additional alloying elements such as nickel, molybdenum, or titanium (Sedriks, 1996). The Fe-Cr-
Ni alloys are well known to extend the thermodynamic region of passivity to lower pH levels than
possible in Fe-C-Mn alloys (Pourbaix, 1974). Moreover, it is expected that Fe-Cr-Ni alloys would
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possess very high resistances to the pit and crevice corrosion that has been seen under aggregate for
carbon steel in concrete (Wilde, 1972). Stainless steel would likely suffer from these forms of
localized corrosion at only the most severe chloride concentrations and under only the most
oxidizing conditions (Szlarska-Simialowska, 1986). In the event of localized corrosion, attack
might propagate more quickly but should be limited to a much smaller area on stainless steel than
on carbon steel. Localized corrosion might detrimentally impact the mechanical properties of the
rebar, but the effect of oxide formation on concrete performance might be minimal, since corrosion
products would be limited to small areas instead of over the entire surface of the rebar. The major
drawback to employing stainless steel rebar in construction applications is the increased initial cost
over carbon steel. The projected cost for stainless steel rebar is approximately 4 to 8 times greater
than the cost of carbon steel rebar, depending on the stainless steel grade (Nurnberger, 1996).
However, the projected lifetime costs of using stainless steel may be lower than those for carbon
steel rebar, due to the extended structure lifetimes without the need for costly repair and
rehabilitation projects (USDOT, 1998). The degree to which lifetimes are increased and costs are
reduced must be more firmly established.

Stainless Steel-Clad Rebar

A stainless steel-cladding over carbon steel is an attractive alternative to solid stainless steel
from a cost standpoint. Theoretically, the corrosion resistance of solid stainless steel is obtained at
a fraction of the cost. In this study, a type 316L stainless steel-cladding over a carbon steel core
was investigated (cladding thickness = 1 mm). Understanding the CI threshold for stainless steel-
cladding is the first step towards understanding the degree to which lifetimes may be extended and
whether a stainless steel-cladding is equivalent to solid stainless steel of similar composition.

Of great interest is the resulting corrosion behavior when a break in the clad layer, exposing
the carbon steel core, is incurred. This exceptional but critical case could be realized through either
significant localized corrosion through the clad layer or mechanically induced damage (e.g.,
construction site handling or even unsealed cut ends) that exposes the carbon steel core. The two
situations that expose the carbon steel core are fundamentally different. Pitting corrosion creates an
aggressive local environment due to Cr*> hydrolysis and concurrent acidification of the corrosion
site. This would result in rapid galvanic corrosion of exposed carbon steel in the acidified pit type
environment, should the cladding become penetrated. In the case of a mechanical defect, the
localized acidified environment is absent, but the possibility still exists for galvanic corrosion under
conditions above the critical chloride threshold associated with corrosion initiation for the
underlying carbon steel. Exposure of the carbon steel core by either scenario creates a galvanic
couple, with the more noble stainless steel-clad layer being the cathode and carbon steel the anode.
The carbon steel core could be anodically polarized from its OCP to a galvanic couple potential
between that of passive stainless steel and active carbon steel (Jones, 1996). A detrimental result of
the galvanic couple would be an increased rate of corrosion on carbon steel. Galvanic couple
behavior is highly dependent on the area of carbon steel core exposed and the area of the stainless
steel that can support cathodic reactions (Jones, 1996). Since the total current of the cathode and
anode must be equal, large cathode to anode area ratios can significantly increase the anodic
corrosion rate at exposed sites. Unfortunately, in the case of a defective stainless steel-clad layer,
large cathode to anode area ratios are unavoidable. However, the differences between the OCPs of
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carbon steel and clad stainless steel have not been fully explored, and it is unclear whether galvanic
COITOS1ON even occurs.

PURPOSE AND SCOPE

In order to justify the increased initial costs of stainless steel or stainless steel-clad rebar, it
is necessary to thoroughly investigate their corrosion characteristics. This project was undertaken
to investigate some potential benefits and shortcomings regarding the use of a corrosion-resistant
rebar substitute in an aggressive concrete environment containing chlorides.

The corrosion characteristics of rebar in concrete can be divided into two stages: an
initiation stage and a propagation stage. This project is mainly focused on assessing the extension
of the initiation stage afforded by novel rebar materials. Corrosion metrics, such as chloride
threshold concentration, do not exist for many new stainless steel candidates. Such information
would enable calculation of cost versus lifetime extension. Moreover, it is uncertain whether
stainless steel-clad rebar can maintain the same superior corrosion resistance as solid stainless steel
rebar, because any exposure of the carbon steel core could result in accelerated corrosion of the
anodic carbon steel core due to galvanic coupling to the passive stainless steel-clad layer.
Therefore, the effect of cladding defects that expose the carbon steel core on corrosion behavior is a
critical consideration. The major concern regarding solid stainless steel is identifying the critical
amount of chloride that is necessary to initiate corrosion.

. It must
be determined whether the electrochemical corrosion properties of intact clad stainless
steel are equivalent to those of solid stainless steel.

e A reliable test method for chloride threshold determination on stainless steels must be
selected.

e The chloride threshold concentration for corrosion initiation must be determined for
intact and defective stainless steel-clad (exposing the carbon steel core) rebar and
compared to that for solid stainless steel. The effect of mechanically produced and
corrosion-induced breaks in the stainless steel-cladding on chloride threshold
concentrations must be investigated.

e The effect of galvanic coupling between stainless steel and carbon steel on corrosion
behavior must be determined both above and below the chloride threshold concentration
for corrosion of carbon steel.

e The chloride threshold concentration for corrosion suppression must be determined,
since it iS a conservative parameter that indicates the conditions where corrosion will
not occur.
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METHODS AND MATERIALS
Materials and Experimental Setup

Types of Reinforcing Bars Investigated

Tests were performed on three types of rebar, AISI A615M carbon steel, 316LN solid
stainless steel, and 316L stainless steel-clad over A615M carbon steel. The composition of the
rebars is presented in Table 3. The PREN (pitting resistance equivalency number) is a function of
Cr, Mo, and N content of the stainless steel and has been used to predict the localized corrosion
resistance of stainless steels in Cl” solutions (Sedriks, 1996). The plain steel and solid stainless
steel bars were size #5 (diameter = 17.5 mm). The stainless steel-clad bar was size #6 (diameter =

20 mm with the clad layer being 1 to 2 mm thick; see Figure 1.

Table 3. Measured composition of rebars used in study (expressed as wt. %); balance for all bars is Fe.

The pitting resistance equivalency number (PREN) is also presented.

Rebar P S Mn S C N Mo Cu Ti N
Type

PREN

AISI 043 0007 0038 1.11 0.22 0.03 0.11 <0.01 0.37 -- -
615M
Carbon
Steel

Solid  0.026 0.022 0.015 1486 0447 17.84 11.775 2.848 025 0.006 0.218
SS
316LN

316L  0.044 0031 0004 133 039 1671 10.16 207 044 - 038
Clad
Layer

<0.06

30.72

24.15

Stainless Steel-Clad Layer —

o

Interface \\»/

e e w

//f" e, L lmm o ®

Rebar Steel Core L T
A ' ’ “"1 .

Figure 1. Partial view of the cross-sectional area (transverse section) of 316L stainless steel-
clad rebar showing cladding thickness.
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Electrochemical Cell Design and Use

Electrochemical test methods were used to characterize the corrosion properties of the
rebars. Electrochemical methods either accelerate corrosion attack or provide a more sensitive
means to detect damage in non-accelerated tests. Electrochemical testing was performed in two
types of cells, flat and vertical, which required separate specimen preparations discussed in the
following sections. All potentials in this report are versus the saturated calomel electrode (SCE),
regardless of the electrode used to make the measurement.

Flar Cell

The flat cell was used for preliminary testing of the polished transverse face of the solid
stainless steel or carbon steel rebar, removing any effects of the mill scale. Flat cell experiments
used a standard three-electrode electrochemical setup. This configuration was used to determine
ranges of CI'/OH" and other parameters to be used in subsequent tests. No results or discussion
from these experiments will be presented in this report. More information on the flat cell testing
can be found in Hurley (2002).

Vertical Cell

Vertical cell experiments were performed in a custom built three-electrode electrochemical
cell, shown schematically in Figure 2. The modified cell design was used to avoid unwanted
crevice attack that occurs with specimen/Teflon washer contact on a flat cell and to perform
electrochemical testing on the rebar surface that is actually exposed during service. A 1.2-liter
acrylic jar was fitted with a Teflon lid and rubber O-ring gasket. The lid contained openings for a
reference electrode, a rubber stopper-mounted rebar specimen, and a counter electrode. An SCE
with a Luggin capillary probe was used for most experiments. The sensing tip of the Luggin probe

Reference Electrode
(5CE)

Counter Electrode
(Pt Plated Nb Mesh)
a Rebar Sample

{ }

Ottawa sand

O MO

@)
909\% SAN®)
)

Glass beads

f'\f\f‘\

&5 0P,
ch 00 &£ o

Figure 2. Schematic diagram of the vertical cell configuration used for chloride threshold
determination tests in glass bead-sand mixture with saturated Ca(OH), plus NaCl solutions.

13



was approximately 10 mm from the sample. For the chloride-free experiments, a Hg/Hg,SO4
reference electrode was used, but results were converted to the SCE scale. The cylindrical counter
electrode was constructed from platinized niobium mesh, 30.5 cm by 2.5 cm (= 152.5 cm?, although
the effective surface area is larger), spot-welded to a platinum-coated titanium rod.

Vertical cell test samples (see Figure 3) were prepared from = 70-mm lengths of rebar cut
with a DO-ALL band saw. One end of each test piece was drilled, tapped, and fitted with an
approximately 40-mm-long piece of 1040 threaded rod. This established electrical contact with the
sample and served as a sample holder when threaded into a #3 rubber stopper. Copper paste was
added to the interface between the rod and the rebar to enhance electrical contact. The threaded rod
was secured to the rebar with a stainless steel hex nut. The threaded rod and nut were masked
(MPM Masking 3500) to prevent their contact with the electrolyte and unwanted secondary
electrochemical reactions. The working electrode surface area for these specimens was
approximately 40 cm®.

1040 Threaded Rod

#3 Rubber Stopper
Anti-crevice Mask

Water Line

Stainless Steel Hex Nut

Rebar Sample
Copper Paste at Interface

Figure 3. Cross-sectional schematic view of top of rebar sample and electrical connection as
prepared for testing in the vertical cell shown in Figure 2.

The as-received carbon steel rebar samples contained a surface covering of black mill scale
and small amounts of red rust associated with natural weathering during storage and transportation.
In order to minimize test pollution from possible surface contamination incurred during
transportation, each rebar specimen was cleaned and then stored in a vacuum desicator until use.
The solid stainless steel and the clad stainless steel did not exhibit a voluminous mill scale or the
presence of red rust but were still prepared identically to carbon steel for consistency.

The clad stainless steel was tested in a number of configurations:

1. washed, degreased, and ultrasonically cleaned in acetone, rinsed with deionized water,
and dried at room temperature
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2. asin 1, with the exposed end sealed with a 316 weld

3. asin 1, with the exposed end sealed with epoxy (some stainless steel specimens were
also prepared this way for comparison)

4. asin 1, with a hole, 3-mm diameter and 3-mm deep (sufficient to expose the carbon
steel core), drilled through the cladding and the cut end masked with epoxy

5. as a U-bend specimen to ensure testing on only the intact clad layer with no exposure of
the carbon steel core; the U-bend bar contained a 180° bend with a bend radius of = 3.25
cm. The working electrode surface for the U-bend specimens was approximately 65

2
cm

Electrolytes

Two base electrolyte solutions were used in this investigation. Saturated Ca(OH), (0.025
M and pH 12.6) and pH 6.2 (adjusted with citric acid monohydrate, H3CsHs0O7.H,0) solution
containing 0.025 M Ca(OH),. Several chloride levels were produced in each of these solutions by
the addition of NaCl (see Table 4). All solutions were prepared with reagent grade chemicals and
deionized water (18.2 MQ-cm resistivity).

For certain tests in the vertical cell, Ottawa sand (ASTM-C109) and glass beads (6-mm and
3-mm diameter) were added. This simulated in-service rebar/concrete-aggregate crevice
conditions, high concrete electrical resistivity, and concrete mass transport conditions while also
allowing variable chloride levels to be readily selected. This experimental configuration, hereafter
referred to as simulated concrete, also enabled rapid examination of test specimen surfaces after
testing. Testing in actual concrete makes removing and examining test samples very difficult due to
the adhesion and strength of concrete surrounding the rebar. The two sizes of glass beads were
used to mimic fine ( < 4.75-mm diameter) and course (> 4.75-mm diameter) aggregates. The ratio
of 6 mm beads to 3 mm beads was approximately 3:1, and the additional cell volume was filled
with Ottawa sand. This configuration gave a theoretical pore volume fraction in agreement with the
typical capillary porosity of hydrated cement paste (0.33 for w/c = 0.63 and 100% hydration)
(Mehta, 1986).

Table 4. Summary of chloride concentrations used in repassivation studies.

Chloride Concentration (M NaCl [CIT[OH] Hy_potshetical
added to saturated Ca(OH),) kg CI'/m’ concrete
0.1 4 1.947
0.01 041 .1947
0.008 0.32 1542
0.003 0.12 0578
0.001 .042 .01947
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Experimental Procedures

Chloride-induced corrosion of materials occurs above sharp thresholds in potential,
temperature, and chloride concentration. This section defines tests used to determine these
parameters. The test procedures were chosen for their applicability to both carbon steel and
stainless steel. All tests were conducted at room temperature (23-25 °C) under naturally aerated
(un-deaerated) conditions. Not all rebar samples were tested under every set of experimental
conditions, since it is unnecessary to test stainless steel at very low (or carbon steel at very high) CI'
/OH molar ratios. Tests were run two, three, or more times, depending on agreement.

Open Circuit Potential, E.,; Determination

Vertical cells with a simulated concrete crevice environment and saturated Ca(OH), with
0.1M NaCl (CI'7OH = 4) as well as without chloride were used to test the following rebars: carbon
steel; clad stainless steel rebar (defect free) epoxy end-capped; clad stainless steel rebar with a hole
drilled through the cladding (3-mm diameter and 3-mm deep); clad stainless steel rebar with end
exposed; clad stainless steel U-bend; and solid stainless steel. The two solution environments were
used to obtain E, data both above (active state) and below (passive state) the literature-reported
chloride threshold concentration for plain carbon steel. Additional open circuit experiments were
run in saturated Ca(OH);, + 0.1M NaCl (CI/OH" = 4) without the simulated concrete for carbon
steel, solid stainless steel, and clad stainless steel with a hole drilled through the cladding. The
approximate exposed area of carbon steel (for drilled hole and exposed-end clad bar) and
subsequent area ratio of stainless steel and carbon steel are presented in Table 5. Two clad rebar
defects, drilled hole and exposed end, were used to gain insight into possible potential differences
caused by the area of exposed underlying carbon steel. In these cases, a galvanic couple potential
was measured. Potentials were measured with a high impedance digital multimeter.

Table 5. Summary of areas associated with defects in stainless steel-clad rebar.

Exposed Carbon Steel Area Area Ratio of Stainless Steel to Carbon

Defect (sz) Steel
3-mm diameter by 3-mm deep
drilled hole 0.37 108.1
Exposed end 2 20.5

Potentiodynamic Polarization

The general electrochemical corrosion behavior of the rebars as a function of potential was
investigated using potentiodynamic polarization scans (E-log(i)). The tests were performed in
chloride containing simulated concrete with high pH (12.6) and low pH (6.2) saturated Ca(OH),
over a range of chloride concentrations. Prior to potentiodynamic polarization scans, samples
exposed in laboratory air were allowed to stabilize at their OCP for 1 hour. Scans were performed
at a scan rate of 0.167 mV/s. Anodic scans were started at approximately 50 mV below OCP and

16



continued up to a maximum potential of 1.2 V. Cathodic scans were conducted on the solid
stainless steel specimens beginning about 50 mV above OCP and scanning as far down as —1.5 V.

Electrochemical Impedance Spectroscopy, Determination of i+

EIS was used to determine the polarization resistance (Rp) of the carbon steel, stainless
steel, and stainless steel-clad rebar with the drilled hole. EIS experiments were performed in the
vertical cell with saturated Ca(OH); at pH 12.6 and a chloride concentration of 0.1 M NaCl. Most
measurements were taken at open circuit potential, in the frequency range 100 kHz to as low as 1
mHz, with six data points per decade of frequency (scan times were = 30 min). Additional scans of
carbon steel were made at —0.3 V, near the galvanic couple potential. The spectra were analyzed
with an equivalent circuit (parallel R, and C in series with Rg) model and ZView?2 software (see
Figure 4), to obtain values of R;,. The polarization resistance was calculated at the low frequency
limit with three-point fitting of Nyquist plots. Estimations of the corrosion rates, icoy (Amps/cm?),
were made from R, and a modified Stem-Geary equation (assuming 3, is nearly infinite in the
passive region yields Equation 4). [, was assumed to be 120 mV.

icor = Be/ (2.34R}) 4)

o ——

__\/\R/\,_ |
— N\ "\ —

Rp

Figure 4. Electrical equivalent circuit model simulating a simple corroding metal/electrolyte
interface by parallel connected polarization resistance R, and capacitance C. Rg is the solution
resistance. Values of R, are reported in the units Q-cm? using entire wetted surface area unless
otherwise indicated.

Potentiostatic Polarization, Chloride Threshold Determination

The potentiostatic tests were carried out in the vertical cell on carbon steel and solid
stainless steel at three potentials: ~200 mV, 0 mV, and +200 mV. All tests were carried out in
saturated Ca(OH), without glass beads/sand to facilitate mixing after each chloride addition.
CI/OH ratios tested ranged from O to saturation (i.e., CI/OH" = 100). The first chloride addition
was made after a 12 to 24 hour stabilization period, and subsequent chloride additions were made
every 12 to 24 hours. This allowed the current sufficient time to stabilize at each chloride level.
After a permanent rise in the anodic current density was established above the cutoff current
density, 2to 3 1A/cm?, indicative of local corrosion (the actual current density at the local (small
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active area) corrosion sites will be much greater), the test was terminated. An example is shown in
Figure 5. The reported current densities are averaged over the entire electrode area. Maintaining a
current density above the cutoff current density ensured steady state active corrosion. Due to the
large differences in corrosion resistance among the different rebar materials, a uniform chloride
addition for all tests was impractical. To allow similar test durations for all rebars, the chloride
increment was customized to each rebar material (see Table 6). The potentiostatic polarization was
carried out using either a model 273A EG&G potentiostat or an ESC model 440 multichannel
potentiostat. The 273A potentiostat allowed continuous current acquisition (0.01 pts/sec), whereas
the 440 required periodic manual measurement of the current.

-5
8e10 — 25 o6
s | ottt — 20 4 0.5
B0 e CI/OH :
£ i (Amps/cm?) C 1 04
2 40® ' 1
g T [ s ' 5 =
< : Q qo3
- AL | 110° 2
2¢10° | : 402
1° 0.1
o e L
. 1 I I ] i 0 J 0
0 1010° 2¢10° 3¢10° 4e10° 5¢10°
time (sec)

Figure 5. Chloride threshold determination test results on solid 316LN stainless steel rebar
showing measured anodic current density versus time (solid line, left axis) as the chloride
concentration (dotted line, right axes) is incrementally increased. The chloride concentration is
expressed as CI/OH molar ratio and chloride molarity. Tests were conducted in saturated
Ca(OH), + NaCl solution.

Table 6. Chloride addition increments used for chloride threshold determination experiments.

Rebar Material Chloride Addition Increment Comments
Carbon Steel 0.15¢g Much lower compared to those of
stainless steel
Solid 316LN Stainless Steel 5-20g Dependent on potential at which
test was conducted
316L Stainless Steel-clad 05-5¢g Dependent on condition of the cut
end
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Potential Step Down Determination of E,

Potential step down experiments were run in the vertical cell to determine E,. Since the
chloride level was constant during each test, simulated concrete was used. The rebar sample was
first polarized to 1.5 V for 6000 seconds. This condition is sufficiently aggressive to produce
significant local corrosion. The potential was then stepped down to 0.725 V. Each subsequent step
down was 75 mV, and the potential was held for 500 seconds to allow stabilization of the crevice
current. The step down to 0.725 V was above any foreseeable E; of an actively corroding sample
but low enough not to significantly affect the amount of corrosion damage (the amount of charge
collected during the initial step was three orders of magnitude greater than that for each subsequent
step). This ensures that no further significant changes to the geometry of the crevice are produced.
Therefore, a reliable repassivation potential can be measured minimizing adverse experimental
factors such as scan rate dependence.

Each experiment was terminated when the current dropped below 10 Amps/cm?
(repassivation of pits and crevices) or became cathodic (potential below open circuit). Experiments
were conducted at various chloride concentrations and at pH levels of 12.6 and 6.2. A chloride
threshold concentration for corrosion suppression can be found where the E; abruptly increases with
decreasing bulk chloride concentration.

It was important to investigate pit depths less than and greater than the clad layer thickness,
exposing the carbon steel core, on the clad rebar. Additional experiments were performed on
stainless steel-clad rebar to observe what effect the extent of pitting (crevicing) depth has on the
repassivation potential. In an aggressive solution (0.1M NaCl, CI/OH" = 4), the pit propagation
times were varied to collect more dissolution charge and increase the severity of corrosion from 5
Cl/em?® to greater than 200 Clem? (sufficient to penetrate the clad layer and expose the carbon steel
core).

Mixed Potential Modeling of Galvanic Corrosion

One technique to investigate galvanic couple behavior is to model it using mixed potential
theory and experimentally determined potentiodynamic scan data from the known cathode and
anode, in this case stainless steel and carbon steel, respectively. The expected galvanic couple
potential (Egavanic) and corrosion rate (icorr) can be determined from the intersection of appropriately
scaled cathodic and anodic curves as shown in Figure 6.
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Figure 6. Galvanic couple potentials and currents predicted by overlaying cathodic curves
from solid 316LN stainless steel rebar (black) with an anedic curve from an active carbon steel
rebar (gray) specimen in saturated Ca(OH), solution + 0.1 M NaCl (CI/OH = 4).

Ohmic resistance lowers galvanic corrosion rates so its effect on active or passive carbon
steel cores coupled to passive stainless steel-cladding was estimated for a range of cathode/anode
area ratios. Calculations were made to estimate the length of rebar, and hence resistive path length
in concrete, needed to satisfy cathode/anode area ratios of 1/1, 10/1, 100/1, and 1000/1 for different
defect sizes (0.1 cm?, 0.37 cm? [similar to clad bar with a drilled hole], and 1 cm?). The ohmic
resistance associated with concrete can be estimated from the following relationship (Macdonald et
al., 1998):

Rconcrete = pconcrete'L / A (5 )

Reoncrete 18 the resistance in ohms, Peoncrete 18 the concrete resistivity (in ohm-cm), L is the
length in cm and A is the cross sectional area in cm®. It was assumed that rebars are spaced 20 cm
apart in concrete and the resulting electrical activity is restricted to a cylindrical volume with a
radius of 10 cm, whose long axis is the same as the rebar (Macdonald et al., 1998). The pconcrete Was
calculated for the simulated concrete environment with saturated Ca(OH), + 0.1 M NaCl. The
maximum ohmic voltage between physically separated anodes and cathodes was calculated with the
following formula:

Vo= Igalvanic’Rconcrete (6)

where Vg is in Volts, Igavanic 18 the galvanic corrosion current in Amps, and Reonerete 18 the resistance
associated with concrete for the given cathode area (bar length) in ohms. Anode /cathode area
ratios resulting in Vg, greater than several mV were not considered.
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Galvanic corrosion predictions for a mechanically created defect in the cladding (exposing
the core) were constructed directly from anodic carbon steel and cathodic stainless steel
potentiodynamic scans. For an electrochemically induced break in the cladding caused by pitting
with the aggressive, low pH environment caused by metal ion hydrolysis, the anodic kinetics for pit
dissolution were extracted from the potential step down data

Ohmic Correction of E-log(i) Data

The E-log(i) plots constructed for the mixed potential models were corrected for their own
ohmic resistance error due to specimen geometry and solution resistance. The desire was to
produce true E-i kinetics on the carbon steel core by calculating the true potential (Eqe) from the
measured potential. Details of the ohmic correction can be found in Hurley (2002).

RESULTS
Carbon Steel Rebar

Potentiodynamic polarization (E-log(i)) tests (plots not shown) indicated that plain carbon
steel rebar is passive at OCP in the chloride-free simulated concrete environment at a pH of 12.6
Wwith an ier = 0.98 pA/cm?. Inspection of E-log(i) curve demonstrated that the carbon steel was
passive over a broad range in potentials. The i,y value is slightly high given the short-term nature
of the test but is properly normalized to the entire electrode area. Note that literature reports of
moderate corrosion rates at 0.5 to 1.0 pA/cm’ are erroneous due to uncertainty over actively
corroding areas. For instance, if 1 to 10% of the area is actively corroding, then the actual corrosion
rates range from 5 to 10 or 50 to 1000 uA/cm?®. These rates are much more reasonable for actively
corroding steel. Oxygen evolution due to the oxidation of water is reached (= 0.6 V) prior to
achieving any pitting potentials associated with Cl'-induced pitting. Plain carbon steel corrodes
actively between chloride concentrations of 0.01 M and 0.1 M (CI'/OH™ molar ratios between 0.41
and 4). This change to active corrosion results in a lower OCP, =500 mV compared to —100 mV,
and higher corrosion current density when normalized over the entire area, 1.8 pA/cm? versus 0.98
UA/cm’®. Carbon steel rebar becomes active in solutions containing between 0.001 and 0.01 M CT"
(CI'JOH  molar ratios between 0.041 and 0.41) at a pH of 6.2.

The long-term OCP of carbon steel is much lower in 0.1 M NaCl (CI7OH = 4) solution
compared to the chloride-free solution (=550 mV vs. —-100 mV) due to corrosion initiation, as seen
in Figure 7. However, the OCP is equal to or greater than that of stainless steel when passive in
saturated Ca(OH), solution without CI" (Figure 7). Thus, OCP tests also indicated corrosion
initiation in the case of carbon steel. Corrosion products formed over a large fraction of the rebar in
the chloride solution also indicated depassivation over a large surface area, as shown in Figure 8.
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Figure 7. OCP Results for plain carbon steel (CS), solid 316LLN stainless steel (316LN), and
316L-clad stainless steel (clad) rebar specimens with and without chloride additions. Testing
was conducted in sand-glass beads with saturated Ca(OH); solution. Tests containing
saturated Ca(OH); + 0.1 M NaCl (CI/OH’ = 4) are indicated in the legend.

Carbon steel rebar exhibits a low Ry, indicating an active surface in the chloride containing
saturated Ca(OH), above its chloride threshold (0.1 M NaCl, CI/OH = 4). EIS determination of
the polarization resistance (R, = 50 kQ-cmz) indicates an 1.4y of 1.3 ;LA/cm2 when normalized over
the entire working electrode area. If active corrosion is localized, the current density would be

greater at each site.

Corrosion products

““.Qllwlll......
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Figure 8. Carbon steel rebar sample after open circuit potential testing; sample was tested in
simulated concrete with 0.1 M NaCl added (CI/OH = 4). Formation of corrosion products
over a large fraction of the surface indicates general as opposed to localized depassivation.
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The chloride threshold concentration for corrosion initiation determined from potentiostatic
tests on carbon steel was very low at all potentials tested (initiation occurred at CI/OH™ molar ratio
< 1.5), as shown in Figure 9. This result is in agreement with values reported in the literature (see

Table 1).
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Figure 9. Chloride threshold concentration as function of applied potential for corrosion initiation of plain
carbon steel and stainless steel rebars in saturated Ca(OH),. Test results at 0.0 and -0.2 V (vs. SCE) did not
initiate corrosion in the case of solid 316LLN stainless steel. The value presented for 316L clad rebar
represents a best value, acquired from a U-bend specimen test.

The step down repassivation potential results are shown in Figure 10. These results are
more conservative than those obtained from potential scans, as shown by comparison in Figure 11.
In the case of plain carbon steel, the current becomes cathodic at “E,”, instead of repassivating by
reformation of a protective oxide film, as the potential is decreased. Active corrosion on carbon
steel, once initiated, can still be sustained at a chloride concentration as low as 0.001M NaCl
(CI'/OH =0.041). Therefore, the chloride threshold for corrosion suppression on carbon steel is
some value less than 0.001M NaCl (CI/OH = 0.041) in short-term lab tests. Post-test visual
examination shows large pits that have coalesced or widened into craters occupying a large fraction
of the surface area on carbon steel (see Figure 12).
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Figure 10. Repassivation potentials for solid 316L.N and plain carbon steel versus chloride
concentration. Testing was conducted in sand-glass beads with saturated Ca(OH); + NaCl
solution at pH 12.6 and 6.2 (buffered with citric acid). E, for intact clad rebar was similar to
the solid 316LLN rebar.
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Figure 11. Repassivation (E,) and pitting potential (E;;) values obtained for plain carbon steel from
different experimental techniques versus chloride concentration, conducted in saturated Ca(OH), + NaCl
solution. Also shown are OCP values for carbon steel above (active) and below (passive) the chloride
threshold for corrosion initiation. E, and E,; from Li (Li and Sagues, 1999) were obtained from
potentiodynamic scans. E, (square symbol this study) was obtained from the step down method in this
study.
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Figure 12. Visual appearance of carbon steel rebar repassivation specimen after potential step
down test, conducted in sand-glass beads with saturated Ca(OH), + 0.1 M Na(Cl solution
(CI'/OH =4).

Solid 316LLN Stainless Steel Rebar

Solid 316LN stainless steel rebar remained passive at all chloride levels tested by
potentiodynamic polarization (E-log(1)) at a pH of 12.6 (E-log(i) curves not shown). Oxygen
evolution due to the oxidation of water occurs (= 0.6 V) prior to reaching a pitting potential
associated with CI'-induced pitting. Hence, E,;; from a potential scan cannot be used to determine
chloride initiation thresholds (Figure 13). The rebar also remained passive at 0.01 M NaCl
(CI'/OH' = 4) and pH = 6.2, although metastable pitting was observed above 0.4 V (E-log(i) curves
not shown). The iy estimated from E-log(i) data increased from 0.03 p,A/cm2 seen at 0.1 M NaC(Cl
(CI'/OH =4)and pH=12.6 10 0.55 uA/cm2 at 0.01 M NaCl (CI/OH =0.4) and pH =6.2. These
data were normalized to total surface area, which was reasonable since pitting was not observed.
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Figure 13. Pitting potentials (E;) from potentiodynamic scans compared to repassivation
values (E,) obtained from potential step down tests following corrosion initiation on solid
316LN. The values of E,; indicated represent oxygen evolution and do not represent pitting.
Hence meaningful E; and E, values could not be obtained from potentiodynamic scans in the
case of 316LLN.
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The long-term OCP results are shown in Figure 7. All OCP values for solid 316LN
stainless steel were approximately —150 to —50 mV. The OCP values rise over time, suggesting that
chloride thresholds must be determined over a range of potentials. Open circuit potentials for solid
stainless steel exhibit no effect of chloride even at the highest concentrations tested (0.1 M NaCl,
CI7/OH =4). No meaningful difference was detected between samples tested with and without
epoxy sealing over the cut end of solid 316LN stainless steel. Post-test visual inspection did not
reveal any sign of corrosion or crevicing due to the simulated concrete or the epoxy.

EIS determination of the polarization resistance of 316LN stainless steel yielded a value of
10 MQ-cm? in the 0.1 M NaCl (CI/OH =4). This indicates a corrosion rate, icor, of 0.18 ;LA/cm2
when normalized to the entire specimen area. The 316LLN exhibits a very high polarization
resistance, indicative of passivity.

The chloride threshold for initiation of stable active corrosion of solid stainless steel rebar
polarized at +200 mV occurs at a CI/OH molar ratio of 24, as shown in Figure 9. This is
consistent with values in the literature (see Table 2). Solid 316LN stainless steel polarized to —200
mV and 0 mV did not show passivity breakdown or corrosion initiation, even at a CI/OH molar
ratio of 100. The threshold could not be determined for these potentials in 24 h potentiostatic tests
because the rebar was still passive when the solutions became saturated with NaCl (CI/OH = 100).

The repassivation potential results for solid 316LN stainless steel are shown in Figures 10
and 13. It can be seen in Figure 13 that apparent critical threshold potentials (E,;) determined by
potentiodynamic scanning methods do not indicate Cl” induced corrosion initiation. Instead,
apparent Ep; values indicate oxygen evolution. A significant drop in repassivation potential (from
+0.5 to —0.025 V) is seen between 0.008 M (CI/OH = 0.32) and 0.01 M NaCl (CI/OH =0.41),
with little effect of pH (Figure 10). Thus, the chloride threshold below which any local corrosion, if
ever initiated, would be suppressed occurs over the same range of CI'/OH molar ratios. E, appears
to be roughly independent of the amount of corrosion damage on solid stainless steel as shown in
Figure 14. Visual inspection shows distinct, high aspect ratio pits on the stainless steel after tests
where pits were initiated and then repassivated, while the remainder of the specimen remained
passive (see Figure 15).
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Figure 14. Repassivation potential (E,) as a function of corrosion damage, expressed as anodic
charge density, for solid 316N stainless steel and 316L stainless steel clad. Tests conducted in
sand-glass beads with saturated Ca(OH), + 0.1 M NaCl solution (CI/OH = 4). The OCP range
of stainless steels is indicated. The vertical line indicates the charge density above which
cladding penetration was observed.

SR

Figure 15. Post-test appearance of solid 316N stainless steel rebar repassivation specimen.
Test was conducted in sand-glass beads with saturated Ca(OH), + 0.1 M NaCl solution
(CI/OH =4).
316L Stainless Steel-Clad Rebar
Intact Clad Rebar
Weld-Sealed-End Clad Rebar Specimens

The initial chloride threshold test on intact 316L-clad rebar, with 316 stainless steel welded
over the cut end, resulted in significant corrosion products, including red rust, formed preferentially
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at the weld (Figure 16). A low threshold CI concentration was observed (CI/OH = 3.4), as
reported in Figure 17. This welded type specimen was not investigated further.

Figure 16. Appearance of 316L stainless steel-clad rebar with the cut end sealed by welding with
316 to cover the exposed carbon steel core, after chloride threshold testing at +200 mV (vs. SCE).
Tests were conducted in saturated Ca(OH), + NaCl solution.

30
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Figure 17. Chloride threshold concentration values at +200 mV, expressed as CI/OH molar ratio,
for several preparations of the 316L stainless steel clad rebar. Results indicated for U-bend and
epoxy-sealed end are averages. The high value for both the U-bend and epoxy-end-sealed
specimens was CI/OH =17. Results for solid 316LN and carbon steel are also shown for
comparison.
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Epoxy-Sealed-End Clad Rebar Specimens

The OCP results for the epoxy-sealed 316L-clad rebar are similar to those for solid stainless
steel, approximately —150 mV (carbon steel was ~100 mV), in the chloride-free environment (0 M
NaCl, CI/OH = 0), as shown in Figure 7. This indicates similar passive corrosion rates on well-
sealed 316L-cladding as seen for solid 316LN stainless steel. However, post-test visual inspection
of the specimen tested in 0.1 M NaCl (CI/OH" = 4) revealed some corrosion around the epoxy.

The chloride threshold at +200 mV varied from CI/OH = 10 (0.25 M NaCl) to CI/OH =
17 (0.43 M NaCl) with an average value of 13.5 (two samples) reported in Figure 17. Corrosion
products were observed beneath the epoxy of both specimens, indicating that some plain carbon
steel may have been exposed to the environment, providing the site for easier chloride-induced
corrosion.

The repassivation potential results for clad stainless steel are shown in Figures 10 and 14.
At a low anodic charge (Q) indicative of small pits (anodic charge can be related to corrosion depth;
these tests were conducted at depths less than the clad thickness), E; is roughly independent of the
amount of pitting damage and similar to that for solid 316LN stainless steel before the cladding is
penetrated. However, once the cladding is breached, exposing the underlying plain carbon steel
(see Figures 14 and 18), E; drops dramatically.

Interface between stainless steel clad ¢
layer and carbon steel core

Figure 18. Composite optical micrograph of a longitudinal cross section of 316L stainless steel-
clad rebar after repassivation potential testing in saturated Ca(OH), + NaCl solution. When
pits penetrate the clad layer (top), rapid attack occurs at the clad/core interface in the
underlying carbon steel (bottom). The interface between the cladding (above) and core (below)
has been enhanced with a gray line.

U-Bend Clad Rebar Specimens

The OCP results for the U-bend 316L.-clad rebar are shown in Figure 19. OCP values are
nearly identical with those of 316LN solid stainless steel (approximately —150 mV) and slightly (50
mV) less than for passive carbon steel (Figure 7). This, again, indicates similar passive corrosion
rates as seen for solid 316LN stainless steel.
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Figure 19. OCP results for the 316L-clad rebar samples in sand glass beads with saturated
Ca(OH), + 0.1 M NaCl solution (CI/OH = 4) (dashed line/open symbol) and in saturated

Ca(OH), without chloride additions (solid line/solid symbol).

The chloride threshold at +200 mV ranged from CI/OH = 15 to CI/OH = 17

([NaCl] = 0.4 M). An average value of 16 is reported in Figure 17. Corrosion products were

observed beneath a skin that formed at the water line. The skin could be a result of CaCOs
formation or evaporation of water, resulting in Ca(OH), saturation and salt deposition.

Intentional Mechanical Defect in Cladding

Drilled Hole and Epoxy-Sealed-End Clad Rebar Specimens

The OCP for the 316L-clad rebar with a drilled hole, conducted in saturated Ca(OH), with
0.1 M NaCl (CI/OH = 4), is shown in Figure 19. A potential drop, indicative of active corrosion,
is observed for specimens where the CI/OH” exceeds the chloride threshold for corrosion initiation
of the exposed carbon steel. This is observed for each case where carbon steel was exposed,
whether a drilled hole, cut end, or poor epoxy-sealed end was tested. A potential drop was not
observed for the U-bend specimen that does not expose carbon steel (Figure 19). Post-test visual
inspection revealed some corrosion around the hole (see Figure 20). The OCP of the clad specimen
with a hole in saturated Ca(OH), + 0.1 M NaCl is initially at =200 mV, but then drops to about —
300 mV and as low as —500 mV. These potentials are between those for solid 316N stainless steel

and active carbon steel, suggesting a mixed potential due to galvanic coupling.
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Figure 20. 316L stainless steel-clad rebar with cut end sealed with epoxy and a hole drilled to
expose the plain carbon steel core. Corrosion products were observed around the drilled hole.
Results are from OCP test conducted in sand-glass beads with saturated Ca(OH), + 0.1 M
NaCl solution (CI/OH' = 4).

Clad Rebar Specimens with Exposed End

The OCP for the clad rebar with the cut end uncovered (exposing the carbon steel core) is
also shown in Figure 19. For the test conducted in saturated Ca(OH); solution with no NaCl, the
OCP is nearly identical to that of passive carbon steel in a chloride-free environment,
approximately —100 mV. In 0.1 M NaCl (CI/OH = 4), the corrosion potential initially indicates
active corrosion (-500 mV) but elevates to a potential between that of active carbon steel and
passive stainless steel (= —250 mV). This elevated potential is likely due to galvanic coupling
between the passive clad layer and the active carbon steel core. The corrosion damage was limited
to the carbon steel core (see Figure 21).

The chloride threshold at +200mV for this sample was similar to that for carbon steel
(CI'JOH =0.68), see Figure 17.

Corrosion damage ‘» s 9*‘*‘:’““ e o,
limited to the carbon - . hE
steel core ‘ '

Figure 21. 316L stainless steel-clad rebar specimen with amzut end exposed after OCP testing.
Corrosion products were seen only on the carbon steel core after testing in sand-glass beads
with Ca(OH); + 0.1 M NaCl solution (CI/OH" = 4).

31



Galvanically Coupled Stainless and Carbon Steel

Prediction of Galvanic Corrosion Rates After Mechanical Damage of Cladding

Figure 22 shows the effect of the cathode/anode ratio on galvanic couple potential, Ecouple,
and the galvanic corrosion rate, icor, established from mixed potential theory with chmic voltages.
The galvanic couple potential associated with the passive carbon steel obtained from anodic E-log(i)
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Figure 22. Galvanic current (a) and potential (b) predicted from mixed potential theory for a 1 em” carbon
steel coupled to solid 316LN stainless steel at the area ratios indicated exposed in saturated Ca(OH), at

CI/OH’ of 4 (0.1 M NaCl) and 0.4 (0.01 M NaCl). iy, indicates the threshold corrosion rate for active carbon
steel according to (Bentour, 1997). E,, indicates the predicted galvanic couple potentials.
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scan (0.01 M NaCl, CI/OH = 0.41) rises sharply with increasing cathode area. As the
cathode/anode area ratio is increased from 1 to 1000, the galvanic couple potential rises
approximately 200 mV. However, increases in the couple potential result in little or no increase in
the corrosion rate (0.3 nA/cm?) of the passive carbon steel. A slow increase in corrosion rate is
observed initially toward 1 1A/cm?, but it remains constant as the cathode to anode area ratio is
increased from 100 to 1000.

For the couple of stainless steel to active carbon steel (exposed above its chloride threshold,
in 0.1 M NaCl, CI/OH = 4), the corrosion rate, i, increases by almost 2 orders of magnitude,
from 0.2 to 10 uA/cmz, as the cathode (stainless steel) to anode (carbon steel) area ratio is increased
from 1 to 1000. Eceuple rises more slowly than in the passive case and remains between that of
active carbon steel and passive 316L stainless steel. The carbon steel core of 316L stainless steel-
clad rebar would exhibit a much faster dissolution rate with decreasing hole size because of the
more unfavorable cathode/anode area ratio.

Possible lowering of i.oy due to concrete resistance between separated anodes and cathodes
was found to be significant at only the largest defect size (1 cm?) with the largest cathode/anode
ratio (1000/1). Even under these extreme conditions, the voltage drop is less than 2 mV.
Therefore, the increases in corrosion rate reported for large cathode/anode area ratios predicted
from mixed potential theory without consideration of ohmic voltages are reasonable.

Prediction of Galvanic Corrosion Rates After Corrosion-Induced Penetration of Cladding

Additional experiments explored the effect of cathode/anode ratio on Ecoupic and icor in an
environment produced by corrosion-induced penetration of the stainless steel-cladding, which
produces an acidified environment. The predicted galvanic corrosion current for corrosion-induced
galvanic coupling is approximately an order of magnitude more severe than that for mechanically
induced galvanic coupling (curves not shown). This result was obtained for all cathode/anode area
ratios.

DISCUSSION

There are two primary issues in this study. The first issue is the performance of solid or
intact stainless steel-clad rebar compared to plain carbon steel, and the second is a comparison of
stainless steel-clad rebar to solid stainless steel. The 316L (clad) and 316LN (solid) type stainless
steels were expected to have a higher intrinsic corrosion resistance than plain carbon steel rebar
from knowledge of empirically derived relationships for resistance to Cl™-induced corrosion, such as
the PREN. Moreover, threshold potentials and chloride concentrations for corrosion initiation were
expected to be greater. This was, indeed, observed. The following discussion is intended to help
clarify some of the complexities associated with the data and provides added interpretation of data
that contributes to the achievement of the project goals.
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Interpretation of Open Circuit Potential Trends

Plain carbon steel, 316L, and 316LN stainless steels are all passive in chloride-free concrete
at pH values above 11.5. This results in OCPs for plain carbon steel that start at fairly positive
values and rise over time, as indicated in Figure 7. The OCPs of intact clad and solid stainless steel
also rise with time (Figures 7 and 19). The low anodic reaction rate associated with the passive
state is the cause of a positive OCP value. The slightly higher OCP of plain carbon steel compared
to that of 316L or 316LN stainless steel in chloride-free simulated concrete is likely due to a faster
cathodic reaction rate on the carbon steel, since chromium inhibits the oxygen reduction reaction.
For rebar in concrete exposed to atmospheric conditions, the free corrosion potential typically
ranges between —150 to +50 mV (Bertolini et al., 1996). OCP results obtained in this study are in
agreement, ranging from —250 mV to 40 mV. An increase in thickness of the protective passive
film over time accounts for the potential rise. If the potential rise indicated in Figures 7 and 19
continued with additional exposure time beyond the test period, OCPs as high as +200 mV might
be reached. Therefore, the value of +200 mV is viewed as a conservative upper limit for the open
circuit potentials of passive plain carbon steel and stainless steel rebars in concrete. These results
point to the need for and justifies testing for CI threshold concentrations over a range of applied
potentials as high as +200 mV to obtain CI thresholds at upper bound potentials.

When the chloride concentration is increased, the pitting potential (Ey;) becomes depressed
(Sedriks, 1996). An OCP above the E; cannot be achieved for very long under these circumstances
since the anodic reaction becomes non-polarizable under this condition. Therefore, the decrease in
E,i: eventually leads to a drop in the OCP with time and an increased corrosion rate. This explains
the OCP drop exhibited for plain carbon steel and defective stainless steel-clad rebar under
conditions that exposed the carbon steel core to a high CI” concentration, as seen in Figures 7 and
19. This drop occurred for carbon steel or clad stainless steel with the carbon steel core exposed
only when the ClI” concentration was above the CI threshold concentration for corrosion initiation
of carbon steel. In no cases did the potential drop occur for solid or U-bend clad stainless steel.
This indicates two things. The first is that solid stainless steel is unlikely to initiate corrosion at its
OCP after long times even if the CI/OH molar ratio is 4. It also indicates that intact stainless steel-
cladding enjoys a similar resistance against Cl'-induced pitting as seen for solid 316N rebar at CI’
/OH molar ratios of 4. The main difference in OCP between solid 316LN stainless steel and 316L-
clad stainless steel with epoxy-coated ends is likely due to ineffective sealing and exposure of the
carbon steel core. The chloride threshold for the carbon steel core is exceeded in the case of a
316L-clad rebar with the drilled hole when exposed in an 0.1 M NaCl (CI/OH = 4) simulated
concrete solution. Thus, the OCP also decreases with time, as shown in Figure 19.

Interpretation of Chloride Threshold Concentrations for Initiation

The potentiostatic polarization/current monitoring method was chosen to investigate CI
threshold concentrations in order to eliminate problems such as the scan rate dependency of critical
threshold potentials seen in potentiodynamic polarization methods. This effect is due to long
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Figure 23. Literature reported CI/OH' ratios for plain carbon steel and various grades of solid stainless
steel. Results for solid 316LN and clad 316L (best value) obtained in this study at +0.2 V are on the far right.
Carbon steel was tested in this study at —0.2 V, while the literature results for carbon steel were based on

studies at the corrosion potential.

incubation times for corrosion initiation, which renders the scanning method ineffective. The
24-hour time period used before increasing the chloride concentration ensured that at least a short
incubation time could be overcome in order to determine CI” thresholds, but longer term lab tests
are still recommended. Nevertheless, a large difference is seen between the critical chloride
initiation concentrations for carbon steel and stainless steel (Figure 23) in this study and in the
literature (Bertolini et al., 1996). The results show that the chloride threshold concentration for
corrosion initiation on stainless steel is much larger than for carbon steel. In addition, carbon steel
suffered from more widespread attack (Figures 8 and 12), while corrosion on stainless steels
initiated and grew at distinct pit sites (Figures 15 and 18).

The chloride threshold for 316L-clad rebar shows a strong dependence on the method and
quality of sealing the exposed end (see Figure 17). Clad rebar with sealed ends often exhibited a
low chloride threshold compared to solid 316LN stainless steel reflecting the quality of the seal at
the cut end. The implication is that the poor seal allowed exposure of carbon steel, which possesses
a lower chloride threshold at all potentials (Figure 9). Visual evidence of corrosion in the carbon
steel core at the end of the test confirmed this hypothesis. The 316L.-clad U-bend samples yielded
chloride thresholds equal to that of the best case test for 316L-cladding with an epoxy-sealed end
(e.g., CI'Y/OH = 17). The chloride threshold was considerably higher than that of the carbon steel,
yet not equal to that of solid 316LN stainless steel (e.g., CI/OH = 24). This difference could be
due to the different compositions of the solid and clad stainless steels, as indicated by their
respective PREN numbers. The solid 316LN stainless steel bar has a PREN number of 30.72,
while the 316L-clad bar has a lower PREN of 24.15. Additionally, it was impossible to use the
same electrochemical cell lid for the U-bend test as in the solid bar tests due to specimen geometry.
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This led to more ready formation of a “skin” at the electrolyte/air interface around the rebar.
Corrosion products and, possibly, salt deposits formed preferentially at the water line in U-bend
chloride threshold determination tests. The salt deposits may have provided a more aggressive
environment, conducive to local corrosion attack, that promoted the observed corrosion at a lower
threshold chloride concentration than seen for straight bars of solid 316LN stainless steel. No such
corrosion or significant skin formation was observed in the experiments with straight bars.

Stainless steel has a much higher chloride initiation threshold (C1/OH" > 100) than carbon
steel (CI'/OH = 1.5) for tests conducted at 0 mV and —200 mV in saturated Ca(OH), solutions.
These results are likely conservative since the Ca(OH), solution may be more aggressive than
concrete (Glass and Buenfield, 2000). The chloride initiation threshold of solid 316LN and intact
316L-clad stainless steel at +200 mV decreased to a CI/OH™ molar ratio ranging from >15 to about
24 (Figures 9,17, and 23). It is of interest to compare the OCP of the different rebars to the chloride
threshold obtained at various potentials in order to determine which potential-dependent chloride
threshold best describes the situation in concrete. The open circuit potentials of all materials before
corrosion initiation are rising toward —50 mV over time (Figures 7 and 19). This substantiates the
need for ClI threshold information over a range of applied potentials. A detrimental situation is
created by exposure of stainless steel-clad rebar with a cut end that exposes the carbon steel core.
Here the OCP can remain high compared to active carbon steel by itself due to galvanic coupling
between the passive stainless steel-cladding and the exposed active carbon steel core. The chloride
threshold reported here is for the active carbon steel core at elevated potentials while the stainless
steel-clad layer remains unaffected.

Uncertainty over exact Cl” threshold values arises from the long incubation times associated
with initiation of local corrosion and the statistical distributions often seen in all thresholds for local
corrosion. Recall that the CI concentration is linked to electrochemical potential and should not be
considered independent of potential as is the current practice of those in the highway transportation
field. The critical potential for pitting and crevice initiation on stainless steels (Eyyes) is a function
of chloride concentration (Sedriks, 1996), as was seen earlier (Equations 2 and 3), as well as the
time of exposure at a given applied potential. Therefore, CI threshold and critical potentials are
always linked. The higher the applied potential above the Eyes value obtained at long times for a
given CI concentration, the shorter the initiation time. Thus, potentiostatic holds at +200 mV likely
enable valid determination of chloride threshold concentrations for 316L and 316LN stainless steel
when NaCl is added in steps every 24 hours because the incubation period is overcome. Therefore,
the chloride initiation threshold obtained in potentiostatic tests likely represents the condition when
the applied potential (E,pp) equals or slightly exceeds the long-term chloride-dependent critical
threshold potential (Euvyes) for chloride-induced pitting such as the pitting potential, E;;. Localized
corrosion likely occurred in potentiostatic tests at potentials very close to the condition: Epp = Erpres
because a 24-hour hold period at each CI” concentration provided enough time to overcome the
incubation time associated with initiation. Figures 11 and 13 indicate that Ej;; and E, obtained from
potentiodynamic scans are not reliable indicators of the CI threshold for initiation of stainless steels
because the passive film may not have broken down during the limited time of the scan (i.e., 30
min). In other words, scanning is an inappropriate method for determination of threshold CI’
concentrations for stainless steels because of the need to overcome the incubation time associated
with passive film breakdown. In contrast, the scanning method can be used for determination of
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threshold CI” concentrations for plain carbon steel (Li and Sagues, 1999). One way to eliminate the
incubation time associated with Ey,s is to initiate local corrosion intentionally and study the
repassivation potential, E,. The usefulness of this parameter lies in the fact that the incubation time
is eliminated.

The Chloride Concentration for Corrosion Suppression Determined by Abrupt Changes in E,

The repassivation potential, E,, represents the potential below which pits, even if initiated,
will be repassivated. E,provides several crucial pieces of information. First, E; was much more
positive for solid 316LN stainless steels than for carbon steel over a range of NaCl concentrations
(Figure 10). E; values for carbon steel were not associated with repassivation of a passive electrode
containing isolated pits but were, instead, associated with the OCP of activated carbon steel.
Hence, carbon steel never repassivated once local corrosion was initiated. This is a significant
difference between these two materials.

Second, 316L-clad stainless steel had an E; value equal to that of solid 316LN stainless steel
as long as the clad layer was not penetrated (Figure 14). This is another metric that indicates that
intact 316L-clad stainless steel is nearly equivalent to 316LN. Moreover, the lack of pit depth
dependency on E; (Figure 14) is consistent with the notion that the crevice formers present due to
the glass beads and sand provide the critical dimension that controls mass transport in and out of
the local corrosion site, not the depth of corrosion damage (Kelher et al., 2001). Therefore, E; did
not depend on depth of corrosion. When penetration occurred, E; dropped to the low values near
those associated with carbon steel (Figures 10 and 14). However, this occurred when the pit depth
was greater than the clad thickness. Thus, in the rare instance that crevice attack occurs on the
cladding and penetrates through to the carbon steel, the 316L.-clad material would no longer be as
corrosion resistant as solid 316LN stainless steel. Rapid attack of the carbon steel would be
expected due to the more aggressive pit chemistry formed as a result of stainless steel crevice
attack.

There is a critical potential associated with initiation and one associated with repassivation,
E, (Sedriks, 1996). Likewise there will be a critical CI” concentration associated with initiation of
corrosion and one below which repassivation or suppression of corrosion will occur. A chloride
threshold value for initiation of pitting on 316LN stainless steel, expressed as a CI/OH™ molar ratio
of about 24, was found to initiate localized corrosion (at +200 mV) on solid 316LN stainless steel.
A CI'/OH value below 0.4 was found to be a corrosion suppression threshold for solid 316LN
(Figures 10 and 13). It is associated with the chloride level where an abrupt increase in E; was
observed. Pits or crevices, even if formed, would repassivate at this CI'/OH™ molar ratio. Therefore,
this represents a true corrosion suppression threshold for Cl -induced attack of stainless steel. In
contrast, corrosion remained active, once initiated, on carbon steel at all CI/OH molar ratios tested
here (Figures 10 and 11). Hence, a true chloride threshold concentration, below which corrosion is
suppressed, does not exist for carbon steel in these short-term lab tests.
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Galvanic Corrosion between 316L Cladding and Exposed Plain Carbon Steel Core

Galvanic corrosion on stainless steel-clad rebar may occur at any physical breach in the
stainless steel-clad layer exposing the carbon steel core. However, Figure 22 indicates that galvanic
corrosion rates will be severe only when the chloride threshold for carbon steel is exceeded. That is
because galvanic corrosion requires a difference in OCP between the metals forming the galvanic
couple, and this is not seen in Figure 7. However, galvanic attack is expected when the CI
threshold is exceeded for carbon steel, as indicated by the differences in OCP values shown in
Figure 7 when plain carbon steel is activated. Upon such conditions, it is expected that the
corrosion rate of active carbon steel rebar would be accelerated as shown in Figure 22 and the OCP
would lie somewhere between that of passive stainless steel and active carbon steel. The condition
would be exacerbated with increasing cathode to anode areas as shown in Figure 22.

The corrosion rate of the exposed core on imperfect clad rebar depends highly on the
geometry of the setup and conductivity of the surrounding media. For example, a nick in the
cladding (exposing a very small area of the core) would have a very large cathode to anode area
ratio, while a cut-end clad bar (exposing a larger transverse section of the carbon steel core) in low
conductivity concrete will have a smaller cathode to anode area ratio. This is because anodic areas
at defects in stainless steel-cladding are, in practice, galvanically coupled only to passive stainless
steel regions from which current can be thrown. Throwing power defines the size of the cathode
that participates. However, as cathode area increases so does the ohmic resistance between
physically separated anodes and cathodes. As ohmic potential (iRq) increases, the cathodic and
anodic overpotentials (Mcathode, Nanode) beCOmMe smaller as governed by Equation 8.

A]:'_:galvanic = corr(cathOde) - Ecorr (anode) = 2mcathodel + znanode + IRQ (8)

This leads to a lowering of the galvanic corrosion current and places a limit on the amount of
cathode area that can participate. At greater distances away from anodic areas, the ohmic resistance
associated with concrete becomes so large that the area becomes shielded from participating in
galvanic corrosion. The results of this study indicate that 1000/1 cathode/anode area ratios are
possible and reasonable to consider, as done in Figure 22.

Mechanical Damage

The sharp rise in the galvanic couple potential in the case of a mechanical defect (Figure 22)
is due to the fact that carbon steel at CI/JOH = 0.4 ( 0.01 M NaCl) exhibits passive corrosion
behavior and the intersection of the cathodic E-log(i) curve for stainless steel curve occurs in the
passive region of the anodic E-log(i) curve for carbon steel. This occurs when the chloride
threshold for carbon steel has not been reached. The significant result is that there will not be
galvanic corrosion when carbon steel is exposed under these conditions. However, when tested
above the threshold (CI/OH =4, 0.1 M NaCl), the galvanic couple potential does not rise as much
as in the passive case due to the faster anodic kinetics and lower OCP associated with actively
corroding carbon steel. Galvanic corrosion rates are accelerated for the carbon steel and can be
increased by two orders of magnitude at high cathode/anode area ratios (Figure 22).
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Corrosion Damage

When the carbon steel is exposed by corrosion, the galvanic corrosion rate was increased
compared to the case of mechanical damage (figure not shown). This is explained by the presence of a
more severe local environment at corrosion-induced damage sites; thus the carbon steel corrodes at a
faster rate at each applied potential since it is no longer passive. However, stainless steel crevice attack is
rare and occurs at discrete sites. Therefore, there would be very few sites for such galvanic attack.

Influence of Chloride Threshold Concentration on Relative Initiation Time

Given the difference in chloride initiation and suppression thresholds between plain carbon
steel and solid stainless steel rebars, it is possible to create a model of the relative extension of the
initiation phase for active corrosion afforded by using stainless steel instead of carbon steel. This
model is based on Fickian diffusion of chloride into concrete. Given the increase in chloride
initiation threshold expressed as a CI/OH molar ratio from 1 to 4 for plain carbon steel to a
CI/OH molar ratio of 24 to 100 for solid stainless steel, the following question can be asked. How
long does it take for the CI/OH molar ratio in the concrete pore solution adjacent to an embedded
rebar to reach the chloride initiation thresholds described? A calculation can be performed to
estimate time until initiation, assuming diffusion of CI into concrete to the depth of the rebar from
the concrete surface by purely concentration gradient driven diffusion (Bentour et al., 1997; Kurtis
and Mehta, 1997; Berke and Hicks, 1992; Cady and Weyers, 1992; Andrade and Alonso, 1996).
Using a mathematical solution to Fick’s second law of diffusion yields Equation 9, which describes
the chloride concentration as a function of depth and time, assuming a constant surface
concentration and transport into a semi-infinite medium.

C(x,t) = Coo{ 1-erf[x / (Degret) *1} ©)

Here C(x,t) is the chloride concentration at depth x and time t; C, is the surface
concentration; and D is the effective diffusion coefficient. The inputs for the model must be
chosen carefully since the output can vary greatly with C, and Desr. Such a relative calculation
has been performed assuming relatively high and low D¢s and C, values and a suitable standard
concrete cover of 5 cm (Bentour et al,, 1997) (see Figure 24). The accuracy of these calculations
may be limited due to the lack of an accurate D¢g and uncertainty in estimation of the surface
concentration (C,) (Bentour et al., 1997; Kurtis and Mehta, 1997; Berke and Hicks, 1992; Cady
and Weyers, 1992; Andrade and Alonso, 1996). D varies with Cl” concentration, concrete age,
concrete quality, and external conditions, such as weather and concrete cracking (Cady and
Weyers, 1992). A Deg of 3 X 10 cm?s is appropriate for high quality concrete (w/c =0.4) at a
teniperature of 22 °C (Bentour et al., 1997). The actual value of C, depends on environmental
conditions and varies with time in real exposures involving intermittent salt applications.
Moreover, an exact calculation of the corrosion initiation time can not be made because of the
variability in road salt deposition and rainfall from one location to another. Therefore, it is
difficult to say exactly how long the corrosion initiation phase would be extended in service with
the use of stainless steel rebar. Nevertheless, the calculations show that the use of defect-free
stainless steel-clad rebar could significantly extend the time until initiation of chloride-induced
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corrosion. For example, under even the mildest conditions (lowest C,, slowest Degr) shown in
Figure 24, the chloride threshold concentration for corrosion initiation on carbon steel is
exceeded in less than 8 years, while under many scenarios the chloride threshold for corrosion
initiation on stainless steel has not been exceeded after 100 years. Hence, a relative increase in
initiation time of > 10 may be achieved through use of intact 316L-clad stainless steel.
Calculations with more realistic, variable, surface chloride concentrations representative of
chloride deposition and removal by rainfall might be even more optimistic.
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Figure 24. CI/OH' ratios at a depth of 5 cm in concrete versus time in years calculated from Equation
9 for various indicated values for Dy (cm?/s) and C, (expressed as CI/OH’). CI corrosion initiation
threshold concentrations are shown for the best case plain carbon steel (CI/OH™ = 4), for solid 316LLN
stainless steel (+200 mV, CI/OH™ = 24), and for intact (defect free) stainless steel (-200 to 0 mV), at an
assumed CI7OH > 130 (>NaCl saturation limit).

CONCLUSIONS

e In this study, the potentiostatic method was used to determine the chloride thresholds for
corrosion initiation of plain carbon steel rebar in simulated pore solution in laboratory tests. A
CI/OH molar ratio less than 1.5 was obtained. There is a consensus that the threshold for
carbon steel lies below a CI/OH™ molar ratio of 4 for tests conducted in concrete and below a
CI7OH molar ratio of 1.5 for tests conducted in simulated pore solutions. There is good
agreement between chloride threshold concentrations obtained for carbon steel from several
different methods. Methods that can be used include Ry, Ecor, potentiostatic holds, and
potentiodynamic polarization scans.

e  Concerning 316L-clad and 316LN solid stainless steel, the potentiostatic polarization method
was found to be an effective means to determine chloride thresholds for corrosion initiation.
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Other methods such as potentiodynamic polarization scans did not provide an effective means
to determine chloride threshold concentrations for corrosion initiation in simulated pore
solution in short-term laboratory tests.

At —200 and 0 mV vs. SCE, the chloride threshold for corrosion initiation of solid 316N
stainless steel was conservatively placed at the saturation point of NaCl (CI/OH molar ratio >
100) in saturated Ca(OH),. Corrosion had not been initiated at this point after 24 h exposure
in laboratory tests, but further increasing the chloride concentration was not possible due to
saturation. At +200 mV, the chloride thresholds for corrosion initiation, expressed as a
CI'/OH molar ratio, were found to be as high as 24 for solid stainless steel.

Intact 316L-clad stainless steel rebar specimens possessed similar electrochemical corrosion
properties (e.g., Eocp, E-log(1), and pit repassivation potentials, E;) as solid stainless steel
counterparts. The chloride thresholds for corrosion initiation of intact 316L-clad stainless steel
rebar specimens, expressed as a CI'/OH molar ratio, was also found to average 16 and be as
high as 17. However, the highest recorded chloride initiation threshold for intact 316L
stainless steel-clad rebar specimens was not as high as that for solid 316LN stainless steel.
This was attributed to differences in alloy composition.

The chloride thresholds for corrosion initiation of 316L stainless steel-clad rebar specimens,
expressed as a CI'/OH molar ratio, decreased toward the results for plain carbon steel when cut
ends, ineffectively welded ends, and ineffectively sealed epoxy ends were exposed in Ca(OH),
+ NaCl solutions. Hence, the chloride threshold for corrosion initiation on stainless steel-clad
rebar was found to be strongly dependent on the method of covering the carbon steel core at
the cut end of the rebar. At best, the chloride threshold is similar to that of solid stainless steel
rebar, but when the cut end exposes plain carbon steel, the chloride threshold was equal to that
of carbon steel.

Repassivation potential, E;, values provided an additional metric for comparison of solid and
stainless steel-clad rebar to plain carbon steel. E; values for 316L-clad stainless steel were
equivalent to solid 316LN stainless steel as long as the stainless steel-clad layer had not been
penetrated by corrosion attack.

A new parameter was discovered and reported. It is the critical CI” concentration in a
simulated pore solution below which corrosion, once initiated, would be suppressed. This was
termed the chloride concentration for corrosion suppression. A distinct critical CI°
concentration for corrosion suppression was found for 316LN stainless steel where E;
increased far above Eocp. In contrast, no abrupt increase in repassivation potential was
observed for carbon steel at CI/OH™ molar ratios as low as 0.04. Thus, a chloride
concentration for corrosion suppression of carbon steel could not be defined in short-term
laboratory tests.

Galvanic coupling between cladding and carbon steel cores, due to defects in the 316L-clad
stainless steel bar that expose the carbon steel core, was found to be detrimental to the
corrosion performance of clad rebar with a physical penetration only in chloride solutions.
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Corrosion was accelerated on physically exposed carbon steel cores only when it was exposed
in a Ca(OH), + NaCl solution above the chloride initiation threshold for corrosion of carbon
steel. Increasing the cathode to anode area ratio caused progressively greater galvanic couple
potentials and galvanic corrosion rates. In contrast, exposure of physically exposed carbon
steel in chloride-free Ca(OH); solutions did not result in galvanic corrosion. Galvanic
corrosion was also accelerated when carbon steel was exposed by electrochemical penetration
of the stainless steel-cladding.

Since intact stainless steel-clad rebar possesses nearly equally high resistance to initiation of
chloride-induced corrosion as obtained with solid stainless steel 316N, its use can lead to
significant lifetime extensions for concrete structures due to improved chloride threshold
concentrations compared to carbon steel. Fickian diffusion calculations with fixed surface
chloride concentration show that the increased chloride threshold of defect-free stainless steel
rebar may increase, by orders of magnitude, the time until initiation of chloride-induced
corrosion over that for carbon steel. Calculations with more realistic, variable, surface
chloride concentrations might be even more optimistic.

RECOMMENDATIONS

Since the stainless steel—lad bar evaluated in this project can extend the service life of
concrete bridges, it should be used in the construction of new concrete bridges.

Further study should be dedicated to effective sealing methods for the cut ends of clad rebar
materials in order to gain the full benefit of intact clad rebar. Ineffective sealing of cut ends can
reduce the time until corrosion initiation because chloride thresholds are reduced. However, the
effects of corrosion propagation at such spatially discrete sites on eventual concrete damage by
corrosion product wedging are unclear, since corrosion damage starts at the cut end and would
require delamination of the cladding prior to spreading across a large surface area of the
reinforcing bar.

Chloride thresholds for solid and stainless steel-clad rebar should be confirmed over longer time
periods than the 24 h used in these laboratory tests. Moreover, additional fine increments in
chloride levels should be tested that will lead to more narrowly defined chloride thresholds.
Also, research needs to be conducted into the statistical spread of the chloride threshold results
on all types of rebars. This consists of running multiple tests under the potentiostatic
polarization condition to illuminate scatter, effects of surface preparation, and effects of
different cut-end sealing preparation methods (specific to the clad rebar). Tests should be
conducted in simulated concrete (as opposed to actual concrete or mortars) because of the
relative ease of obtaining conservative results, as this study has shown.

The identity and specific volume of the corrosion products on new rebar materials must be
examined and determined. The risk of concrete damage due to corrosion product wedging will
depend on the properties of the corrosion products as well as the depth and area of corrosive
attack. Regarding the latter, the morphology of corrosion damage in carbon steel and 316L or
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316LN stainless steel was very different. Corrosion damage may occur to greater depths and
over larger regions of the rebar in the case of carbon steel. Experiments should be conducted
utilizing electrode arrays to monitor the spread of corrosion across the rebar surface once
initiated. An added benefit of stainless steels would be a reduced area of attack, as the
corrosion pitting morphology in this study indicates.

e The corrosion propagation properties on new rebar materials must also be further investigated
to fully understand the benefits of corrosion-resistant rebar during the propagation stage as
well as the initiation stage. Testing conducted in concrete would supplement results from
testing conducted in simulated concrete.
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