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Abstract

The development of a workable approach to estimating mitigation site water budgets is a high priority for VDOT and the
wetlands research and design community in general as they attempt to create successful mitigation sites. Additionally, correct soil
physical, chemical and biological properties must be restored that are appropriate to the intended wetlands biota in order for the
sites to function similar to a natural sites that they are replacing. The major objectives of this research program were to evaluate
the currently recommended procedures for estimating wetland water balances and to characterize the soil and hydrologic regime
present at natural and constructed sites and their interaction with wetlands biota.

This report records our efforts to develop an estimated overall water budget at VDOT's Ft. Lee mitigation site along with
a summary of our previous water budget studies at Manassas. Detail on supporting studies is also provided along with an overall
summary of multi-year research results and implications. In this report, the terms water balance and water budget are used almost
interchangeably. In our view, however, water budgets are developed by humans to interpret actual wetland water balances.

It was concluded that the use of the Pierce (1993) approach for developing mitigation wetland water budgets is prone to a
number of errors in surface water charging estimates and ET estimates via the Thornthwaite method. The Pierce approach is most
appropriate for estimating water budgets in surface water driven emergent/shrub-scrub systems with little ground water flux that
rely upon berms or other water control structures to detain and pond water over impermeable soils or strata. Additionally it was
found that the development of soil redox features, particularly the quantity and distinctness of oxidized rhizospheres can be reliably
used to interpret hydric soil development sequences in mitigation wetlands. However, the reestablishment of an appropriate
mitigation site wetness regime to one that appears to meet jurisdictional wetness criteria will not always guarantee the success of
desirable hydrophytic vegetation over time.
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ABSTRACT

The development of a workable approach to estimating mitigation site water budgets is a
high priority for VDOT and the wetlands research and design community in general as they
attempt to create successful mitigation sites. Additionally, correct soil physical, chemical and
biological properties must be restored that are appropriate to the intended wetlands biota in order
for the sites to function similar to the natural sites that they are replacing. The major objectives
of this research program were to evaluate the currently recommended procedures for estimating
wetland water balances and to characterize the soil and hydrologic regime present at natural and
constructed sites and their interaction with wetlands biota.

This report records our efforts to develop an estimated overall water budget at VDOT's
Ft. Lee mitigation site along with a summary of our previous water budget studies at Manassas.
Detail on supporting studies is also provided along with an overall summary of multi-year
research results and implications. In this report, the terms water balance and water budget are
used almost interchangeably. In our view, however, water budgets are developed by humans to
interpret actual wetland water balances.

A general planning approach to mitigation site water budgeting has been developed by
Pierce (1993) and is used widely by regulators and consultants. It was concluded that this
approach for developing detailed site-specific mitigation wetland water budgets is prone to a
number of errors in surface water charging estimates and ET estimates via the Thomthwaite
method. The Pierce approach is most appropriate for estimating water budgets in surface water
driven emergent/shrub-scrub systems with little ground water flux that rely upon berms or other
water control structures to detain and pond water over impermeable soils or strata. Additionally,
it was found that the development of soil redox features, particularly the quantity and
distinctness of oxidized rhizospheres can be reliably used to interpret hydric soil development
sequences in mitigation wetlands. However, the reestablishment of an appropriate mitigation site
wetness regime to one that appears to meet jurisdictional wetness criteria will not always
guarantee the success of desirable hydrophytic vegetation over time.
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BACKGROUND

This report summarizes results through June of 1999 from our multi-year wetlands
mitigation research program with the Virginia Department of Transportation (VDOT), the
Virginia Transportation Research Council (VTRC), and the United States Geological Survey
(USGS). Since 1995, this research program has focused upon water budget analyses for
mitigation wetlands, and this is the final and cumulative report. Over the past project year (July
1998 to June 1999), we completed our monitoring and analyses of the water balance and
associated soil hydrologic conditions at the Ft. Lee mitigation wetland. Earlier reports (Daniels
et al., 1996, 1998) also focused upon a natural wetland site in Manassas that is currently under
development to be converted and/or expanded to forested wetlands in the next year. The Ft. Lee
site was constructed in 1991 and was the focus of an ongoing oversight debate with the U.S.
Army Corps of Engineers, particularly with regard to its long-term predicted water balance. By
placing the water budget work at these particular sites, we were able to take advantage of other
project-related construction planning and monitoring programs, which greatly aided our efforts.
As discussed in our previous reports and in this final summary document, accurate water
budgeting is an essential component of effective mitigation site design. However, before this
report, very little guidance has been available to VDOT and the regulatory community regarding
the effectiveness of various water budgeting procedures and water budget component estimators.

Historically, wetlands were viewed as systems that impeded development and that should
be drained and reclaimed for other purposes (Fretwell et aI., 1996). In recent years, however,
wetlands have become valued for unique habitat, water-quality improvement, flood attenuation,
and other purposes. Consequently, the U.S. Army Corps of Engineers developed regulations to
protect wetlands. Although these regulations are intended to prevent the loss of existing
wetlands, destruction of wetlands cannot be avoided in certain instances. To mitigate the effects
of such wetlands losses, these regulations require the replacement of destroyed wetlands with
wetlands constructed where wetlands previously were not present or with wetlands restored from
previously drained or destroyed wetlands. The regulations require replacement of each acre of



destroyed wetlands with new wetlands. A mitigation ratio of 1: 1 to up to 5: 1 is common for
replacement:original wetlands. Replacement wetlands generally must be of the same type as
those destroyed, which requires the return of appropriate wetness and soils conditions.

Water is an important component in establishing a wetland. The exact role of water in
many wetlands, however, is poorly understood. In order to create or restore wetlands of a
specific type, a water budget must be evaluated to ensure that the wetland is designed to have
sufficient water seasonally to maintain the wetland. The Norfolk District of the Corps of
Engineers provided guidelines to evaluate wetland water budgets (Westbrook, 1994). These
guidelines make assumptions and suggest simple methods for quantifying components of a water
budget. In some cases, the methods might be inadequate for estimating wetland water budget
components. Consequently, wetlands could be improperly designed in these cases, resulting in
failure to establish the desired type of wetland. Therefore, other methods for estimating certain
components of wetland water budgets may be necessary.

Mitigation wetlands are also required to develop hydric soil conditions, which are
presumably related to the attainment of an appropriate wetland water balance. Evidence of
hydric soil conditions is also required for regulatory release of permit conditions. However, very
few studies of hydric soil development in mitigation wetlands and estimated rates of formation
have been reported to date. In fact, before this study, no data were available for Virginia
conditions on the genesis of hydric soil features over time and their relationship to reconstructed
wetness regimes.

When one identifies hydric soils in the field, soil color is one of the easiest indicators to
observe. Red and yellow indicate oxidized iron and zones of aeration. Gleyed (gray) colors
occur where organic matter content is low and iron has been reduced and removed. Variegated
redoximorphic color patterns are common in poorly drained (PD) soils and usually indicate a
fluctuating water table (Buol & Rebertus, 1988). Subsoil color and redoximorphic features are
primarily a function of iron reduction, which require anaerobic conditions, an energy source, and
anaerobic microbes (Bouma, 1983).

In the Coastal Plain of North Carolina, Daniels et aI. (1971) found pale brown and very
pale brown (10 yr 6/3 and 7/3) redox concentrations that were prominent in Typic Paleudults at
depths saturated 25% of the time, whereas redox depletions developed at depths saturated for
50% of the time. In Aquults, reduced matrices occurred at depths saturated for more than 50%
of the time. Faulkner and Patrick (1992) reported a strong agreement between soil profile
characteristics, hydrologic regimes, and wetland status of sites in alluvial bottomlands in
Louisiana and Mississippi. Overall, the quantitative data (soil redox potential and water table
depth) supported the qualitative field indicators (soil profile characteristics). Schelling (1960)
reported that depth to specific gray redox depletions estimated the mean wet season high water
table. Simonson and Boersma (1972) found that depth to faint and distinct redox features
strongly correlated with a high degree of saturation. Overall, the use of field indicators to
determine moisture regimes assumes that a strong and direct correlation exists between redox
potential, O2 content, water table depth, and color (Megonigal et aI., 1993). However, the length
of saturation required at a given depth is far less certain (Genthner et aI., 1998).
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The application of redoximorphic features as indicators of soil wetness has been
rigorously investigated in natural soils. However, very little work related to redox features and
constructed wetland hydrology has been conducted to date. Constructed wetlands are manmade
systems, often with altered hydrology. The validity of redox features to indicate soil wetness in a
constructed wetland needs to be examined further. Atkinson et a1. (1998) observed redox
features, including depleted matrices and oxidized rhizospheres, in 10- to 30-year-old accidental
depressional wetlands resulting from surface mining activities. Soil chroma was directly
influenced by the duration of inundation. Permanently flooded sites exhibited lower chroma than
sites with intermittent or semi-permanent flooding conditions.

Vepraskas et al. (1999) examined soils in constructed wetlands in Illinois to see if they
functioned as hydric soils and evaluated chemical and morphological changes in created
wetlands to monitor hydric soil indicator development within constructed wetlands. In a
constructed deep marsh, soils in and along the marsh edge were classified as hydric 5 years after
construction. Redox potentials and well records indicated that soils in the marsh and along its
edge met the hydric soil definition throughout the study, upland positions did not, and areas in
the transition zones met the definition in some years. After 5 years, depleted matrices were fully
developed and consistently identified as hydric soils. This study was conducted at a
demonstration project where the hydrologic regime could be controlled. Most mitigation
wetlands are subject to seasonal flooding and dry down, which greatly affect the timing and
duration of saturation. Therefore, the rate of iron oxidation and reduction and redox feature
development would be affected.

In a constructed floodplain wetland, Vepraskas et a1. (1995) found that redox depletions
and pore linings could be used to identify jurisdictional wetland boundaries in constructed
wetlands saturated for relatively short periods of time (7 to 14 days). Increased abundance and
size of redox depletions were found to be related to soil organic matter levels greater than 3%.
Redox features were not observed in areas with less than 1.5% organic matter. As discussed
earlier, redoximorphic feature development is site specific, varying with organic matter content,
temperature, and chemical characteristics.

PURPOSE AND SCOPE

The development of a workable approach to estimating mitigation site water budgets is a
high priority for VDOT and the wetlands research and design community in general. In
particular, we need to be able to look at a designated compensation site before grading
commences (or before the land is actually purchased) and predict what the soil wetness regime
will be across the site after the final grading and development is complete. Additionally, correct
soil physical, chemical, and biological properties must be restored that are appropriate to the
intended wetlands biota. In fact, preconstruction water budget modeling is required by the Corps
of Engineers, but they do not require a specific method. When this research program was
initiated, we queried VDOT's Norfolk District on this issue and they provided us with an
example method by Westbrook (1994) that is based largely on a more detailed method described
by Pierce (1993). This method generally assumes limited ground water inputs/outputs, estimates
surface run-on via the Soil Conservation Service (SCS) Runoff Curve approach, predicts
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evapotranspiration (ET) via the Thornthwaite (1948) algorithm, and then assumes that berms or
other water control structures will detain water at sufficient depths to support wetland hydrology
over the growing season. Over the initial phases of our statewide VDOT wetlands research
program (in the early 1990s), we evaluated several approaches to estimate actual site water
budgets more precisely. However, we were not able to identify an acceptable approach that we
believed was adaptable to the nature and scale of mitigation sites created by VDOT. In
particular, we found virtually no available research data to corroborate the critical and site­
specific ET component of water budgets. We also identified an overall lack of information on
the mechanics and procedures required to excavate, grade, and fill mitigation sites to insure that
post-development soil properties will be appropriate for wetlands plantings.

Therefore, the overall objectives of this research program were:

1. To evaluate the currently recommended procedures for estimating wetland water
balances and to compare the results obtained to actual wetland water balance data
from natural and constructed wetland sites.

2. To characterize the soil and hydrologic regime present at natural and constructed sites
and their interaction with wetlands biota.

3. To compare site-specific ET estimates for the study sites as developed by a variety of
alternative approaches.

4. To develop and verify site-specific overall water balances for our research sites.

5. To characterize the soil and hydrologic regime at the Ft. Lee mitigation site with
respect to hydric soil morphological development rates and the effects of soil wetness
regime on soil development and mitigation planting success.

In this report, we provide a detailed description of our efforts to develop an estimated
overall water budget at the Ft. Lee site along with a summary of our previous water budget
studies at Manassas. Detail on supporting studies is also provided along with an overall
summary of multi-year research results and implications. In this report, the terms water balance
and water budget are used almost interchangeably. In our view, however, water budgets are
developed by humans to interpret actual wetland water balances.

This work has been cooperative among Virginia Tech, USGS, and VTRC. The USGS
work reported is subject to further USGS revision. The results and conclusions reported at the
end of this report are based on the Virginia TechlVTRC interpretation of all data sets available
for this project over time and do not necessarily reflect the official opinion of the USGS.
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RESEARCH AT THE FORT LEE MITIGATION SITE

Site Description

The Ft. Lee mitigation site is a large (13.8 ha) constructed non-tidal forested wetland
adjacent to 1-295 North, southwest of Richmond in Prince George County, Virginia. The site lies
entirely within the Coastal Plain physiographic province (Figure 1). Data recorded in Hopewell,
Virginia, from 1951 to 1978 show that the average growing season lasts from March 22 until
November 6 based on air temperature. The average daily temperature is 15° C and the average
winter temperature is 5° C. Annually, the county receives an average of 1.13 m of precipitation,
with 50% falling between April and September (SCS, 1985).

The Ft. Lee mitigation area is paired with a natural forested wetland that lies between the
mitigation site and Cabin Creek, a second-order Coastal Plain stream. Plio-Pleistocene
estuarine-fill deposits underlie the entire site (Mixon et aI., 1989). The Soil Survey of Prince
George County, Virginia (SCS, 1985), has mapped the reference area as map unit 14-Kinston
complex. These are deep, PD soils formed from loamy fluvial sediments on floodplains, with a
slope ranging from 0% to 2%. These soils do not have a well-developed subsoil because of a
high water table and periodic, brief flooding events. According to the standard series criteria,
from November to June, the water table rises to within 0.3 m of the soil surface in these soils for
a brief to long duration. Flooding events are rare to common in frequency, with events most
commonly occurring from November to June. Soils of the Kinston complex are so intermingled
with Bibb and Chastain soils that they were not mapped separately. Included throughout the unit
are both sandy (Bibb series) and clayey (Chastain series) PD soils. Also included in the complex
are small areas of well drained Emporia soils and somewhat poorly drained Slagle soils (SCS,
1985). The Kinston series is classified as Fluvaquentic Endoaquepts and it is listed as a hydric
soil (National Technical Committee for Hydric Soils, 1995).

The original side slope and upland that were excavated to form the mitigation site were
mapped as 25B-Slagle sandy loam, 2% to 6% slopes and lIB-Emporia fine sandy loam, 2% to
6% slopes, respectively. The Slagle soils are deep, somewhat poorly drained soils on side
slopes, classified as Aquic Hapludults. Slagle is not classified as a hydric soil. The Emporia
soils are deep, well-drained soils on uplands and are classified as Typic Hapludults, also non­
hydric.

The final surface of the mitigation area was formed in 1991 by excavating the adjacent
hillside down to the presumed water table level under the original uplands. Final grade
elevations were based on limited winter well observations recorded by VDOT from 1990 to
1991. Twenty-five centimeters of upland topsoil was added to achieve final grade in November
1991. The site was originally seeded in tall fescue (Festuca arundinaceae Schreb.) and has since
been planted with forested wetland species such as red maple (Acer rubrum L.) and bald cypress
(Taxodium distichum L.).
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A narrow strip of natural wooded wetland lies between the created wetland and Cabin
Creek. Land surface is low and flat across the natural wetland with several natural depressions.
A drainage ditch was constructed near the north end of the created wetland connecting the
created wetland and Cabin Creek. Land surface west of the interstate is 6 to 12 m higher than
that of the created wetland. Four culverts drain from the west under the interstate into the
created wetland.

Water in the wetland is derived from (1) precipitation that falls directly on the wetland,
(2) surface water runoff from the interstate, (3) surface water runoff and ground water discharge
that flows through the four culverts that drain under the interstate, (4) ground water that
discharges from seeps on the slope between the interstate and the wetland, and (5) ground water
that flows through the surficial aquifer and discharges to the wetland. The magnitude of these
sources changes seasonally and annually. Water discharges from the wetland to the east toward
Cabin Creek by (1) ground water flow through the surficial aquifer, (2) surface water flow
through the drainage ditch and surface depressions on the eastern side of the wetland, and (3)
surface water flow across the extensive low area on the eastern side of the wetland. Water also
discharges from the wetlands as ET. Like the magnitude of the sources of water, the magnitude
of discharge through the different pathways changes seasonally and annually.

At the lowest level of standing water at which surface water flows from the wetland to
Cabin Creek, surface water primarily flows through the drainage ditch at the north end of the
wetland. As the level of the standing water increases, surface water also flows through the
natural depressions along the east side of the wetland. At even higher levels of standing water,
surface water then flows across much of the extensive low area on the east side of the wetland.

Methodology

Water Balance Measurements and Analyses

Data collection began in May 1996 and ended in June 1999. Collection of different types
of data began at different times. Collected data include (1) precipitation, (2) stage of water in
one of the culverts under the interstate, (3) periodically measured ground water levels from wells
located across the site, (4) continuously measured ground water levels from one well located
near the center of the site, and (5) energy balance measurements from near the center of the site
(Figure 2).

Precipitation

Precipitation data were collected by use of a tipping-bucket rain gage installed in March
1998 (Figure 2). Data were collected from March 1998 through June 1999. The summer and
fall of 1998 were especially dry, resulting in a low precipitation total of 0.90 m. Since
precipitation is expressed on a water level basis for overall water budgeting, no corrections for
wetland area were needed.
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Surface Water Additions and Losses

A stage gage was installed at the third culvert under the interstate (heading north) in
March 1998 (Figure 2). The purpose of the stage gage was to determine the amount of surface
water flow into the wetland from one of the sub-basins that contributes water to the wetland.
This surface water flow was to be used to estimate the total surface water flow into the wetland
from all contributing sub-basins. To determine the surface water flow at a gage, a stage­
discharge relation needs to be developed for the range of stage measured at the gage. Because
the small size of the sub-basin caused stage to rise and fall rapidly during precipitation periods,
personnel were unable to be at the site and measure flow during precipitation periods. A water
truck was used to provide flow through the culvert that could be measured for developing a
rating. The maximum flow from the truck, however, was not sufficient for developing the rating.
Consequently, surface water flow to the study site could not be estimated.

Another initial intent of the study was to measure surface water flow from the site
continuously. Backwater from Cabin Creek, flow through the multiple depressions, and flow
across the extensive low area, however, precluded the continuous measurement of surface water
flow from the site without the use of extensive instrumentation and field measurements that were
beyond the scope of funding of the project. Therefore, surface water inputs for the derived water
budget was estimated using the SCS runoff curve method (U.S. Department of Agriculture,
1973). The SCS runoff method provides a relationship between rainfall and runoff for a
watershed area. Based on the soil type, land use and antecedent soil moisture content (AMC),
the SCS method provides a relationship to reduce the runoff from the maximum of accumulated
rainfall. The relationship, Q = (P - 0.2S)2j (p + 0.8S), provides the runoff (Q) based on the
precipitation (P) and potential maximum soil retention (S). The value of S changes based on
land use, soil type (four classes), and AMC. Three AMC conditions are used: I for dry periods,
II for average moisture periods, and III for wet periods. These ratings depend on the season (i.e.,
growing or dormant) and the cumulative rainfall for the 5 days before a storm event
(Fomchenko, 1998).

The watershed that contributes to the Ft. Lee wetland was delineated from a topographic
map and estimated to cover 33.8 ha. From observations and the topographic map, this area (part
of the Ft. Lee Military Reservation) appears to be wooded, although the entire watershed has not
been surveyed. A soil group of C, moderately high runoff potential, was used. Depending on
the AMC, this resulted in S values of9.61, 4.29, and 1.76 for AMC I through III, respectively.
The runoff was converted from the volume basis to a water level over 12.42 ha, the area of the
wetland. Owing to the dry year (98/99) modeled, surface water inflow was low, with most
inflow coming in a few storm events during the winter. The lack of precipitation was
compounded by the AMC almost entirely being in the dry classification. Under this estimate
with AMC I, a minimum storm event of 0.048 m is needed for any runoff to occur. Therefore,
the few large storms (>0.025 m) during the summer resulted in relatively insignificant amounts
of runoff loading to the wetland.
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Ground Water

Monthly ground water levels were measured in wells across the site (Figure 2) by
Virginia Tech throughout the study period. Later in the study, the USGS augmented this data
collection effort by measuring water levels during the middle of each month. These water levels
reflect general seasonal changes in ground water levels across the site and can be used to
construct water table maps of the site. Water levels were also measured continuously in one well
(FL2) where land surface is slightly elevated near the center of the site (Figure 2). Water levels
from this well show detailed seasonal and short-term changes in ground water levels that can be
used for various purposes.

ET

Instrumentation for measuring meteorological data was installed in May 1996 (Figure 2).
These data are required for an energy balance used in calculating ET rates by the Bowen ratio
and other methods discussed later. Collected data included air temperature and specific humidity
at 1 and 2 m above land surface, net radiation, wind speed, wind direction, soil temperature at
two locations, soil heat flux, and the temperature of standing water in the wetland at two
locations. Data were measured and recorded every 15 minutes. Not all data are needed for
direct use in the Bowen ratio method but were collected for use in the other methods (e.g.,
Blaney-Criddle) or for the evaluation of possible limitations of the Bowen ratio method.

Estimated Annual Water Budget

One of our major overall objectives for the past project year at Ft. Lee was to develop an
approximate water budget for the site using the best available site-specific data and estimation
procedures. The estimated water budget presented here was developed based upon the site
specific data gathered by USGS as discussed in the previous section along with various
estimation approaches for surface water inputs and outputs where on-site measurement was not
possible. For the purposes of this study, we chose the period from May 1, 1998, to April 30,
1999, to construct this estimated water budget for the Ft. Lee wetland. This was a very dry year,
but regardless, we feel that the derived budget and relative component proportions tell us quite a
bit about the overall hydrologic regime of this site.

A water budget balances all of the inputs and outputs of water into a system, in our case,
the Ft. Lee mitigation wetland. A general water budget can be expressed as:

P + SWI + GWI =ET + SWO + GWO::tL1S

where

P =precipitation

SWI = surface water inflow
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GWI =ground water inflow

ET =evapotranspiration

SWO = surface water outflow

GWO =ground water outflow

LlS =change in storage (Fomchenko, 1998).

Depending on the components of interest and the available data, this general equation can be
modified. In our case, ground water was treated as a net flux and soil storage was neglected
since well levels were similar on May 1, 1998, and April 30, 1999. This makes our specific
water balance formula:

::t LtGW= P + SWI - ET - SWO.

Each component of a water budget can be either measured in the field or estimated.
Although estimates of components such as ET and surface and ground water fluxes are
commonly used, they may add significant errors to the water budget. Fomchenko (1998) showed
large differences between various estimates of ET and surface water inflow with the measured
values in a wetland in Manassas. For this reason, our confidence in certain components of the Ft.
Lee water budget is much better than in others.

The Bowen ratio method is widely accepted for determining ET and is often used as a
control to develop and compare other, less costly, alternatives (Munro, 1979). Therefore, the
Bowen ratio estimate was used for the majority of the estimated water budget. However, during
the period of 9/28/98 to 1/28/99, this estimate was not available. During this period, the Blaney­
Criddle estimate for the monthly average values was used instead.

Soil-Hydrologic Studies

For detailed soil/wetness regime studies, three transects were established across a
previously determined wetland saturation gradient (obtained from well records), beginning at the
western side of the mitigation site extending through the reference area to Cabin Creek. Within
each transect, five pits were excavated to 1.0 m. Pit locations corresponded with existing wells
and were based on well records and dominant vegetation types. Along each transect, two pits
were located in very poorly drained (VPD) areas, one in the mitigation wetland and one in a
similar area within the reference wetland. Two pits were located in poorly drained (PD) areas of
the mitigation wetland and reference wetland, and one pit was excavated in a somewhat poorly
drained (SWPD) area of the mitigation wetland. There were no SWPD areas observed within the
reference wetland.

The soils were described and classified according to National Cooperative Soil Survey
procedures (Soil Survey Staff, 1994) in July 1998. Special attention was placed on the degree
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and extent of redoximorphic features and overall pedogenesis within each horizon. Quantitative
counts were made for redoximorphic features by horizon within a 0.01-m2 sample area of each
horizon. In horizons thinner than 0.1 m, a 0.0025-m2 sample area was used. Qualitative notes
were made on the abundance, size, and color of redoximorphic features by horizon.

ResultslDiscussion

Water Balance Measurements and Analyses

Precipitation

Daily and monthly precipitation varied temporally (Figures 3 and 4, respectively). The
greatest daily precipitation was 0.070 m on December 13, 1998 (Figure 3). Monthly
precipitation ranged from 0.017 m in October 1998 to 0.194 m in March 1998 (Figure 4).
Annual precipitation was 1.023 m for March 1998 through February 1999. Because the spring of
1998 ended a wet period and the summer of 1998 began a dry period, the annual precipitation
was only 0.839 m from June 1998 through May 1999.

Ground Water Levels

Ground water levels reflect seasonal and short-term response to (1) ground water
recharge by precipitation and standing water, (2) ground water inflow to and outflow from the
site through the surficial aquifer, (3) ground water discharge by ET, and (4) ground water
discharge to standing water in the wetland (Figure 5).

Seasonal Water-Level Fluctuations. Ground water levels were higher in the winter and
spring than in the summer because (1) rates of discharge by ET were lower in the winter than in
the summer, (2) ground water recharge rates from precipitation were higher in the winter and
spring than in the summer, and (3) precipitation produced greater amounts of surface runoff to
the wetland in the winter and spring than in the summer (Figure 5). Because ground water and
surface water are hydraulically interconnected, surface runoff to the wetland recharged the
ground water when ground water levels were low. Conversely, ground water discharged to the
standing water in the wetland when ground water levels were high.

Ground water levels generally were near land surface during the winter and spring,
declined to as much as 0.9 m below land surface in the summer and varied in the fall depending
on the year. Ground water levels declined less in the summer of 1996 than the summers of 1997
and 1998. Ground water levels generally remained less than 0.25 m below land surface during
the summer of 1996 and were near land surface by late summer. Extended dry periods during
the summers of 1997 and 1998 contributed to declines in ground water levels to more than 0.75
m below land surface. Declines were to greater depths in the summer of 1997 but extended over
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a longer period during the summer of 1998. Ground water levels returned to near land surface in
the early fall of 1997 but remained low until late fall of 1998.

Diurnal Water-Level Fluctuations. When standing water and soil moisture are limited,
ET draws water from the water table through unsaturated soil to the roots and land surface
causing ground water levels to fluctuate in daily (diurnal) cycles (Figure 6). Flow from the water
table through the soil results from a combination of capillary action and other processes that
cause flow through unsaturated soil. Diurnal cycles in ground water levels reflect the combined
effects of discharge by ET and ground water flow to and from the site. Ground water is supplied
for ET by ground water flow through the aquifer to the site and ground water storage. Declines
in ground water levels from one day to the next reflect the decrease in ground water storage.

Changes in the characteristics of graphs of diurnal cycles reflect changes in the
hydrology. During certain periods, a continuous net discharge of ground water through the
aquifer took place creating a continuous, rather uniform rate of decline in ground water levels
(July 16 through 21, 1997, for example). No diurnal cycles were evident at these times. Such
declines show little effect of ET, probably because standing water and soil moisture supply most
of the water for ET. During periods when these sources of water become limited, diurnal cycles
are evident. These cycles have various characteristic patterns. In a pattern common when
diurnal cycles first appear at the site, ground water levels decreased during the day when ET was
high but changed little during the night when ET was low (July 10 and 11, 1997, for example).
This indicates that discharge by ET controlled ground water levels during the day, but ground
water inflow and outflow through the aquifer were approximately in equilibrium during the
night. During yet other periods, ground water levels declined during the day as a result of
discharge by ET from the ground water and rose during the night as a result of a net ground
water inflow through the aquifer (July 12 through 15, 1997, for example). Although ground
water likely flowed from the site through the aquifer at these times, a greater amount of water
flowed to the site through the aquifer than from the site. This relative change in ground water
inflow and outflow after precipitation probably resulted from a decrease in ground water
discharge to Cabin Creek and an increase in ground water discharge through ET.

Ground water and soil moisture were the primary, if not the only, sources of water for ET
at these times. Much of the soil moisture probably was ground water that remained in the soil as
water levels declined and the soil became unsaturated. Discharge from the ground water by ET
can occur even when the water table is below the root zone because water flows from the water
table through the unsaturated soil to the roots.

Water Table Elevation and Ground Water Flow Directions. Although the elevation
of the water table changed seasonally, the direction of ground water flow changed little through
the year. The water table generally sloped to the north and east, indicating the flow of ground
water in that direction toward Cabin Creek (Figures 7 through 10). During periods of standing
water in the wetland, the elevation of the water table at most locations is similar to the elevation
of the standing water. Because much of the standing water flows from the site through the ditch
to Cabin Creek at the northeast comer of the wetland, standing water flows through the wetland
to the north and east, similar to the direction of the slope in the water table.
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ET

This report compares ET rates calculated by the Bowen ratio method with potential ET
rates calculated by the Thornthwaite and Blaney-Criddle methods. In estimating potential ET, it
is assumed that water availability does not limit ET. When sufficient water is not available,
actual ET should be less than potential ET.

These methods are designed to calculate ET rates for different periods. The Bowen ratio
method is used to calculate daily ET rates. In contrast, the Thomthwaite and Blaney-Criddle
methods can be used to calculate only monthly rates of potential ET. Thus, daily rates calculated
by the Bowen ratio method were summed by month for comparison with rates calculated by the
Thomthwaite and Blaney-Criddle methods. ET rates calculated by the Bowen ratio method are
also used to evaluate the use of diumal ground water fluctuations for calculating ET rates.

Latent heat flux is the principle determination required for the Bowen ratio method. The
latent heat flux for the Ft. Lee site followed diurnal and seasonal cycles in response to daily and
seasonal changes in solar radiation (Figure 11). The latent heat flux is negative during the
daytime, indicating a flux toward land surface. This flux is used in ET. The daily duration and
magnitude of the negative latent heat flux are greater in August than December because the
duration of daylight is longer and the sun is higher in the sky in August than in December. The
effects of seasonal changes in the latent heat flux are also evident in the seasonal changes in rates
ofET (Table 1, Figure 12). Monthly ET calculated by the Bowen ratio method ranged from
0.024 ill in January 1998 to 0.200 m in June 1996. Peak monthly ET in 1997 and 1998 was
0.171 m in June and 0.152 m in July, respectively.

The Thornthwaite and Blaney-Criddle methods calculate potential ET from empirical
relations among ET, mean monthly air temperature, and mean day length. The Blaney-Criddle
method also uses a crop factor because it was developed to estimate the water needed by
irrigated crops in the western United States. Consequently, the utility of the Blaney-Criddle
method in the humid east is uncertain (Dunne & Leopold, 1978). A crop factor for pastures of
2.0 was used to estimate ET in this report. This factor is in the middle of the range of values of
possible factors.

Monthly rates of potential ET calculated by the Thornthwaite and Blaney-Criddle
methods were greatest in July, in contrast to the peak in ET calculated by the Bowen ratio
method in June in 1996 and 1997 and in July in 1998 (Figure 12). Peak ET probably occurred in
June in some years because the available energy for ET is greatest in June when days are the
longest (Bowen ratio method) and temperatures are greatest in July (the Thornthwaite and
Blaney-Criddle methods). Possible limitations resulting from water availability (discussed later)
may also be a factor.

Monthly rates of potential ET calculated by the Thornthwaite method were less than
monthly ET calculated by the Bowen ratio method in 22 of the 26 months (Figures 12 and 13).
Monthly potential ET calculated by the Thornthwaite method ranged from 0.087 m less than that
calculated by the Bowen ratio method in June 1996 to 0.24 m more than that calculated by the
Bowen ratio method in September 1997. Potential ET calculated by the Thornthwaite method
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averaged 0.033 m per month less than that calculated by the Bowen ratio method for the period.
The difference between Thomthwaite and Bowen ratio values was greatest early in the growing
season. This generally was a time when standing water was present and ground water levels
were high. The relatively low values calculated by the Thomthwaite method are of particular
note because the Thomthwaite method estimates potential ET, which is the maximum ET likely
to occur. Because ET rates calculated by the Thornthwaite method are low, the Thomthwaite
method probably is not a good method for estimating ET at the Ft. Lee site and possibly at other
wetland sites.

Thornthwaite values were greater than Bowen ratio values only in July, August, and
September 1997 and August 1998 (Figure 12). The Thomthwaite values were likely greater than
the Bowen ratio values during these months because these were extremely dry months. During
these months, ET could become limited by the availability of water because precipitation was
limited, standing water was not present in the wetlands, and ground water levels were low most
of time during these months. The likelihood of this limitation is supported by the relation
between daily ET calculated by the Bowen ratio method and daily maximum ground water levels
(Figure 14). The maximum rate ofET decreased from about 8.89 mm per day when ground
water levels were near land surface to 3.81 mm per day when ground water levels were 0.9 m
below land, indicating that ground water can seasonally limit ET. Conversely, the large
variability in ET at a given depth indicates that ET is also controlled by other factors. One of the
major factors, as previously indicated, is the daily and seasonal change in energy availability.

Potential ET that was calculated by the Blaney-Criddle method was highly variable
compared to Bowen ratio values (Figures 12 and 15). Blaney-Criddle values were less than
Bowen ration values during 17 of 26 months. In general, Blaney-Criddle values were less than
Bowen ratio values from fall through spring and were greater than Bowen ratio values in the
summer (Figure 12). The Blaney-Criddle values ranged from 0.086 m less than the Bowen ratio
value in April 1999 to 0.051 m greater than the Bowen ratio value in August 1998. Blaney­
Criddle values averaged only 10.92 mm per month less than Bowen ratio values. Although the
average difference between Blaney-Criddle and Bowen ratio values was about one third of the
difference between Thornthwaite and Bowen ratio values, the range in differences between
monthly values was similar (Figures 13 and 15). Unlike values from the Thomthwaite method,
values from the Blaney-Criddle method can be adjusted by adjusting the crop factor. Such
adjustment could improve estimates of ET by use of the Blaney-Criddle method. Research into
these factors, however, would be necessary.

Diumal cycles in ground water levels (Figure 6) can be used to estimate ET (White,
1932). In this method, water for ET is assumed to be derived from ground water inflow and the
daily change in ground water storage. The equation for determining ET from ground water
levels is:

ET =Sy (24h + s)

where

ET =daily ET rate
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Sy = specific yield

h = average hourly rise in ground water levels when not affected by ET

s =net fall (+) or rise (-) in the water table over a 24-hour period.

Values of hand s are derived from the water level hydrographs. Specific yield, the ratio
of the volume of water the soil will yield by gravity drainage to the volume of soil, can be
obtained from laboratory tests, pumping tests, or the literature. The specific yield of sand
typically ranges from 0.1 to 0.3 (Walton, 1970). By using the range of specific yield given by
Walton (1970), ET values would vary by a factor of three. Consequently, specific yield is an
important part of the determination of ET but typically has a high degree of uncertainty.

In the 1996 progress report, the likelihood of changes in specific yield with aquifer depth
was proposed and used to estimate ET from ground water levels. Based on further analysis of
the system, however, the apparent change in specific yield with aquifer depth likely results, in
part, from the effects of water for ET derived from a combination of soil moisture, ground water,
and standing water. When the level of standing water in the wetland is at its highest level, land
surface around well FL2 is inundated, and water in the well is near the level of the standing
water. As the level of standing water declines, increasing amounts of land surface around well
FL2 become exposed. Thus, when standing water is present and ground water levels are high,
both ground water and standing water provide water for ET. The resulting specific yield is a
composite of that of the aquifer and that of the standing water. The specific yield of the standing
water would be that fraction of the standing water not occupied by vegetation and would
approach one. As water levels decline, water for ET is provided by increasing amounts of
ground water and soil moisture and decreasing amounts of standing water. Consequently,
specific yield decreases from that of the standing water to that of the aquifer.

This theory was evaluated by calculating values of specific yield from daily ET values
determined by the Bowen ratio method and continuous ground water levels from well FL2. This
information was applied to the equation for calculating ET from ground water by rearranging the
equation to solve for specific yield,

Sy =ET/(24h +s)

Specific yield that was calculated from this equation generally was greater than 0.3 when
ground water levels were near land surface as indicated by the 1998 example (Figure 16).
Ground water levels rose rapidly in response to precipitation, generally peaking the day of the
precipitation (Figures 16A and 16B). For several days after the precipitation, diurnal cycles were
not present in ground water levels and specific yield could not be calculated. As ground water
levels declined, calculated specific yield declined to between 0.04 to 0.10 (Figure 16C). When
ground water levels were shallower than - 0.15 m, the standing water was an important source of
water for ET (Figure 17). Below a depth of about - 0.25 m, standing water appears to become a
minor factor affecting ground water levels and ET near well FL2. At these depths, ground water
and soil moisture appear to be the main sources of water for ET. Part of the soil moisture that is
removed by ET results from drainage from the soil that is not replaced by unsaturated flow from
the water table. By accounting for this water as ground water ET, the calculated specific yield
remains artificially high. Only as this "excess" soil moisture is removed so that ground water is
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the only source of water for ET does the calculated specific yield accurately represent that of the
aquifer. Thus, the lower calculated specific yields (0.04 to 0.10) probably best represent the
specific yield of the aquifer. The spikes in the graph of specific yield (Figure 16C) commonly
were periods when precipitation had added to the soil moisture. When soil moisture was again
accounted for by ground water ET, calculated specific yield increased.Although the difference
between specific yields of 0.04 and 0.10 is small in terms of the possible range in specific yield,
it is large in relative ET predictive terms.

This difference is critical when calculating ET from ground water fluctuations. Use of a
specific yield of 0.1 results in ET estimates 150% greater than those calculated from a specific
yield of 0.04. If a specific yield were 0.24, however, an increase of 0.06 would only be a 25%
increase. Thus, precise and accurate knowledge of specific yield is critical to estimating ET
from ground water levels, particularly when specific yield is low. Based on these results, use of
diurnal ground water fluctuations for estimating ET in wetlands is limited to when ground water
levels are sufficiently deep that standing water and changing soil moisture is not a source of
water. Although this limits the use of the method in calculating a water budget, the method
could provide accurate estimates of ET when ground water is the only source of water for the
vegetation. These typically are times that water availability might limit ET in a wetland and
actual ET deviates the most from true potential ET. These could also be times that water
availability could be critical to the survival of certain wetland vegetation. To use this method,
however, accurate values of specific yield are necessary.

Ground water levels and precipitation can also be used to estimate specific yield. By
assuming all of the precipitation recharges the ground water, specific yield can be calculated by
dividing the precipitation by the water level rise. This can only be done when no standing water
is present. Specific yield calculated by this method (Figure 18) was similar to that estimated
from ET (Figure 17), ranging from about 0.04 to 0.1. This relation is most evident at
precipitation values greater than 0.015 m. For some of the precipitation events of less than
0.015, calculated specific yield was greater than 0.1. Calculated specific yield would be
artificially high because part of the precipitation would replace the soil-moisture deficit, although
it was accounted for as ground water recharge in the calculation. A rise in ground water levels
could not be distinguished from diurnal cycles in 11 of 18 periods having 0.254 to 5.59 mm of
precipitation (Figure 18).

Role of Ground Water at the Site

Westbrook (1994) indicated that ground water is recharged by wetlands and that ground
water is not a significant source of water to wetlands. Long- and short-term fluctuations in
ground water levels at the Ft. Lee created wetland, however, reflect a significant role of ground
water to the hydrology of the site. The significance of ground water changes as depth of ground
water changes. When ground water levels are at, or near, land surface at well FL2 (Figure 5),
ground water levels also reflect the level of standing water in the wetlands because (1) the
elevation of land surface around FL2 is only slightly greater than that of the adjacent wetland and
(2) ground water and surface water are hydraulically interconnected.
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When ground water levels are high and standing water is present in the wetland, both
ground water and surface water are important to the hydrology of the site. At these times,
ground water seeps are abundant on the slope between the wetland and the interstate. Ground
water discharge also continues to supply water to the wetland through the four culverts under the
interstate after storm-water runoff ceases. Thus, ground water discharge through these seeps and
culvert inflows, as well as ground water flow through the aquifer, can be important sources of
water to the wetland at these times.

Although surface flow from the site could not be measured, when rates of ET were low
and ground water levels were high, ground water levels indicated some aspects of this flow
(Figure 5). When ground water levels rose to near or above land surface in well FL2, ground
water levels initially declined rapidly then declined at a much slower rate. The initial rapid
declines probably resulted, in part, from surface flow across the broad lowland areas toward
cabin creek. As water levels declined, surface water flowed through a more limited area causing
water levels to decline more slowly.

When ground water levels declined to depths of about - 0.15 m at well FL2, standing
water generally was minimally present in the wetland near the well. Ground water flow, soil
moisture, and ET became the major components of the water budget at these times. When
standing water was absent from the site, soil moisture and ground water were the major sources
of water for discharge by ET. Much of the soil moisture was ground water that remained in the
soil as ground water levels declined and the soil became unsaturated. As soil moisture decreased
because of ET, water flowed from the water table through the soil to replace soil moisture.

The significance of ground water is further demonstrated quantitatively by information
from the period July through September 1998. During this period, surface runoff was minimal,
precipitation totaled 0.181 m and ET totaled 0.362 ffi. Ground water levels declined about 0.610
m. Based on a specific yield of 0.1, ground water storage supplied 0.061 m (about 0.025 m if the
specific yield is 0.04) to ET (the 24-hr decline in diurnal ground water levels [Figure 6]). The
remaining 0.119 m (S y= 0.1) to 0.156 m (Sy =0.04) of discharge was supplied by a net ground
water inflow to the site (the nighttime rise in diurnal ground water levels (Figure 6)).
Consequently, ground water and precipitation each provided about 50% of the water for ET
during this period. Of the 50% provided by ground water, about two-thirds (six-sevenths if the
specific yield is 0.04) was provided by ground water inflow. A large part of the precipitation
(especially when daily precipitation amounts were large) appears to have been temporarily stored
as ground water (Figure 18). This storage as ground water is accounted for as precipitation, not
as ground water, in this analysis.

By using this information, general estimates of the annual ground water contributions can
be calculated. If annual estimates of the water budget are started in the winter when water levels
are near or above land surface, the annual change in ground water storage is approximately zero;
ground water inflow, therefore, is the only annual source of ground water to the site. The net
monthly ground water inflow for July through September 1998 averaged 0.041 to 0.051 m,
depending on the specific yield that is used. At this monthly rate, the annual net ground water
inflow would be 0.477 to 0.622 m. Ground water inflow rates, however, would change as
ground water levels change.
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Based on Darcy's law, aquifer permeability, aquifer thickness, and horizontal water level
gradients affect rates of lateral ground water flow. Horizontal water level gradients and aquifer
thickness change as ground water levels change but aquifer permeability changes little. These
changes would affect rates of net ground water inflow that discharges to the wetland. The net
ground water inflow that discharges to the wetland is the difference between the ground water
inflow and outflow. Changes in ground water inflow would be affected by changes in ground
water levels between wells to the west of the wetland and wells along the west edge of the
wetland. Changes in ground water outflow would be affected by changes in ground water levels
between wells along the western and east edges of the wetland.

Changes in horizontal water level gradients from July 1998 to February 1999 indicate
that the net ground water inflow is greater during periods of high water levels than during
periods of low water levels. Horizontal water level gradients increased 12% to 80% from wells
west of the wetland to wells along the west edge of the wetland from July 1998 to February
1999. Thus, based solely on horizontal water level gradients, the ground water flow to the
wetland would have increased 12% to 80%. Additionally, horizontal water level gradients
decreased 5% to 93% across the wetland from July 1998 to February 1999, indicating flow
decreased across and from the wetland during this period.

The thickness of the aquifer increased in variable amounts across and west of the wetland
from July 1998 to February 1999. The increased thickness averaged less than 0.61 m, however,
and was of similar magnitude across and west of the wetland. Consequently, the rate of net
ground water inflow to the site probably was significantly greater in February than in July. Thus,
the calculated net annual inflow of 0.477 to 0.622 m is a lower limit of the net ground water
inflow to the site. Ground water inflow during February would primarily discharge to the land
surface in the wetland and contribute to the standing water in contrast to the uptake through ET
in July.

Estimated Annual Water Budget

Precipitation (Table 2), surface water runoff additions (Figure 19), and ET losses (Figure
20) to/from the wetland were estimated as described in the Methods section. Surface water
additions were particularly low due to the very dry year studied (Figure 19). Surface water
losses could not be directly measured, however, because the Ft. Lee wetland does not have a
water control structure, gaged channel, or other device to estimate the surface water outflow.
Surface runoff usually occurs as both ditch and sheet discharge as discussed earlier. However,
we were able to relate periods of these dispersed surface flow losses to relative water levels
visually in the continuous recording well (FL2). By examining the well levels during the winter,
an "onset of runoff' water level of 0.038 ill below the soil surface was chosen. Well levels
greater than 0.038 m thus indicate surface water outflow. Thus relative surface water outflow
(Figure 21) was set to the amount of water above the "full" -0.038 m well reading 0 to - 0.038 ill

corrected for soil solids with Sy =0.1).

Clearly, this estimate, as with other parameter estimates, likely has associated error.
Depending on the "full" water level chosen and other corrections (e.g., assuming that all of the
water above the full level leaves in one day), this estimate could vary greatly. The pattern of
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surface water outflow was consistent with what would be expected, with greater amounts in the
winter and spring than during the peak of the growing season (Table 2, Figure 21).

Not knowing exact aquifer thickness and variations in specific yield for the wetland
limited the ability to measure ground water inflow and outflow directly. Instead, we estimated
the net ground water flux for each day by predicting the water level using the other parameters
and comparing this to the actual well levels. By difference (and corrected for Sy =0.1), the net
ground water flux was estimated. From Table 2 and Figure 22 it is clear that ground water is an
important source of water to the wetland. Net seepage from the wetland into the ground water is
observed only in the winter and early spring. Since our ground water estimate is calculated by
difference of all the other parameters, it also tends to accumulate the errors associated with all of
the other estimates. Although we can conclude ground water is an important component of the
water budget for the Ft. Lee wetland, quantitatively it may have intrinsic errors of estimation.
However, we should point out that our overall net ground water estimate agrees well with the
earlier USGS estimate discussed earlier, although it is somewhat higher than their reported
conservative value.

The overall monthly water budget components for the period are presented graphically in
Figure 23, and the overall annual estimated water budget is presented in Figure 24. On a net
water flux basis, for the period monitored, the hydrology of the system is strongly controlled by
net ground water additions coupled with surface water losses. ET exceeded precipitation in this
very dry year, principally attributable to the fact that the ground water influx was such that ET
did not become soil water limited for long periods. In a wetland without significant ground
water additions, actual ET and surface water losses would likely have been much less.

Soil Hydrologic Studies

A complete summary of all soil, vegetation, and hydrologic investigations at Ft. Lee is
given by Cummings (1999), including comparative soil properties over time. Additional
analyses performed at two other VDOT mitigation sites are also described. The materials
following in this section are limited to Cummings' study of soil-hydrologic interactions at Ft.
Lee along a series of soil pits excavated along a well-defined wetness gradient (Figure 25).

Initial investigations of the Ft. Lee mitigation area revealed an obvious wetness gradient
created during site construction. Well readings (Figure 26B) taken from July 1997 to January
1999 confirmed and detailed the wetness gradient. Moving east across the mitigation area, the
site progressed from VPD to SWPD soils. The SWPD soils of the mitigation area occur along a
highly compacted and elevated ridge created during construction. Soils of the VPD region were
saturated within 0.30 m of the soil surface for 164 days (68% of the growing season) and
saturated at or above the surface for 98 days (40% of the growing season). Soils of the PD
region were saturated within 0.30 m of the soil surface for 123 days (51 % of the growing season)
and saturated from 0 to 0.15 m for 98 days (40% of the growing season). Soils of the SWPD
ridge were never ponded, but saturated within 0.30 m for 70 consecutive days (30% of the
growing season).
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A similar wetness gradient existed in the reference area (Figure 26a) but was much more
complex spatially. Regions further away from Cabin Creek were PD and saturated from 0 to 15
cm for 57 days (25% of the growing season), and soils contiguous to Cabin Creek tended to be
VPD and were saturated at or above the soil surface for 70 days (30% of the growing season).
VPD areas were saturated within 0.30 m of the soil surface for 85 days (35% of the growing
season), and PD areas were saturated within 0.30 m of the soil surface for 70 days (30% of the
growing season). SWPD soils were not found in the reference area due to the hydrologic
characteristics of the area.

Mitigation and reference areas exhibited similar patterns in water table fluctuations
during the monitoring period (Figure 27). Water tables were highest from November through
Mayas a result of increased precipitation and decreased ET.

The occurrence of redoximorphic features was evaluated by drainage class at Ft. Lee. As
discussed earlier, redox feature descriptions are largely qualitative since it is difficult to obtain
accurate and repeatable quantitative estimates of relative occurrence, size, and distinctness. In a
given horizon in a given pedon, redox features will vary from point to point laterally due to
short-range changes in rooting, organic matter, texture, and internal drainage. This study
attempted to make quantitative counts of redox features, specifically oxidized rhizospheres,
noting location and size of features. The overall discussion below is drawn from a combination
of quantitative data and qualitative synthesis of the features observed across and within the many
pedons studied.

Numerous redoximorphic features were observed and counted, including Fe
accumulations/depletions and Mn accumulations, but a greater emphasis was place on oxidized
rhizospheres due to the disturbed state of the mitigation area. Oxidized rhizospheres are
presumably active features indicative of current hydrologic conditions, whereas Fe and Mn
accumulations/depletions could be relict features from a previous hydrologic regime. Oxidized
rhizospheres were located mainly in surface horizons where roots were concentrated. They were
associated with active root channels both on and within ped faces. In the PD and VPD areas,
black Mn masses 0.005 to 0.01 m in diameter were observed within peds starting at a depth of 40
cm. Strong brown Fe masses were also noted in PD and VPD areas and were generally 0.25 to
0.01 m in diameter, associated with small pockets of sand. The Fe masses occurred higher in the
profile, generally occurring between 0.10 and 0.30 m. In SWPD areas, no Mn masses were
observed. Yellowish red to strong brown Fe masses were associated with ped faces. These
features started at a depth of 0.20 m and continued throughout the profile.

Mitigation area soils in the VPD areas contained a greater quantity of active redox
features (Figure 28) in the surface horizon than those soils in up slope, drier areas. Fewer active
oxidized rhizospheres occurred in the SWPD soils and where present, were faint. Within a
0.01m2 area of the surface horizon, 620/0 of roots formed oxidized rhizospheres in the VPD areas
as compared with 31 % in the SWPD areas. Redox feature prominence decreased as the degree
of soil saturation decreased. Prominent features were observed in VPD areas, distinct features
were observed in PD areas, and faint features were observed in SWPD areas. Oxidized
rhizospheres in the PD areas were more abundant than those in the SWPD areas, but less
prominent than those in the VPD areas. Forty-seven percent of roots in the PD areas contained
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oxidized rhizospheres as compared to 31 % in the SWPD areas. The oxidized rhizospheres of the
PD areas were described as distinct, whereas those of the VPD areas were described as
prominent. Among the three transects within the mitigation area, the northern-most transect was
coarser in texture than the other two transects and oxidized rhizospheres in this transect were not
as prominent but still followed the general trend of occurrence discussed above.

In the reference area, redox features did not reflect the saturation gradient as distinctively
as soils of the mitigation area (Figure 28). Oxidized rhizospheres in both VPD and PD areas
were faint. PD areas contained fewer oxidized rhizospheres in surface horizons than VPD areas,
as expected. Sixty-five percent of roots in VPD areas contained oxidized rhizospheres as
compared with 37% in the PD areas. Oxidized rhizospheres (0.0025 to 0.005 m) were associated
with active root channels in surface horizons, while larger Fe masses (0.01 to 0.02 m) were
associated with pore linings above the water table.

Our detailed study of mitigation soils at Ft. Lee found that the occurrence of active
redoximorphic features reflected the current hydrologic regime and that these features have
apparently formed in less than 10 years. Stolt et al. (1998) investigated the time frame required
for the formation of certain redoximorphic features at Ft. Lee in buried weathering bags.
Redoximorphic features were observed within the interiors and exteriors of simulated peds
within two years. Vepraskas et al. (1995) showed that redoximorphic features could be used as
indicators of wetland hydrology in soils of constructed wetlands that are ponded or flooded for
short periods of time (7 to 14 days). In another study, Vepraskas et ale (1999) found hydric soil
field indicators formed by Fe-reduction developed over time in a constructed marsh, with full
development of Fe-depleted matrices occurring five years after construction. Areas experiencing
longer periods of saturation during the growing season contained higher quantities of prominent
redox features than better drained areas. These results are in agreement with the results of this
study.

The presence of redoximorphic features, particularly oxidized rhizospheres, increased
with longer periods of saturation (Figure 28). For this site, jurisdictional areas were separated
from non-jurisdictional areas by having greater than 35% relative abundance of oxidized
rhizospheres in the surface. Soils in SWPD areas contained less the 35%. Trends in the
occurrence of redox features with local changes in wetness or texture were not as pronounced in
the reference area at Ft. Lee. Differences between drainage classes in the reference area were not
as pronounced as in the mitigation area and soils were fairly uniform throughout the reference
area. Well developed and deep A horizons coupled with very sandy textures probably worked in
concert to mask prominence in surface horizon features in the Ft. Lee reference area. Coarser
textured horizons in the Ft. Lee mitigation area displayed fewer redox features than clayey
horizons of the same drainage class. This trend could be a result of water holding capacity and
the effects of finer textured materials on gas exchange and reduction reactions.

Along the observed wetness gradient at Ft. Lee, oxidized rhizospheres in surface horizons
were more abundant and more prominent in areas saturated at or above the surface for longer
periods. Better drained areas had fewer oxidized rhizospheres, which were more faint. Areas of
coarser textured materials possessed more faint features than finer textured materials in the same
drainage class. Other features such as Fe/Mn concentrations/depletions were present, but
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emphasis was placed on oxidized rhizospheres in this study. Oxidized rhizospheres are
associated with active root channels and have formed in less than 10 years under the current
hydrologic conditions. Matrix colors in the mitigation area are dominantly relict features from a
previous hydrologic regime and will require years of organic matter accumulation and soil
saturation and reduction to become gleyed.

At Ft. Lee, SWPD areas were saturated within 0.30 m of the soil surface for 30% of the
growing season, with seasonal high water tables never reaching the soil surface. PD areas were
saturated within 0.30 m of the soil surface for 51 % of the growing season, with almost 100
consecutive days between 0 and 0.15 m. VPD areas were saturated within 0.30 m of the soil
surface for 68% of the growing season, with almost 100 consecutive days at or above the soil
surface. At this site the relative occurrence of oxidized rhizospheres exhibits a direct
relationship with the seasonal saturation interval and can be used as an indicator of wetland
hydrology. According to the Corps of Engineers Wetlands Delineation Manual (Environmental
Laboratory, 1987), VPD and PD areas of the Ft. Lee mitigation site meet the criteria for wetland
hydrology, whereas SWPD areas may not meet the specified criteria. The manual outlines
parameters for wetland hydrology that require that an area be seasonally saturated and/or
inundated to the surface for a consecutive number of days for more than 12.5% of the growing
season. Areas saturated to the surface between 5% and 12.5% of the growing season my or may
not be wetlands (Environmental Laboratory, 1987). SWPD areas may be saturated for some time
during the growing season, but are never inundated to the soil surface. Curiously, these SWPD
areas clearly exceeded the soil wetness criteria for jurisdictional determination and contained
redoximorphic features in near-surface horizons, but were clearly not jurisdictional with regard
to botanical composition (Cummings, 1999). This may indicate that despite efforts to restore the
appropriate hydrologic regime, other soil related factors such as compaction and a lack of soil
organic matter are precluding the effective development of appropriate geochemical conditions
for hydrophytic vegetation.

WATER BUDGET STUDIES AT MANASSAS

Our two earlier research reports (Daniels et aI., 1996, 1998) focused primarily on our
combined efforts to quantify water budget components at the Manassas wetland site. A final
detailed report on that effort is given by Fomchenko (1998), and her major conclusions and
estimated water budget are summarized here.

Site Description and Methodology

The wetland studied at Manassas was a natural system that was essentially perched in
hydrologically tight Triassic "red bed" geology. The wetland graded from an open
water/emergent type to drier shrub/scrub to forested wetland as one moved away from a
perennial stream (Cockrell Branch) that brought substantial surface flow into the site. Non­
wetland areas around the periphery of this approximately 1O-ha jurisdictional wetland are
currently being excavated to create new mitigation wetlands by VDOT. Beginning in 1996,
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Virginia Tech and USGS initiated an intensive water budget monitoring program at the site that
focused primarily on accurately defining surface- and ground water regimes via a large network
of ground water wells and piezometers and surface water gauging stations. Rainfall was
measured on-site and ET was estimated via both the Thornthwaite and the diurnal water table
flux methods.

In wetland mitigation, it is essential to estimate the amount of water available for potential
storage in the wetland. This implies estimating the components of the wetland water budget. In
this study, the water budget components, precipitation, runoff, ET, and ground water seepage were
calculated on a monthly basis using the methods specified in the modified Pierce water budget
model, and compared to on-site field measurements made over 10 months in 1996 and 1997 at a
wetland in Manassas.

ResultslDiscussion

Comparison of monthly precipitation from the closest off-site weather station 32.2 km
away (Dulles Airport) to onsite measurements indicated that precipitation off site differed by as
much as 2.9 times the onsite precipitation.

The calculated runoff estimates using the SCS runoff method with an AMC II were very
different from the runoff measured from hydrographs of actual stream discharge into the wetland
during rainstorms. Percent differences ranged from 32% to 100%. Using AMC III instead of AMC
II provided more accurate runoff estimates, probably because 1996 was a relatively wet year.
These results demonstrated that the choice of AMC can greatly affect the water budget for the
Manassas wetland. Runoff dominated the water available for potential storage at this site. The
choice of AMC affected the runoff estimate for the Manassas wetland more than the use of offsite
versus onsite precipitation data.

The diurnal cyclic changes of the water table taken in an observation well in the wetland
were used to measure ET as proposed by White (1932). This method is applicable only during
periods with no rain and when the water table is below the ground surface. It depends on accurate
estimates of the specific yield of the soil and is very sensitive to errors in measuring specific yield.
These results were compared to the calculated potential ET (PET) using the Thomthwaite method
as specified for the modified Pierce model. The results indicated that the Thornthwaite PET
underpredicted ET for some months and over-predicted ET for the other months. The largest
differences from the diurnal cycle method were 0.0487 m higher in July and 0.0428 m lower in
May. The effect of such differences on the water budget was usually negligible since stream
inflow dominated water inputs, contributing as much as 3.57 m depth of water per month to the
Manassas wetland. Ground water seepage loss (mlday) was estimated by the modified Pierce
water budget model using Darcy's equation and a hydraulic gradient of 1.0. The net ground water
seepage loss was estimated to be 0.86 mmJday (0.026 mlmonth). Similar loss estimates calculated
using Darcy's equation, but with hydraulic head gradients measured with nested piezometers at the
site ranged from 0.34 to 0.02 mmlday. A net ground water gain to the wetland of 0.003 cmlday
was also observed for one set of hydraulic gradients. These ground water flow rates are all very
slow and will add or remove relatively small amounts (0.010 mlmonth maximum) of water to the
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wetland. However, ground water estimates using a hydraulic gradient of 1.0 overestimated the loss
of water from the wetland by ground water seepage and therefore provides the most conservative
estimate for wetland design.

The potential storage of the Manassas wetland was obtained as the sum of inflows and
outflows not including the base flow component of stream inflow, stream outflow, and ground
water inflow. The potential storage calculated from onsite measurements and the modified Pierce
model was dominated by runoff. However, the lower runoff values obtained using the modified
Pierce model resulted in a relatively greater effect of the other water budget components on the
modeled potential storage than on the measured values.

The overall water budget for a 10-month period at the Manassas wetland is given in Figure
29. As discussed previously, this system is dominated by surface water inputs and the tight
underlying geology apparently limits ground water flux in the modeled portion of the wetland.
However, it is important to note that detailed ground water studies in the drier shrub-scrub and
forested portions of this wetland did indicate significant seasonal ground water inputs to those parts
of the system.

The modified Pierce model underpredicted potential storage for every month of the study
period. It indicated low or deficit potential storage, whereas the on-site measured potential storage
consistently showed a surplus of water. These findings indicated that the modified Pierce water
budget model was conservative for a relatively wet year. Therefore, a wetland design based on the
modified Pierce water budget model may be more likely to maintain wet conditions due to the
overall conservative estimates of the potential storage. However, if estimates are too conservative,
a site suitable for wetland mitigation may not qualify due to an underestimated potential storage.

SUMMARY

Monthly estimates of ET varied greatly depending on whether estimates were calculated
from the Bowen ratio, Thomthwaite, or Blaney-Criddle methods. Because the Bowen ratio
method uses measured data and is not based on empirical relations, as are the Thomthwaite and
Blaney-Criddle methods, estimates of ET based on the Bowen ratio method best represented
actual rates ofET. Based on comparisons with calculations using the Bowen ratio method,
calculation by the Thomthwaite method underestimated ET except during dry summer months
when water availability limited actual ET. Consequently, the Thornthwaite method is not a good
method for estimating either ET or potential ET at the site. Similarly, although estimates of
annual ET by the Blaney-Criddle method were closer to estimates computed by the Bowen ratio
method, the Blaney-Criddle method was not an accurate method for calculating monthly ET at
the site.

Use of ET calculated by the Bowen-Ratio method and ground water levels to calculate
specific yield of the aquifer indicates that the sources of water for ET change depending on the
depth of the water table and the presence of standing water. When standing water is present and
the water table is shallower than about - 0.15 m, both standing water and ground water are
sources of water for ET. When the water table is deeper than about - 0.25 m, ground water is the
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principal source of water for ET. The specific yield of the aquifer appears to be between 0.04
and 0.1 when the water table is deeper than - 0.25 m. Because of the great influence that specific
yield has on the estimate of ET from ground water fluctuations, a precise and accurate specific
yield is necessary for estimating ET from ground water levels.

Both surface and ground water are important sources of water to the Ft. Lee created
wetland. The relative importance of each changes seasonally and annually. Ground water flows
to the east and north through the surficial aquifer beneath the site and discharges to Cabin Creek,
similar to the direction of surface water flow. During periods of standing water in the wetland,
ground water and surface water are hydraulically interconnected and changes in ground water
levels reflect changes in the level of standing water. Ground water discharge appears to be a
significant source of standing water in the wetland at these times. Both ground water and surface
water are sources of water for discharge from the site through surface water flow and ET. As
water levels and the area covered by standing water decrease, the role of surface water decreases
and the role of the ground water increases. This typically occurs during the warm-weather
months. From July through September 1998, for example, precipitation supplied about half of
the 0.362 m of ET and ground water supplied the other half. Net ground water inflow (ground
water discharge) averaged 0.041 to 0.051 m per month during this period, which equals 0.477 to
0.622 m. Based on horizontal water level gradients, rates of net ground water inflow are greater
in the winter than in the summer, such that these estimates of annual ground water discharge are
minimum likely values.

These combined results from detailed analyses of water budget components at Ft. Lee
and Manassas reveal several important overall points. First, accurate onsite measurements of
precipitation and ground water dynamics are critical to develop predictive water budgets.
Ground water additions do playa major role in the water budgets of Virginia wetlands,
particularly riparian Coastal Plain systems. Surface water additions as estimated by the SCS
runoff curve approach are generally reliable, but are very sensitive to variations in the antecedent
moisture parameters, which may need region- or site-specific study to correctly specify. ET
estimates for a given month can vary widely based upon the method utilized, and that difference
can be sufficient to influence overall wetlands design parameters. For sites with appropriate soil
water levels and known values for soil specific yield, the diurnal water table flux method appears
suitable for estimating on-site ET. When empirical approaches such as Blaney-Criddle or
Thornthwaite are employed, their tendency to underpredict actual ET significantly must be
recognized. Thus, any valid attempt to estimate the water budget for a given site is necessarily
prone to a number of sources of error, and the best solution to this problem is the acquisition of
detailed site-specific data sets.

Our specific studies at Ft. Lee clearly indicate that in a constructed mitigation site, the
hydrologic regime can mimic that of the reference area very closely. Achieving this goal
requires monitoring prior to site construction to accurately locate water table levels and very
precise forward water budgeting procedures, or quite a bit of luck. In the Ft. Lee mitigation area
a distinct wetness gradient exists, which transitions from VPD to SWPD areas with a relative
elevation change of <0.5 m. This reinforces the commonly held belief that even minor variations
in final mitigation site grade can have substantial effects on net soil wetness regime. Well
records from the mitigation and reference area show similar trends in water table rise and fall,

24



with the highest water tables occurring from November through May due to increased
precipitation and decreased ET as expected. Somewhat poorly drained areas were saturated for
the shortest amount of time at greater depths than VPD areas. Poorly drained areas were
saturated to the surface for a shorter time during the growing season, but were saturated long
enough near the surface to meet wetland hydrologic criteria. Very poorly drained areas remained
saturated at or above the soil surface for the longest duration, easily meeting wetland hydrologic
criteria. Varying degrees of saturation affected soil morphology within the mitigation/reference
pair. The fact that distinct trends in oxidized rhizospheres were observable within a 5-year
monitoring period at Ft. Lee is very important, and may provide a viable tool for assessing hydric
soil development in Virginia mitigation wetlands.

Overall, the results of the Manassas site study show that the methods used to estimate each
water budget component can have an effect on estimated potential storage or overall water supply
for design purposes. For the Manassas wetland, this study shows that there is a suitable water
supply to expand the existing size of the wetland to create new wetland areas as proposed by
VDOT. However, changing the natural setting of the wetland could alter the water budget and
create a different hydrological regime that may not support existing wetland functions. Such
changes could occur from soil grading if the impermeable soils that prevent ground water losses
are removed. In addition, overly conservative water level predictions can cause the wetland to
remain at its maximum water level during wet years and this may be detrimental to some wetland
species. Expanding these studies to other wetlands would also provide more confidence in
extrapolating the results and findings on wetland water budgets.

Finally, our overall assessment of the WestbrooklPierce approach to water budgeting for
mitigation design in Virginia reveals that it is relatively straightforward to use and simple to
implement. However, because ground water flux is largely ignored, we question its direct
application to many wetland systems, particularly riparian Coastal Plain sites. In fairness,
however, we should point out that Pierce (1993) clearly indicates that ground water additions can
be used as part of his budgeting approach if sufficient on-site data are collected to justify such.
This adds further support to our ground water monitoring conclusions as stated earlier. Because of
its intrinsic methodology, this water budgeting approach is quite applicable to sites where net
ground water flux is minimal, such as Manassas, and where the design intent is establishment of
"wet" systems such as emergent or shrub scrub communities. The WestbrooklPierce technique is
also dependent upon surface water detention via benns or appropriate grading plans, and enough
surface water plus precipitation must be detained on-site to support the wetland through summer
droughts. This necessarily leads to a net annual hydroperiod in these types of mitigation wetlands
that is very different from the cycle commonly observed (Genthner et al., 1998) in many forested
wetlands in Virginia, particularly riparian Coastal Plain systems. It is our observation that use of
this particular water budgeting approach leads to wetland designs that are "too wet" for their
intended vegetation when it is implemented in areas where net ground water flux is positive.
Conversely, if the bottom of the wetland site cannot be adequately sealed, and/or the net ground
water flux is negative, application of this water budgeting approach leads to sites that are too dry.
Again, this points out the critical importance of obtaining accurate ground water data before any
mitigation site is designed.
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CONCLUSIONS

• Use of the Pierce approach for developing mitigation wetland water budgets is prone to a
number of errors in surface water charging estimates and ET estimates via Thomthwaite in
addition to the ground water issues discussed above. Therefore, this approach should be
viewed as a general purpose assessment tool rather than a site-specific design tool.

• The Pierce approach is most appropriate for estimating water budgets in surface water driven
emergent/shrub-scrub systems with little ground water flux, and that rely upon berms or other
water control structures to detain and pond water over impermeable soils or strata. This
technique is particularly inappropriate for non-ponded forested systems that rely largely upon
a combination of landscape position and ground water discharge for their hydric soil wetness
regime. Unfortunately, a large portion of the wetlands that VDOT mitigates for in Virginia
are forested wetlands of this type.

• Our data from Ft. Lee clearly indicate that the Thornthwaite ET technique significantly
underestimates actual ET during the spring and fall seasons. Therefore, a conservative
approach to ensure adequate wetness conditions would indicate that Thornthwaite ET
estimates should be increased by approximately 35% during the cooler months.

• The diurnal water flux technique can generate a reasonably accurate and low cost ET
estimate for a given site if the water table fluctuates at the appropriate depth below the soil
surface and the specific yield of the soil/aquifer is known.

• The development of soil redox features, particularly the quantity and distinctness of oxidized
rhizospheres, can be reliably used to interpret hydric soil development sequences in
mitigation wetlands. For this technique to be effective, however, multiple observations must
be made across documented wetness zones within a given site to establish site-specific
criteria.

• Reestablishment of an appropriate mitigation site wetness regime to one that appears to meet
jurisdictional wetness criteria will not always guarantee the success of desirable hydrophytic
vegetation over time. Other soil related parameters such as compaction and organic matter
content must be returned to appropriate condition as well.
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RECOMMENDATIONS

1. Obtain sufficient on-site ground water data to allow for determination ofseasonal water
level dynamics, local gradients, and the overall position of the mitigation site within its
regional hydrologic regime. This data set should be collected for a minimum of 1 year
before site disturbance for mitigation sites, and the monitoring array should be maintained or
reinstalled after site development. This would allow for both greatly improved water
budgeting for mitigation site design and would subsequently allow VDOT to confirm earlier
water budgeting estimates for net ground water flux, allowing and justifying postconstruction
corrections where indicated. We understand that moving to a more intensive ground water
monitoring regime such as this would increase the cost of mitigation site development.
However, this incremental cost must be factored against the improved probability of pennit
approval, permit release, and overall mitigation success.

2. Use the Pierce approach only as a general purpose assessment tool, not a site-specific
design tool, for the development ofmitigation wetland water balance budgets. This
technique is likely to underestimate the water loss attributable to ET significantly and
therefore increases the chances of the wetland having insufficient water to support wetland
plants.

3. Increase ET estimates calculated using the Thornthwaite ET technique by approximately
35% during the spring and fall seasons. This is a conservative approach to ensure that
adequate wetness conditions exist despite this technique's propensity to underestimate ET
during the cooler months of the year.
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TABLES



Table 1.--Comparison of evapotranspiration (in centimeters) calculated by the Bowen Ratio, Thornthwaite, and
Blaney-Criddle methods for May 1996 through May 1999 at the Fort Lee created wetland and evapotranspiration
calculated for average conditions from 1961 through 1990 at Richmond International Airport.
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Month
a> a>

2
a>

0 2
a>

0 2
a>

0 a> a>
=a 0 =a =a =a =a.... :+J

~
+:i

~
....

·co "'C co ·co "'C ·co "'C co ·co "'C ·co "'C

3: .t: 0:: 3: .t:
0:: 3: .t: 0:: 3: .t:

0:: 3: .t:

~
()

~
()

~
()

~
() or. ().... I C .... I C .... I C .... I C ... I

C ~ a> c ~ a> c ~ a> c ~ a> c ~
L- a> 3: L- a> 3: L- a> 3: L- a> 3: L- a>
0 c 0 c 0 c 0 c 0 c
~ co 0 ~ co 0 ~ co 0 ~ co 0 ~ co
J- iii m J- iii m J- iii m J- iii m J- iii

January 0.23 0.91 2.41 1.19 1.57

February 0.64 1.32 3.71 1.47 1.91 7.44 3.00 1.73

March 2.49 3.76 6.25 2.87 4.09 11.63 4.27 3.33

April 5.31 7.47 9.42 3.96 6.12 9.73 5.51 7.70 16.31 8.05 7.48

May 9.42 12.24 14.63 6.88 10.87 16.33 8.05 10.80 13.84 9.80 12.62 15.77 11.61 12.27

June 14.53 17.53 19.96 11.23 16.76 17.09 12.32 15.19 14.66 13.64 16.59

July 15.39 18.90 16.54 11.68 17.53 13.92 14.48 17.91 15.24 14.96 18.44

August 13.89 16.92 13.79 10.72 15.14 12.85 13.34 16.31 11.61 13.67 16.66

September 9.83 11.48 10.13 9.35 11.33 7.77 10.13 11.79

October 5.16 6.35 6.86 5.36 6.22

November 2.36 3.51 2.79 1.40 2.62

December 0.71 1.57 2.95 0.51 1.57

Total 79.96 101.96 81.91 55.22 77.85 83.12 64.19 82.31 77.45 63.11 79.58 51.15 26.93 24.81



Table 2.--Monthly totals for each Fort Lee water budget component in centimeters of water.

Month Precipe Surface ET Surface Groundwater Groundwater Groundwater
inflow outflow inflow outflow (net)

May-98 9.96 0.00 -13.84 -20.45 26.06 -1.75 24.31
Jun-98 4.85 0.00 -14.66 0.00 12.12 -2.31 9.80
Jul-98 4.88 0.00 -15.24 0.00 13.72 -3.35 10.36

Aug-98 6.20 0.00 -11.61 0.00 10.29 -4.88 5.41
Sep-98 7.01 0.00 -9.58 0.00 7.85 -5.28 2.57
Oct-98 1.65 0.00 -6.35 0.00 5.72 -1.02 4.70
Nov-98 2.31 0.00 -3.51 0.00 2.92 -1.73 1.19
Dec-98 16.03 9.50 -1.57 -4.80 0.97 -20.12 -19.15
Jan-99 13.36 0.86 -1.17 -17.65 8.31 -3.68 4.62
Feb-99 3.71 0.00 -3.73 -0.05 2.82 -3.51 -0.69
Mar-99 9.02 0.00 -5.82 -35.43 32.89 -0.66 32.23
Apr-99 10.26 0.00 -10.29 -3.25 9.04 -5.79 3.25
total 89.99 10.36 -97.33 -81.64 132.69 -54.08 78.61
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Figure 25. Fort Lee Pit Locations.
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Figure 26a. Typical Fort Lee reference area hydrograph. Well readings between the dashed
lines occurred during the growing season.
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Figure 26b. Typical Fort Lee mitigation area hydrograph. Well readings between the dashed
lines occurred during the growing season.
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Figure 27b. Typical poorly drained area hydrograph comparison. Well readings between the
dashed lines occurred during the growing season.
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Figure 28. Average percent of surface horizon roots with oxidized rhizospheres at Fort Lee.



P =93 ET =-55

SWI=--.....
1,981

S =-48
SNR =-0.5

SWQ=
--.~ 1,966
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Figure 29. On-site measured water budget for the Manassas wetland. P =precipitation,
ET =evapotranspiration, SWI =surface water inflow, SWO =surface water outflow,
GWI =groundwater inflow, GWO =groundwater outflow, and S =change in storage.
All values are expressed in cm/10 month period unless otherwise noted. Note: The
months of May, June, July, January, and February did not include 9, 12, 3, 5, and 3 days
of data, respectively.


